

High-Energy Neutrino Astronomy with the ANTARES deep-Sea Cherenkov detector and with the future KM3NeT Telescope in the Mediterranean Sea

Antonio Capone, University "La Sapienza" and I.N.F.N. Roma, Italy on behalf of ANTARES and KM3NeT

Outline

 Physics motivation for a Mediterranean Cherenkov Neutrino Telescope

• The ANTARES Cherenkov Neutrino Detector:

- detector properties, angular and energy resolutions
- selected recent data analysis and results

Aiming at Km³ Neutrino Telescope in Mediterranean Sea:

- ANTARES + NEMO + NESTOR + ... : joined efforts, design and technologies defined in a common project: KM3NeT
- Pan-European coordination of funding agencies and research Institutions
- Active synergies with marine-sciences deep sea researches
- Status and perspectives

The Universe is transparent for UHE neutrinos !

Physics with a Mediterranean Neutrino Telescope

- No doubt HE ν 's are very important messengers (hadronic HECR origin ?, parent's acceleration mechanisms, wider horizon, unexplored territory,...).
- Technical feasibility of HE ν telescopes is proven (under ice, under water).
- Complementarity to the South Pole IceCube detector
- HE ν 's signal observed by IceCube (many events in a region where the visibility is exceedingly good for Med Telescopes). South Pole visible s

Central scientific goals:

- galactic neutrino sources ($1 < E_{\nu} < 100$ TeV, point-like)
- high-energy diffuse neutrino flux
- extragalactic sources
- Dark Matter (indirect detection)
- Neutrino properties
- Exotics (monopoles, nuclearites, sterile neutrinos...)

... and in a multi-messenger approach:

 origin of cosmic rays, internal dynamics of sources and acceleration processes

(E~1-100 TeV)

Neutrino fluxes: what do we know/expect ?

Detection principle

Search for neutrino induced events, mainly $v_{\mu} N \rightarrow \mu X$, deep underwater

Down-going μ from atm. showers S/N ~ 10⁻⁶ at 3500m w.e. depth

p, nuclei

Neutrinos from cosmic sources induce 1-100 muon evts/y in a km³ Neutrino Telescope - Atmospheric neutrino flux ~ E_v^{-3}

- Neutrino flux from cosmic sources ~ E_{v}^{-2}
 - Search for neutrinos with $E_v > 1 \div 10$ TeV
- ~TeV muons propagate in water for several km before being stopped
 - go deep to reduce down-going atmospheric µ backg.
 - long µ tracks allow good angular reconstruction

For $E_{v} \ge 1TeV$ $\theta_{\mu\nu} \sim \frac{0.7^{\circ}}{\sqrt{E_{v}[TeV]}}$

 μ direction reconstructed from the arrival time of Cherenkov photons on the Optical Modules: needed good measurement of PMT hits, $\sigma(t)$ ~1ns, and good knowledge of PMT positions (σ ~10cm)

p, nuclei

Up-going µ from neutrinos generated in atm. showers S/N ~ 10⁻⁴

Search for "Point like" cosmic Neutrino Sources

Experimental signal : statistical evidence of an excess of events coming from the same direction

Search for v from "Diffuse Cosmic Neutrino Sources"

- Unresolved AGN
- Neutrinos from "Z-bursts"
- Neutrinos from "GZK like" p-CMB interactions
- Neutrinos foreseen by Top-Down models

• • • •

Their identification out of the more intense background of atmospheric neutrinos (and muons) is possible at high energies (E > TeV) and implies accurate energy reconstruction.

 2013, first evidence for a diffuse flux of cosmic neutrinos: 28 contained VHE astrophysical v events reported by IceCube

Deployment

La Seyne-sur-Mer

Data taking periods:

• MILOM : Mar '05 – Mar '06

(multi-) muon Event

Up-going track: a neutrino candidate

The ANTARES search for point-like v sources

First time-integrated search with 2007-2010 data (813 days) ApJ. 760:53 (2012)

- 3058 neutrino candidates (atmospheric + astrophysical ??)
- No statistically significant excess
- The "best cluster" (-46.5°, -65.0°) compatible with the background hypothesis, p=0.026 (no known source there from ROSAT, Fermi-LAT/HESS)

New search on bigger data sample: 2007-2012 data (1340 days) ApJ-L. 786:L5 (2014)
5516 neutrino candidates (improved angular resolution)

The ANTARES search for v from known γ sources

Using the 2007-2012 data (1340 days) we counted the number of events in a 20° cone around a list of pre-selected candidates, searching for an excess over the background. Assuming a neutrino flux from the source like $d\phi_v/dE_v = \Phi_0 E_v^{-2}$ in absence of a statistically significant excess we can put a limit (at 90% C.L.) on Φ_0 . Few examples

source	α_{s} [°]	δ_{s} [°]	n _s	p-value	$\Phi_{ m v}^{ m 90\%C.L.}$
HESSJ0632+057	98.24	5.81	1.60	0.0012	(4.40
HESSJ1741-302	-94.75	-30.20	0.99	0.003	3.23
3C279	-165.95	-5.79	1.11	0.01	3.45
HESSJ1023-575	155.83	-57.76	1.98	0.03	2.01
ESO139-G12	-95.59	-59.94	0.79	0.06	1.82
CirX-1	-129.83	-57.17	0.96	0.11	1.62
PKS0548-322	87.67	-32.27	0.68	0.10	2.00
GX339-4	-104.30	-48.79	0.50	0.14	1.50
VERJ0648+152	102.20	15.27	0.59	0.11	2.45
PKS0537-441	84.71	-44.08	0.24	0.16	1.37
MGROJ1908+06	-73.01	6.27	0.21	0.14	2.32
Crab	83.63	22.01	0.00	1.00	2.46

Is there a point-like v source close to the Galactic Center ($\alpha = -79^{\circ}$, $\delta = -23^{\circ}$, Gonzalez-Garcia et al. arXiv 1310.7194) such that could explain the recent IceCube evidence ??? The expected flux should have $\Phi_0 = 6 \cdot 10^{-8}$ GeV cm⁻² s⁻¹ The point like hypothesis as well as extended Gaussian like extended (0.5° , 1° and 3°) sources have been tested: no excess found. No evidence found for a point like-source that could explain the IceCube results

x10⁻⁸ GeV cm⁻² s⁻¹

ApJ-L. 786:L5 (2014)

ANTARES search for v point-like sources

ANTARES data provide the most stringent limits to flux of neutrinos from point-like sources for a large part of the Southern Sky in the TeV region.

IceCube sensitivity to point-like sources in the Southern Sky improves for $E_v > 100 \text{ TeV}$

90 % C.L. flux upper limits and sensitivities on the muon neutrino flux for six years of ANTARES data. IceCube results are also shown for comparison.

Study of the atmospheric $v_{\mu} + \overline{v}_{\mu}$ spectrum

Atmospheric neutrinos are the irreducible background for the search of the astrophysical neutrino flux: big uncertainty in present spectra parameterizations. The unfolded spectrum, for 100 GeV $< E_v < 200$ TeV well described by

Search for a flux of v_{μ} astrophysical neutrinos from diffuse sources

Search for an excess in the energy spectrum of up-going tracks with respect to the expected distribution due to atmospheric neutrino.

- First search with 2008-2009 data (334 days) Phys. Lett. B 696 (2011) 16-22
 - Energy estimator "R": the mean number of hits collected by fired PMTs
 - $n_{obs} = 9$ "candidate" events observed with $n_{bkg} = 10.7$ background for 20 TeV < E_v < 2.5 PeV

 $\rightarrow E_{v}^{2}\Phi(E)_{90\% C.L.} = 5.3 \cdot 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

- New search with 2008-2011 data (885 days)
 - Energy estimator: dE/dx
 - Reduced atmospheric muon contamination (<0.4%)
 - n_{obs} = 8 "candidate" events with n_{bkg} =8.4
 - $n_{sig} = 2.3$ for 45 TeV < $E_v < 10$ PeV

$\Rightarrow E_{v}^{2}\Phi(E)_{90\%C.L} = 4.8 \cdot 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Search for a flux of v_{μ} astrophysical neutrinos from diffuse sources

Antonio Capone

Neutrinos from "FERMI Bubbles" ??

Search possible for a Mediterranean Cherenkov v Telescope

- FERMI detected hard γ emission (E⁻²) up to 100 GeV in extended "bubbles" around Galactic Center, hard spectrum not compatible with Inverse Compton mechanism, M.Su et al., Ap.J.724 (2010).
- Models involving hadronic processes (e.g. Crocker & Aharonian, PRL 2011) predict significant neutrino fluxes.
- Estimates for the neutrino flux: $\Phi_{\nu} \approx 0.4 \cdot \Phi_{\gamma} \Rightarrow E_{\nu}^{2} \frac{dN_{\nu_{\mu} + \bar{\nu}_{\mu}}}{dE_{\nu}} \approx 1.2 \div 2.4 \cdot 10^{-7} GeV \ cm^{-1}s^{-1}sr^{-1} = A_{theory}$
- An exponential energy cut-off could affect the flux

$$E_{\nu}^{2} \frac{dN_{\nu_{\mu}+\bar{\nu}_{\mu}}}{dE_{\nu}} = A_{theory} e^{-\frac{E}{E_{\nu}^{cutoff}}}$$

• ANTARES, the present Mediterranean v Telescope, searched for these neutrinos.

Search for a diffuse v_{μ} flux from "FERMI Bubbles"

Compare the neutrino-like events coming from 3 "off-zones" (with the same size and shape as the Fermi Bubbles "on-zone") with the events coming from the Fermi Bubbles

Events selected as up-going and well reconstructed tracks. Data sample, in the period 2008-2011, includes 806 days

In the 3 off-zones observed: n_{bkg} = 9, 12 and 12 events In the Fermi-Bubble region n_{obs} = 16 events (1.2σ excess)

No statistically consistent signal observed

Assuming no cut-off E²Φ(E)_{90%C.L} = 5.7•10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Assuming 500 TeV cut-off E²Φ(E)_{90%C.L.}= 8.7•10⁻⁷ GeV cm⁻² s⁻¹ sr ⁻¹

ANTARES - Multi-Messenger Searches

Potential astrophysical sources are predicted to emit very faint neutrino signal. The Multi-Messenger Approach increases the **discovery potential**, by observing with different probes; the **significance**, by coincident detection; the **efficiency**, by relaxed <u>cuts</u>.

... not only neutrino astrophysics...

... also open problems in particle physics ...

- > Dark Matter searches:
 - Neutralinos from Sun, Earth, Galactic Center
- > Monopoles, Nuclearites
- > Acceleration mechanisms
- > Neutrino interaction Cross sections
- > Neutrino oscillations, neutrino properties

Neutralino search: $\chi \chi \rightarrow v+...$

V

ANTARES: indirect search for Dark Matter

The Neutrino Telescope World Map

ANTARES + NEMO + NESTOR joined their efforts to prepare a km³-scale Cherenkov neutrino telescope in the Mediterranean \rightarrow KM3NeT Collaboration

Mediterranean Sea v Telescope Sky Coverage

Observable sky, galactic coordinates, for a detector efficient to tracks from below the horizon (up-going tracks). Mediterranean location provides a 3π sr sky coverage, 0.5π sr instantaneous common view with IceCube, and about 1.5π sr common view per day. The Galactic centre is visible 2/3 of the time.

A Km³ Neutrino Telescope in Mediterranean Sea will be complementary to IceCube and ... will search for neutrino sources also in the Galactic centre

International Collaboration involving 241 scientists from 38 Institutes and 10 EU countries (CY, DE, ES, FR, GR, IE, IT, NL, RO, UK)

- Objective: to build the most sensitive high energy neutrino telescope in the Northern Hemisphere
- KM3NeT is on the ESFRI roadmap since 2006

The KM3NeT Detector

TDR: ISBN 978-90-6488-033-9 (2010)

18 optical modules per detection unit First optical module above seabed ~ 100m Distance between optical modules ~ 36 m

KM3NeT multisite construction

- 3 detectors, each ~2km³ in 3 sites
- KM3NeT-France: Toulon (depth ~ 2500m)
- KM3NeT-Italy:
 Capo Passero (depth ~ 3500m)
- KM3NeT-Greece:
 Pylos (depth ~ 4500m)
- Common hardware, data handling and operation control
- Centrally managed
- Node for marine science at each installation site

6 W 4 W 2 W 0'E 🖉 4 'E 6'E 8'E 10'E 12'E 14'E 10 E 18'E 20'E 22'E 24'E 26'E 28'E 20'E 32'E 34'E 36'E 38'E 40'E 42'

Sensitivity to galactic source for a Mediterranean ≈5km³ Cherenkov v Telescope

For the galactic PWN VelaX:

- 5 σ discovery in ~ 3 years (50% prob.)
- evidence (3σ 50% prob.) in ~1.2 years

For the galactic Supernova Remnant: RXJ1713.7-3946

- 5σ discovery in ~5 years (50% prob.)
- evidence (3σ 50% prob.) in 2 years

Neutrinos from "FERMI Bubbles" ??

Search possible for a Mediterranean Cherenkov v Telescope

- FERMI detected hard γ emission (E⁻²) up to 100 GeV in extended "bubbles" around Galactic Center, hard spectrum not compatible with Inverse Compton mechanism, M.Su et al., Ap.J.724 (2010).
- Models involving hadronic processes (e.g. Crocker & Aharonian, PRL 2011) predict significant neutrino fluxes.
- This could be one of the first neutrino "source" for the Mediterranean v Telescope.

KM3NeT Sensitivity to H.E. v from "FERMI Bubbles" for a ≈ 5km³ Mediterranean Cherenkov v Telescope

KM3NeT Performance

KM3NeT technology Multi-PMT Digital Optical Module (DOM)

- 31 3" PMTs in 17-inch glass sphere (cathode area~ 3x10" PMTs)
 - > 19 in lower, 12 in upper hemisphere
 - > Light collection rings (20-40% gain)
- 31 PMT bases (total ~140 mW) (D)
- Front-end electronics (B,C)
 - > FPGA readout
 - > Sub-ns time stamping
 - > Gb/s speed
- Al cooling shield and stem (A)
- Single penetrator
- Calibration:
 - > LED and piezo inside sphere
- Advantage:
 - > large segmented photocathode area
 - > 1-vs-2 photo-electron separation: sensitivity to coincidences
 - > directionality

Operational DOM prototype

- Fully equipped DOM (31 PMTs + acoustic positioning sensors + time calibration LED beacon)
- Mounted on the ANTARES instrumentation line.
- Instrumentation line installed and connected on 16 April 2013
- fully operational and working correctly

Coincidences between neighbouring PMTs

Concentration of ⁴⁰K is stable (coincidence rate ~5 Hz on adjacent PMTs)

Antonio Capone

KM3NeT prototype D.O.M. in ANTARES since April 2013

ArXiv <u>1405.0839 astro-ph</u> <u>To be published soon</u>

Coincidences in the DOM:

hits in different PMTs in a time window of 20ns

KM3NeT Detection Unit String-like vertical structure with 18 KM3NeT-DOMs

Mooring line:

- Buoys for string tensioning
- 2 Dyneema[©] ropes
- 18 storeys (one OM each), 36m distance, first DOM 100 m above the Seabed
- DOMs connected via electro-optical cable: 1 fibre+2 copper wires
- Break out box with fuses at each storey
- DWDM with 80 wavelengths
 - GB/s readout
 - all data to shore

Deployment strategy

- Compact package selfunfurling
 - Eases logistics (in particular in case of several assembly lines)
 - -Speeds up and eases deployment; several units can be deployed in one operation
 - -Self-unfurling concepts is being thoroughly tested and verified
- Connection to seabed network by ROV

"String compactification"

 First successful test in December 2009

Detectors operational at KM3NeT-It site, May 2014

Since March 2013 the NEMO-Phase2 Tower

Since May 8th 2014: Prototype KM3NeT detection unit with 3 DOMs

The building block concept

Building block:

- 115 detection units
- Segmentation enforced by technical reasons
- Sensitivity for muons independent of block size above ~75 strings
- One block ~ half IceCube
- Geometry parameters optimised for galactic sources (1 < E_v <100 TeV, and cut-off)
- Technical feasibility verified
- KM3NeT includes 6 building blocks

Simulated configuration: 115 DUs, 90m distance on average

First phase of seabed layout at the KM3NeT-It

Antonio Capone

KM3NeT status

- Collaboration since 29 January 2013
 - MoU
 - 38 institutes, 241 members
- Resources Review Board (RRB) in place
- Scientific and Technical Advisory Committee (STAC) in place
- Funding available for implementation of first phase of KM3NeT Research Infrastructure:
 - Two installation sites being prepared: KM3NeT-Fr and KM3NeT-It
 - KM3Net-IT site: 24 Strings + 8 Towers (like NEMO tower)
 - KM3Net-Fr site: 6 Strings
 - 2 nodes for connection for marine science instruments

Summary

- Neutrino astronomy has made in the last year tremendous progresses
 - IceCube evidence for H.E. cosmic neutrinos: their origin is still unknown
- ANTARES, the larger Cherenkov Neutrino detector in the Northern Hemisphere
 - demonstrated the feasibility of a deep-Sea Neutrino Telescope
 - has competitive results w/r to IceCube
 - has started/exploited several multimessenger searches
- International KM3NeT Collaboration is working for a staged multi-sites construction of the several-km³ Cherenkov v Telescope
- First implementation of the KM3NeT telescope started:
 - Seabed network and shore station KM3NeT-Fr and KM3NeT-It
 - Connection of 6 KM3NeT detection units at KM3NeT-Fr
 - Connections of 24 KM3NeT detection units plus ~8 Towers at KM3NeT-It.
- Aiming at a volume of ~5 times IceCube for the full KM3NeT detector

IceCube Discovery !!!! The first two VHE astrophysical V events observed by IceCUBE

312 DOMs

354 DOMs

Two neutrino events of energy above 10¹⁵ eV detected in IceCube were reported on Neutrino 2012 Conference.

T. Stanev @ Now 2012 Conference: "The first thought was that these events are produced by electron antineutrinos generating the Glashow resonance."

IceCube Discovery !!!!

28 contained VHE astrophysical v events reported by IceCUBE

- Observed energy distribution harder that any expected atmospheric background
- Measured event sample compatible with isotropic neutrino flux

THE NEUTRINO ASTRONOMY CHAPTER IS NOW OPEN !!!

IceCube Discovery !!!!

28 contained VHE astrophysical V events reported by IceCUBE

Skymap in equatorial coordinates of the Test Statistic value (TS) from the maximum likelihood point-source analysis. The most significant cluster consists of five events (all showers and including the second-highest energy event in the sample) with a final significance of 8%. Best-fit locations of individual events are indicated with vertical crosses (+) for showers and angled crosses (x) for muon tracks.

KM3NeT: a distributed Research Infrastructure

- Centrally managed
- Common hardware
- Common software, data handling and operation control
- Sites in France, Greece, Italy
- Consistent with funding structure (regional sources)

