Astroparticle Physics in China

Daya Bay Experiment and the Neutrino Physics in China

Yifang Wang Institute of High Energy Physics Vulcano, May, 2014

Neutrino Oscillation

If the neutrino mass eigenstate is different from that of the weak interaction, neutrinos can oscillate: from one type to another during the flight:

- > Known parameters: θ_{23} , θ_{12} , $|\Delta M^2_{23}|$, ΔM^2_{12} ,
- **Recent progress:** θ_{13}

2014/5/24 Unknown parameters: mass hierarchy(ΔM^2_{23}), CP phase δ

Direct Searches in the Past

Reactor Experiments: comparing observed/expected neutrinos

Precision of past experiments, typically 3-6%

- Reactor power: ~ 1%
- **Spectrum:** ~ 0.3%
- Fission rate: 2%
- Backgrounds: ~1-3%

Our design goal: a precision of ~ 0.4%

Daya Bay Experiment: Layout

- Relative measurement to cancel Corr. Syst. Err.
 - ⇒ 2 near sites, 1 far site
- Multiple AD modules at each site to reduce Uncorr. Syst. Err.
 - ⇒ Far: 4 modules, near: 2 modules
 Cross check; Reduce errors by 1/√N
- Multiple muon detectors to reduce veto eff. uncertainties
 - ➡ Water Cherenkov: 2 layers
 - ⇒ **RPC:** 4 layers at the top + telescopes

Tunnel and Underground Lab

大亚湾反应堆中微子实验站隧道 及实验厅洞室布置示意图

A total of ~ 3000 blasting right next reactors. No one exceeds safety limit set by National Nuclear Safety Agency (0.007g)

2014/5/24

Experimental Hall in Operation

Daya Baye Bay: Data taking & analysis status

Two detector comparison [1202.6181]

- 90 days of data, Daya Bay near only
- NIM A 685 (2012), 78-97

First oscillation analysis

- [1203:1669]
- 55 days of data, 6 ADs near+far
- PRL 108 (2012), 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C **37** (2013), 011001

Spectral Analysis arXiv:1310.6732

- 217 days complete 6 AD period
- 55% more statistics than CPC result
- Reported at NuFACT'2013, paper submitted

Neutrino Event Selection

Pre-selection

- → Reject Flashers
- ⇒ Reject Triggers within (-2 μs, 200 μs) to a tagged water pool muon
- Neutrino event selection
 - ⇒ Multiplicity cut
 - \checkmark Prompt-delayed pairs within a time interval of 200 µs
 - ✓ No triggers(E > 0.7 MeV) before the prompt signal and after the delayed signal by 200 µs
 - ⇒ Muon veto
 - ✓ *Is* after an AD shower muon
 - ✓ *1ms* after an AD muon
 - ✓ *0.6ms* after an WP muon
 - \Rightarrow 0.7MeV < E_{prompt} < 12.0MeV
 - \Rightarrow 6.0MeV < E_{delayed} < 12.0MeV
 - $\Rightarrow \quad 1\mu s < \Delta t_{e^+-n} < 200\mu s$

Daily Neutrino Rate

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- Rate changes reflect the reactor on/off.

The Most Precise Neutrino Experiment

Detector			
	Efficiency	Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%
Multiplicity cut		0.02%	$<\!0.01\%$
Capture time cut	98.6%	0.12%	0.01%
Gd capture ratio	83.8%	0.8%	$<\!0.1\%$
Spill-in	105.0%	1.5%	0.02%
Livetime	100.0%	0.002%	${<}0.01\%$
Combined	78.8%	1.9%	0.2%
Reacto Design: (0.18 - 0.38) %			
Correlated		Uncorrelated	
Energy/fission	0.2%	Power	0.5%
$\overline{\nu}_{e}$ /fission	3%	Fission fract	ion 0.6%
		Spent fuel	0.3%
Combined	3%	Combined	0.8%

Side-by-side Comparison

Expectation: R(AD1/AD2) = 0.981Measurement: $0.984 \pm 0.004(stat) \pm$ 0.002(syst)

Latest Results: Spectral Analysis

- Each energy bin is an oscillation measurement
- Precise energy measurement is a key
- Issues of non-linearity...

Energy Response Model

Mapping the true energy E_{true} to the reconstructed kinetic energy E_{rec} :

 $f = \frac{E_{\text{rec}}}{E_{\text{true}}} = \frac{E_{\text{rec}}}{E_{\text{vis}}} \cdot \frac{E_{\text{vis}}}{E_{\text{true}}}$ 1 Electronics non-linearity
2 Scintillator non-linearity
Gamma Sources

arXiv:1310.6732

- Build models taking into account:
 - Electronics non-linearity: timedependent charge collection efficiency
 - Scintillator non-linearity: Quench effect & Cerenkov radiation
 - Complicated e⁺,e⁻, γ's interactions in LS, from simulation
- Constraint parameters by a fit to
 - all calibration data
 - Standalone measurement on
 - scintillator quenching using compton eand n beams
 - Calibrate readout electronics by Flash ADC

Energy Resolution Model

Daya Bay Global Comparison of θ_{13} Measurements

The three reactor experiments will work together to report results ina coherent way, and probably can report a combined result.

Current status and future plan

- Summer(2012) maintenance completed
 - ➡ Two new AD modules installed
 - Special Automatic & Manual calibration completed
- Data taking resumed in Oct.
 Precision results in three years, Δ(sin²2θ₁₃) ~ 4%

Still a lot of unknowns

Neutrino oscillation:

- ⇒ Neutrino mass hierarchy ?
- ⇒ Unitarity of neutrino mixing matrix ?
- $\Rightarrow \Theta_{23}$ is maximized ?
- ▷ CP violation in the neutrino mixing matrix as in the case of quarks ? Large enough for the matter-antimatter asymmetry in the Universe ?
- What is the absolute neutrino mass ?
- Neutrinos are Dirac or Majorana ?
- Are there sterile neutrinos?
- Do neutrinos have magnetic moments ?
- Can we detect relic neutrinos ?

.

Next Experiment: JUNO

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

Mass Hierarchy at Reactors

$$\begin{split} \Delta m_{31}^2 &= \Delta m_{32}^2 + \Delta m_{21}^2 \\ \text{NH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \text{IH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{split}$$

L. Zhan et al., PRD78:111103,2008; PRD79:073007,2009

The plan: a large LS detector

LS volume: × 20→ for more mass & statistics
 light(PE) × 5→ for resolution

40 events/day

Physics Reach

Thanks to a large θ_{13}

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos

201

• Sterile neutrinos

	Current	Daya Bay II
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$sin^2\theta_{12}$	5%	0.7%
$\sin^2\theta_{23}$	5%	N/A
$\sin^2\theta_{13}$	14% → 4%	~ 15%

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW

For 6 years, mass hierarchy can be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

<u>Central Detector</u>

Some basic numbers:

- ⇒ 20 kt liquid scintillator as the target
- ⇒ Signal event rate: 40/day
- ⇒ Backgrounds with 700 m overburden:
 - ✓ Accidentals(~10%), ⁹Li/⁸He(<1%), fast neutros(<1%)

• A huge detector in a water pool:

- Default option: acrylic tank(D~35m) + SS structure
- Backup option: SS tank(D~38m) + acrylic structure + balloon

Issues:

- ⇒ Engineering: mechanics, safety, lifetime, ...
- → Physics: cleanness, light collection, ...
- → Assembly & installation
- Design & prototyping underway

Liquid Scintillator

Requirements:

- ➡ Low background: → No Gd-loading
- ➡ Long attenuation length: 15m → 30m
 - ✓ Improve raw materials
 - ✓ Improve the production process
 - ✓ Purification
- High light yield: optimize fluor concentration

Current Choice: LAB+PPO+BisMSB

Linear Alky Benzene	Atte. L(m) @ 430 nm
RAW	14.2
Vacuum distillation	19.5
SiO ₂ coloum	18.6
Al ₂ O ₃ coloum	22.3
LAB from Nanjing, Raw	20
Al ₂ O ₃ coloum, fourth time	27
Al ₂ O ₃ coloum, second time	25
Al ₂ O ₃ coloum, 8 th time	24

High QE PMT

- Two types of high QE 20"PMTs under development:
 - ⇒ Hammamatzu R5912-100 with SBA photocathode
 - A new design using MCP: 4π collection
- MCP-PMT development:
 - ⇒ Technical issues mostly resolved
 - ⇒ Successful 8" prototypes
 - ⇒ 20" prototypes soon

Muon VETO detector

The OPERA Target Tracker in JUNO

2x31 Target Tracker x-y walls (4.5 M€)

TT dismounting schedule

- Dismounting schedule:
 - mid-2015: first OPERA super module (31 TT walls, 248 modules)
 - beginning 2016: second OPERA super module (31 TT walls, 248 modules)
 - storage of all TT modules in Gran Sasso in containers up to the moment all dismounting is finished
 - send all TT containers (10) to Kaiping ~Spring 2016 if storage buildings already available
- Mounting in JUNO: ~2019

Civil Construction

Layout

Current Status & Brief Schedule

- Project approved by CAS for R&D and design
- Geological survey completed
 - ⇒ Granite rock, tem. ~ 31 °C, little water
- Engineering design underway
- Detector design and R&D underway
- International Collaboration: China, Czech, France, Germany, Italy, Russia, US, ...

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector R&D: 2013-2016 Detector component production: 2016-2017 PMT production: 2016-2019 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

Summary

- Neutrino physics is very exciting
- We know θ_{13} now
- We will soon know mass hierarchy

A New Type of Neutrino Beam for CP (MOMENT)

Comparison

	v Factory	Super pi beam	MOMENT
Neutrino energy	2-4 GeV	0.3-0.7, 2-4 GeV	300 MeV
Neutrino source	Muon decay	Pi decay	Muon decay
Beam backgrounds	no	high	low
Neutrino flux	10 ²¹ /year	10 ¹⁸⁻²¹ /year	5×10 ²¹ /year
Proton driver	Pulsed 8-16 GeV 4 MW	Pulsed 5-400 GeV 1-5 MW	CW 1.5 GeV 15 MW
Target	Mercury	Mercury	?
Collection	Horn	Horn	SC magnet
Decay pipe	Storage ring	Vacuum pipe	SC magnet
cooling	yes	Νο	No
Muon acceleration	yes	Νο	Νο
cost	High	low	low

Best energy for CP ?

- Below in-elastic threshold: ~ 300 MeV → baseline = 150 km
- Such a threshold is similar for CC/NC & v/vbar
- Although we loose statistics due to the lower cross section, but we have less systematics by being π^0 free

Target Tracker

(Bern, Brussels, CERN, Dubna, Neuch âtel, Orsay, Strasbourg)

The TT in JUNO (motivation)

- OPERA TT will be a very good tracker for JUNO
 - Strip width is 2.63 cm, with a position resolution ~ 7.8 mm
 - Many layers can be used for cosmic muon tracking
 - Will give better precision than JUNO water pool (WP) and anti-neutrino detector (AD).
- The addition of top tracker (TT) above AD and WP can help to do many physics studies
 - Measure precisely the muon angle distribution
 - Verify the muon reconstruction with the rest of the JUNO detector
 - Monitor WP or AD running stability
 - Measure neutron background muon distance in AD (more precisely than WP or AD)
 - Measure rock neutrons (placed at the edges to measure rock neutron background and then deduce the whole rock neutron background for JUNO)
 - Measure ⁹Li/⁸He background.
 - ⁹Li/⁸He production is the main background source for mass hierarchy measurement in JUNO.
 - Partly measurement of ⁹Li/⁸He background produced in AD
 - Partly measurement of ⁹Li/⁸He background produced in water pool
- The TT will also help to simulate the cosmogenic background

Possible Configuration of the Top Tracker

- 56 x-y walls (6.7m × 6.7m each)
- 14 TT stations, 4 walls each.
- each station is composed of 2 layers of 2 TT walls separated by 4 m distance.
- Distance of lowest and upper wall: 4 m
- Distance of lowest plane from water pool: 1 m.
- Different configurations (Middle, Rectangle, Around)
- Covered area is about 630m².

Building Non-Linearity Models

- Method 1:
 - All parameters determined by simultaneous fit
- Method 2
 - Birks constant and Cherenkov contribution by bench measurements
 - ➡ Electronics response from quadratic fit to gamma data
- Method 3
 - ⇒ Birks constant by bench measurements
 - \Rightarrow Cherenkov and electronics from exponential fit to all 4 + spectra

Prompt IBD spectra (~E,)

40

Pure Spectral Analysis

 θ_{13} = 0 can be excluded at > 3 σ from spectral information alone

For each AD, total event prediction fixed to observed data:

$$\begin{array}{cccc} \hline 1 & \theta_{13} \mbox{ free-floating:} & \chi^2 / N_{\text{DoF}} = 161.2/148 \\ \hline 2 & \theta_{13} = 0 \mbox{:} & \chi^2 / N_{\text{DoF}} = 178.5/146 \\ \hline \Rightarrow & \Delta \chi^2 / N_{\text{DoF}} = 17.3/2 \mbox{, corresponding to } p = 1.75 \cdot 10^{-4} \end{array}$$

Rate+Spectra Oscillation Results

Readout Electronics and Trigger

Charge and timing info. from 1 GHz FADC

	Total No. channel	20,000
	Event rate	~ 50 KHz
	Charge precision	1 – 100 PE: 0.1 – 1 PE; 100-4000PE: 1-40PE
	Noise	0.1 PE
Ъ	Timing	0-2us: ~ 100 ps
Mai	η σποιέετο με πια	aue: III water or on surface

An option to have a box in water:

- ~100 ch. per box
- Changeable in water
- Global trigger on surface

Interests from APC & others

JUNO-FR: APC+Omega+Subatech laboratories...

•France: 3 laboratories so far (not coming from OPERA) [see OPERA slides]

•APC (Paris): A. Cabrera + H. de Kerret [Double Chooz]

- •Omega (Paris): C. de la Taille [ASIC development→ many application]
- •**Subatech** (Nantes): F.Yermia [Solid/Double Chooz/<u>Nucifer</u>]

•relevant expertise towards JUNO...

•Double Chooz experience [APC + Subatech]

• expertise on detector, systematics, energy, backgrounds, MC, etc.

electronics + online systems expertise [Omega+APC]

- •(Omega) ASIC development: electronics for many experiments (CERN, etc)
- •(APC) Double Chooz FADC electronics (with CAEN) and DAQ

reactor flux expertise [Subatech+APC]

•world's unique knowledge/techniques on reactor flux systematics (→Double Chooz input)

•possible involvement in JUNO...

- •DAQ's "event builder farm(s)" (à la SK-IV) + data-monitoring [APC+<u>Subatech</u>]
- reactor flux systematics (AREVA reactors)→ solar high precision measurements [Subatech+APC]
- •electronics design [Omega+APC in tight collaboration with Aachen+Jüllich]

•(beyond OPERA) tight partnership by 3 laboratories in France→ more members are welcome!

DAQ and Detector Monitoring

