LHC Results and the Interpretation of Cosmic-Ray Data

Ralph Engel, Tanguy Pierog, and Ralf Ulrich

Karlsruhe Institute of Technology (KIT)

Cosmic ray flux and interaction energies

2

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

Problem of limited phase space coverage

LHC data probe the region beyond the knee

 $\eta = -\ln \tan \frac{1}{2}$

LHC: Exotic scenarios for knee very unlikely, model predictions **bracket LHC data** on secondary particle multiplicity

(D'Enterria at al. Astropart Phys 35, 2011)

I.2 Interaction models for describing LHC data

Energy flow (CMS)

- Models used for p-p, p-Pb and Pb-Pb data
- Interface to cosmic ray event generators **CRMC** (R. Ulrich et al.)

LHCf: forward photon production at 7 TeV

Re-tuning of models needed, size of effect still unclear, distributions for neutrons needed

Shower as cascade process: primary energy

Development of cosmic-ray air showers

Air shower ground arrays: $N_{\rm e}$ and N_{μ}

Air shower ground arrays: $N_{\rm e}$ and N_{μ}

Energy spectrum of cosmic rays

Key targets: mass composition and anisotropy

Tuning of interaction models to LHC data (i)

15

Predictions for depth of shower maximum

Predictions for muon number at ground

Further improvement: p-O collisions at LHC

Expected sensitivity of shower observables

How reliable are tuned model predictions ?

- Energy-momentum and charge/flavour conservation
- Non-trivial correlations: model dependent
- Tuning by adjusting internal model parameters

Example: generic LHC detector coverage

Electron Profile

More than 50% of all measured secondaries from particles of $\eta > 8$

(Ulrich, DPG meeting 2014)

200

Number

10⁷

10⁶

10⁵

Ē

0

Summary and outlook

- Particle physics explanation of knee strongly disfavoured
- All-particle spectrum can be measured with small model uncertainty
- Composition measurements depend directly on interaction models
- Progress made thanks to LHC data (and also fixed-target data, NA61)
 Longitudinal shower profile: cosmic ray composition heavier than before
 Muon number at ground: cosmic ray composition lighter than before
- LHC run with p-O would be very helpful (low luminosity, forward detectors)
- Some uncertainty will remain due to limited phase space coverage