

Alliance for Astroparticle Physics

Pierre Auger Observatory

- Iocated near Malargüe, Argentina
- baseline detector:
 - 1660 surface detectors (SD)
 - duty cycle ~100%
 - > 27 fluorescence detectors (FD)
 - duty cycle ~14%

Vulcano Workshop 2014

Raphael Krause | RWTH Aachen University | 23.05.2014

- Iargest cosmic ray experiment worldwide
- 3000km² area
- observes cosmic rays with energies above 10¹⁷eV
- takes data since 2004

- arrival direction
- > energy
- chemical composition
- duty cycle ~100%
- 124 radio stations
- grid spacing: 150m, 250m, 375m
- covering area 6km²
- energy range: $E > 10^{17} eV$
- data taking since 2011
- overlap with other Auger detector

Vulcano Workshop 2014

Raphael Krause | RWTH Aachen University | 23.05.2014

determine cosmic ray properties:

AERA Radio Stations

- different antenna types
- NS and EW polarized antenna
- antenna alignment: to magnetic north with precision < 1deg
- bandwidth: 30 80 MHz
- digitizer sampling rate: 200MHz

Antenna Calibration

voltage = antenna characteristic * electric field $U = \vec{H} \cdot \vec{E}$

H: relation of voltage amplitude to incoming E-field

measurement in far field region
 R > 2 λ (> 25 m)

butterfly antenna

Superhybrid Events

Fluorescence Detector

Radio Detector

Radio Emission in Extensive Air Showers

- charged particles are deflected in the Earth's magnetic field
 - charge separation
 - > Lorentz force \rightarrow polarization $\sim \vec{v} \times \vec{B}$
 - dipole perpendicular to shower axis

Vulcano Workshop 2014

Raphael Krause | RWTH Aachen University | 23.05.2014

charge excess emission

- electrons of air molecules are knocked out
 - positive charged air molecules remain
 - charge separation
- positrons partly annihilate in the atmosphere
 - charge excess
- dipole along the shower axis
 - radial polarized signal

Electric Field Polarization

Raphael Krause | RWTH Aachen University | 23.05.2014

Second Order Emission Process

Vulcano Workshop 2014 Raphael Krause | RWTH Aachen University | 23.05.2014 A. Aab et al., Phys. Rev. D 89, 2014

Radio Energy Reconstruction

Vulcano Workshop 2014

Raphael Krause | RWTH Aachen University | 23.05.2014

Example Event

Vulcano Workshop 2014 Raphael Krause | RWTH Aachen University | 23.05.2014

Radio Energy Estimator

- LPDA antenna setup
- at least three triggered radio stations
- zenith angle smaller than 55°

Vertical Polarization: 3D Radio Station

Butterfly Station

Butterfly + Whisk Antenna

- each radio station measures all three components of the signal
 - better resolution of the electric field
- measurement of signals coming from the horizon

Frequency Average Simulation: Antenna Characteristics

frequency range: 25-85 MHz frequency spacing: 1 MHz

- horizontal antenna most sensitive for theta < 60 degree</p>
- small influence of whisk on butterfly antenna in frequency average
- whisk antenna most sensitive to horizon in θ-component
- antennas complementary cover the full sky

3D Radio Stations

- November 2013
- 5 new butterfly + whisk radio stations
- covering area: ~0.3km²
- 3 new 3D-dipole radio stations
- I low frequency antenna (1.5 to 6 Mhz)
- covering area: ~0.3km²

Summary

Pierre Auger Observatory:

> well calibrated environment for development of future detector technologies

- Auger Engineering Radio Array
 - > one of the largest experiment to measure radio emission of EAS
 - several approaches to calibrate antennas
 - radio emission in Extensive Air Showers:
 - geomagnetic emission (dominant)
 - charge excess emission (measured to 14% on average)
 - > energy of primary particles is reconstructed at 28% accuracy

Outlook

- data analysis of 6km² array and of the 3D radio stations
- in progress: reconstruction of shower maximum to get information about the chemical composition of UHECRs

Backup

Cosmic Ray Energy Spectrum

Extensive Air Showers

atmosphere corresponds to a large calorimeter

Vulcano Workshop 2014 Raphael Krause | RWTH Aachen University | 23.05.2014

- interaction between UHECRs and air molecules
- Extensive Air Showers (EAS): muonic, hadronic and el.mag. component

VEL: relation of voltage amplitude to incoming e-field

horizontal antenna most sensitive to vertical (zenith) direction

Vulcano Workshop 2014 Raphael Krause | RWTH Aachen University | 23.05.2014

Antenna Calibration

- transmission measurement
- calibrated transmitting antenna
- measurement in far field region
 R > 2 λ (>25m)

Second Order Emission Process

- **RWTHAACHEN** UNIVERSITY
- adding a radial component clearly improves agreement

