Cosmology & astrophysics with the thermal component of the Clusters of Galaxies

> Stefano Ettori INAF-OA / INFN Bologna

Clusters of galaxies

from POSS and ROSAT-All Sky Survey

74 – 83% = Dark Matter 15 – 20% = *hot* ICM 2 - 6% = *cold* galaxies

The hot gas is thermalized and trapped in the cluster potential well

Observable Properties of Clusters

DM

Size: ~ 1-10 Mpc

Mass: 10¹⁴ – 10¹⁵ M

Lensing

Mass distrib./profiles Nature ??

Gal dynamics

X-ray

Thermodynamics/masses netallicity

SZ effect

Multi- λ photometry and spectroscopy

Stellar mass/ stellar pop. Galaxy evolutions, SF rates

Structure formation in the Universe

We know how the gravity forms structures on cluster scales. X-rays (SZ) provide a direct probe of the thermalized gas in a cluster's potential.

Structure formation in the Universe

We know how the gravity forms structures on cluster scales. X-rays (SZ) provide a direct probe of the thermalized gas in a cluster's potential.

Clusters of galaxies: accretion

Dark Matter hot ICM

 $\tau = \Sigma \sigma / m < 1$ $\sigma / m < 0.7 \ cm^2 g^{-1}$ (10 GeV / 10⁻²³ cm²)

MACSJ0025

Clusters of galaxies: accretion

Bullet group (~2e14 M_☉; Gastaldello+14) Similar cases are expected to be 3x more numerous than Bullet Cluster

25"~124 (±20) kpc

Dark Matter hot ICM

Clusters of galaxies: accretion

A2142 (~1.3e15 M_{\odot} ; Eckert+14) Direct observation of the accretion of a clump with M~1/100 M_{halo} Simulations predict ~1 per local clusters

Large-scale Structure formation

 $Ω_m$ =0.25=1- $Ω_Λ$ h=0.73 σ_s=0.9

> (Springel et al. 2005) Millennium simulations: 10^{10} particles of ~9e8 M_o/h

L=500/h Mpc

Dark Matter & X-ray clusters

(*Borgani & Guzzo 2001*) Normalized to space density at z=0; circles: clusters with T>3 keV & ∝T

Chandra image of clusters at z>0.7 (>6 Gyr ago)

Vikhlinin et al. 09

Cosmology in the Planck era

15.5-months results of the temperature anisotropies in the CMB from Planck (Planck 2013 results. XVI) put *alone* constraints on $\Omega_b h^2$, $\Omega_m h^2$ at ~2% level (1 σ) on ΛCDM

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
Ω _b h ²	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_c h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
1000 _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	0.089+0.012
<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_s)\ldots\ldots$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	3.089+0.024
Ω _Λ	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	0.685+0.018
$\Omega_m \ldots \ldots \ldots \ldots$	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315^{+0.016}_{-0.018}$
<i>σ</i> ₈	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012
Zre	11.35	$11.4^{+4.0}_{-2.8}$	11.45	10.8+3.1	11.37	11.1 ± 1.1
<i>H</i> ₀	67.11	67.4 ± 1.4	68.14	67.9 ± 1.5	67.04	67.3 ± 1.2
10 ⁹ A ₅	2.215	2.23 ± 0.16	2.215	$2.19^{+0.12}_{-0.14}$	2.215	$2.196^{+0.051}_{-0.060}$
$\Omega_m h^2$	0.14300	0.1423 ± 0.0029	0.14094	0.1414 ± 0.0029	0.14305	0.1426 ± 0.0025
$\Omega_m h^3$	0.09597	0.09590 ± 0.00059	0.09603	0.09593 ± 0.00058	0.09591	0.09589 ± 0.00057
<i>Y</i> _P	0.247710	0.24771 ± 0.00014	0.247785	0.24775 ± 0.00014	0.247695	0.24770 ± 0.00012
Age/Gyr	13.819	13.813 ± 0.058	13.784	13.796 ± 0.058	13.8242	13.817 ± 0.048
z	1090.43	1090.37 ± 0.65	1090.01	1090.16 ± 0.65	1090.48	1090.43 ± 0.54
r	144.58	144.75 ± 0.66	145.02	144.96 ± 0.66	144.58	144.71 ± 0.60
1009	1.04139	1.04148 ± 0.00066	1.04164	1.04156 ± 0.00066	1.04136	1.04147 ± 0.00062
Zdrag	1059.32	1059.29 ± 0.65	1059.59	1059.43 ± 0.64	1059.25	1059.25 ± 0.58
r _{drag}	147.34	147.53 ± 0.64	147.74	147.70 ± 0.63	147.36	147.49 ± 0.59
k _D	0.14026	0.14007 ± 0.00064	0.13998	0.13996 ± 0.00062	0.14022	0.14009 ± 0.00063
1009 _D	0.161332	0.16137 ± 0.00037	0.161196	0.16129 ± 0.00036	0.161375	0.16140 ± 0.00034
z _{eq}	3402	3386 ± 69	3352	3362 ± 69	3403	3391 ± 60
1009 _{eq}	0.8128	0.816 ± 0.013	0.8224	0.821 ± 0.013	0.8125	0.815 ± 0.011
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07130	0.0716 ± 0.0011	0.07207	0.0719 ± 0.0011	0.07126	0.07147 ± 0.00091

• The *amplitude of P(k)* on cluster scale

• There is degeneracy in the determination of the cosmological parameters... *complementarity*

• The *amplitude of P(k)* on cluster scale

• There is degeneracy in the determination of the cosmological parameters... *complementarity*

• The *equation of state of the Dark Energy* & its evolution with redshift is

• The *amplitude of P(k)* on cluster scale

• There is degeneracy in the determination of the cosmological parameters... *complementarity*

• The *equation of state of the Dark Energy* & its evolution with redshift is unknown

• Testing **GR** on GC scales

Cosmology with GC: note

X-ray: constraints also on $w_o(\sim 20\% \text{ at } 1 \sigma)$ using 90-240 well-studied obj (*out of X-ray known1743 clusters, Piffaretti+11*)

Optical: constraints only on "local" cosmology (σ_{8} , Ω_{m} ; *no on w*) using 1e4 SDSS-MaxBCG clusters (*Rozo+10*)

SZ: present surveys provide ~1000 detections all-sky; 1st cosmological constraints with a sample of ~190 obj (Planck 2013 XX) still to be refined (tension with CMB: bias in X-ray based M by ~40% or $\Sigma m_v = 0.20 \pm 0.09 \text{ eV}$?). NB: they rely on $Y_{SZ} - M_X$ scaling laws

Total mass from X-rays

X-ray total mass is a fundamental tool to use Galaxy clusters as cosmological probes

• *IOW COUNTS Statistic*: scaling relations (for galaxy clusters mass function: M_{tot} vs L/T/M_{gas}/Y_X or *a combination of these*...) Ettori et al. 2012; Ettori 2013 & 2014

$$M_{tot} \propto \Delta R_{\Delta}^3 \Longrightarrow \propto L^{3/4} \propto M_g \propto T^{3/2} \propto Y_{SZ}^{3/5}$$

Total mass from X-rays

X-ray total mass is a fundamental tool to use Galaxy clusters as cosmological probes

• *IOW COUNTS Statistic*: scaling relations (for galaxy clusters mass function: M_{tot} vs L/T/M_{gas}/Y_x or a combination of these...) Ettori et al. 2012; Ettori 2013 & 2014

$$M_{tot} \propto L^{\alpha} M_{g}^{\beta} T^{\gamma}; \quad 4\alpha + 3\beta + 2\gamma = 3$$

The *self-similar* prediction on **normalization & slope** can fully explain the *observed X-SZ SL* once { $f_q(M)$, $\beta_P(M)$, C} are considered

Total mass from X-rays

X-ray total mass is a fundamental tool to use Galaxy clusters as cosmological probes

• *low counts statistic*: **scaling relations** (for galaxy clusters mass function: M_{tot} vs L/T/M_{gas}/Y_X or *a combination of these*...) Ettori et al. 2012; Ettori 2013 & 2014

$$M_{tot} \propto L^{\alpha} M_{g}^{\beta} T^{\gamma}; \quad 4\alpha + 3\beta + 2\gamma = 3$$

• *high counts statistic*: **mass profiles** (calibration & hydrostatic bias; ~200 out of 1743 obj known, Piffaretti et al. 11) Ettori et al., 2013, SSRv, 177, 119 (arXiv:1303.3530)

$$M_{tot}(< r) = -\frac{kT_{gas}(r) r}{G\mu m_p} \left(\frac{\partial \ln n_{gas}}{\partial \ln r} + \frac{\partial \ln T_{gas}}{\partial \ln r}\right)$$

Mantz et al. (2014): 40 obj with T>5 keV observed with Chandra @z=0.08-1.06

 $\epsilon_{\Omega m} \sim 14\%, \quad \epsilon_{w} \sim 27\%, \quad \Omega_{\Lambda} > 0 @99.99\%$ l.c.

c-M relation: $\sigma_8 - \Omega_m$

Why does the observable universe look the way it does?

Dark Matter structure of the Universe

Springel et al. 2005

ATHENA +

Key questions for observational astrophysics in 2028

1. How does ordinary matter assemble into the large scale structures we see today?

Pointecouteau, Reiprich et al., 2013 arXiv1306.2319

ATHENA +

The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

How does ordinary matter assemble into the large-scale structures that we see today?

The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

How does ordinary matter assemble into the large-scale structures that we see today?

Athena+ science in context

Athena+ is a crucial part of the suite of large observatories needed to reach the science objectives of astronomy in the coming decades