Astroparticle Physisc at LNGS

Vulcano 2014

Stefano Ragazzi – LNGS Director

Laboratori Naztionali del Gran Sasso

INTRODUCTION

The birth

PLANIMETRIA GENERALE FI000

- the study of:
- nuclear stability; 1)
- neutrino astrophysics; 2)
- 3) new cosmic phenomenology;
- 4) neutrino oscillations;
- 5) biologically active matter;
- ground stability. 6)

4

Not only

Underground Science Laboratories

Vulcano 2014: Astroparticle Physics at LNGS

Stefano Ragazzi – LNGS & UNIMIB

Muon Flux versus depth

Hime and Mei, Phys.Rev. D73 (2006) 053004

The LNGS Laboratory

- Muon flux: 3.0 10⁻⁴ m⁻²s⁻¹
- Neutron flux:

2.92 10⁻⁶ cm⁻²s⁻¹ (0-1 keV) 0.86 10⁻⁶ cm⁻²s⁻¹ (> 1 keV)

- Rn in air: 20-80 Bq m⁻³
- Surface: 17 800 m²
- Volume: 180 000 m³
- Ventilation: 1 vol / 3 hours

A busy laboratory

Vulcano 2014: Astroparticle Physics at LNGS

Stefano Ragazzi – LNGS & UNIMIB

Selected topics in APP at LNGS NOT

a comprehensive review of physics at LNGS

- High energy neutrinos
- Cosmogenic and solar neutrinos
- Neutrino properties
- Dark matter searches

HIGH-ENERGY NEUTRINOS CNGS

τ - appearance

See Chiara Sirignano's talk on Thursday

ICARUS-T600 @ LNGS

0.77 kton LAr-TPC

The LAR-TPC: the electronic bubble chamber

Primary vertex (A):very long μ (1), e.m.cascades(2), π (3)Secondary vertex (B):

longest track (5) is a μ from stopping K (6) μ decay is observed

LSND-like exclusion

- ICARUS result strongly limits parameters for LSND anomaly
 - $(\Delta m^2 \sin^2 2\theta) = (0.5 \text{ eV}^2 0.005)$
- overall agreement (90 % CL) between:
 - ICARUS, KARMEN and "signals" of LSND and MiniBooNE

Vulcano 2014: Astroparticle Physics at LNGS

ICARUS T600 timeline

- 2010: Successful assembly and commissioning of ICARUS-T600:
 - May 28th : first CNGS neutrino
 - October: start of physics runs
- 2011 Dec 3rd, 2012:
 - T600 data-taking with CNGS beam and cosmic rays
 - 2800 CC + 900 NC
 - Muons from upstream GS rock ≈ 12000 ev (≈ 8200 on TPC front face)
 - Intrinsic beam ve CC ≈ 26 ev
 - $v_{\mu} \rightarrow v_{\tau}$ with kinematic v_{τ} -selection (~2 event $\tau \rightarrow e$) $v_{\mu} \rightarrow v_{e}$ (θ_{13}) from e-like CC events
 - excess at E < 20 GeV (~5 events CC)
 - Search for v_s in LSND parameter space, studying e-like CC events at E > 10 GeV
 - Nov. 2011 & March 2012: bunched beam for v velocity measurement
- Dec.2012 June 2013:
 - Data-taking with cosmic ray
- July 2013 2014
 - Decommissioning
- 2015 onward
 - CERN

SOLAR AND COSMOGENIC NEUTRINOS

LVD

Search for v from Core Collapse Supernovae

- LVD live since 1992.
- 90% c.l. upper limit of gravitational stellar collapses (D ≤ 20 kpc) R < 0.12 events/year

Duty factor

- Need large mass
 1 kT
- Need high availability -~100%

Seasonal modulation of muon flux

2001-2008.

LVD

NOT the same as

DAMA: see talk of Rita Bernabei on Tuesday

N.B. significant phase shift

Continue data taking trying to keep the experiment as much performing as it was since the past 21 years! AND catch an SN collapse

Solar Neutrinos

neutrinos are produced in the sun

Of the 3 types of neutrino

electron, muon, tau

only electron neutrinos come from the sun

pp	\rightarrow	$^{2}H + e^{+} + \nu_{e}$	
2H	\rightarrow	$^{3}He + \gamma$	
$^{3}He + ^{3}He$	\rightarrow	$^{4}He + 2p$	85%
$^{3}He + ^{4}He$	\rightarrow	$^{7}Be + \gamma$	15%
$e^- + {}^7Be$	\rightarrow	$7_{Ii} + \nu_e$	
$^{7}Li + p$	\rightarrow	2^4He	
$p + {}^7Be$	\rightarrow	$^{8}B + \gamma$	0.02%
⁸ B	\rightarrow	$^{8}Be^{*}+e^{+}$ (ν_{e}	
$^{8}Be^{*}$	\rightarrow	2 ⁴ <i>H</i> _c	

Can we detect them? YES! Do they all reach the earth? Apparently NO!

Borexino

Borexino and solar neutrinos

10-2 200

Energy [keV]

Borexino solar v results

G. Bellini et al., Borexino Collaboration, Phys. Lett. B707 (2012) 22.

Geo Neutrinos

N _{reactor} Expected with osc.	N _{reactor} Expected no osc.	Others back.	N _{geo} measured	N _{reactor} measured	N _{geo} measured	N _{reactor} measured
events	Events	events	events	events	TNU	TNU
33.3±2.4	60.4±2.4	0.70±0.18	14.3±4.4	31.2 _{-6.1} +7	38.8±12.0	84.5 ^{+19.3} -16.9

Exposure 613 ± 26 ton year (3.69 ± 0.16) 10^{31} proton year

No signal: rejected at 4.5 σ C.L.

2.4 times data more than in Phys. Lett. B 687 (2010) 299 (Borexino Coll.)

Vulcano 2014: Astroparticle Physics at LNGS

Stefano Ragazzi – LNGS & UNIMIB

Borexino measurements

Solar Neutrino rates (cpd/t)

- 7Be: 0.460 ± 0.023 Phys. Rev. Lett. 107 141302 (2011)
- 8B: 0.0022 ± 0.0004 Phys. Rev. D 82, 033006 (2010)
- pep: 0.031 ± 0.005 Phys. Rev, Lett. 108, 051302 (2012)
- •

Geo-neutrinos

• Total 14.3 ± 4.4 events Phys. Lett. B722, 295 (2013)

NEUTRINO PROPERTIES

Testing LSND with SOX

• Science motivations:

- Search for sterile neutrinos or other short-distance effects on Pee;
- Measurement of Weinberg angle θ_W at low energy (~ 1 MeV);
- Improved limits of the neutrino magnetic moment;
- Measurement of the vector gv and axial gA current coefficients at low energy;

Technology

- Neutrino source: ⁵¹Cr
- Anti-neutrino source: 144Ce

• Project:

- ERC advanced grant for ⁵¹Cr (M. Pallavicini INFN-Genova);
- ERC starting grant for ¹⁴⁴Ce (T. Lasser APC-Paris: NEW: this project has recently moved from KamLAND/CeLAND to Borexino);

SOX

Sources located in Borexino pit

SOX sensitivity – sources in pit

•⁵¹Cr ad ¹⁴⁴Ce source measurements (in the Borexino pit) estimated for 2015: which source first? The one which will be ready first!

•DAQ with ⁵¹Cr: few months

•DAQ with ¹⁴⁴Ce: 1.5 year

•Long term: after completion of the solar neutrino program, possible SOX phase C with ¹⁴⁴Ce source placed inside the detector: improved sensitivity but some HW changes required;

Introduction: 0vββ

 U_{ei}

Example ⁷⁶Ge

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral Nuclear matrix element

 $\langle m_{ee} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$ Effective neutrino mass

Elements of (complex) PMNS mixing matrix

Experimental signatures:

- peak at $Q_{\beta\beta} = m(A,Z)-m(A,Z+2)-2m_e$
- two electrons from vertex Discovery would imply:
- lepton number violation $\Delta L = 2$
- v's are Majorana type
- mass scale & hierarchy
- physics beyond the standard model

GERDA

The GERDA collaboration, Eur. Phys. J. C 73 (2013)

- 3+1 strings
- 8 enriched Coaxial detectors: working mass 14.6 kg (2 of them are not working due to high leakage current)
- GTF112 natural Ge: 3.0 kg
- 5 enriched BEGe: working mass 3.0 kg (testing Phase II concept)

GERDA – calibration and data processing

- weekly calibrated spectra with ²²⁸Th sources and pulser with 0.05 Hz frequency
- data useful for monitoring of resolution and stability over time
- exposure-weighted FWHM at $Q_{\beta\beta}$ is about 4.8 keV for Coaxials (0.23%) and 3.2 keV (0.16%) for BEGes

GERDA PSD

t Ins

82000

t ínsl

Background from γ 's: MeV γ in Ge \sim cm range several electron/holes drifts MULTI SITE EVENTS (MSE)

MSE

81200

n⁺

81200

81400

81400

81600

81800

Surface events: only electron or hole drift

Vulcano 2014: Astroparticle Physics at LNGS

Current signal = $q \cdot v \cdot \Delta \Phi$

q=charge, v=velocity

(Schockley-Ramo theorem)

GERDA results

GERDA 0ν ββ

The GERDA collaboration, Phys. Rev. Lett. 111 (2013) 122503

- Frequentist analysis Median sensitivity: $T_{1/2}^{0\nu} > 2.4 \cdot 10^{25}$ yr at 90% C.L.
- Maximum likelihood spectral fit (3 subsets, 1/T_{1/2} common)
- Bayesian analysis also available Median sensitivity: $T_{1/2}^{0\nu}$ >2.0·10²⁵ yr at 90% C.L.
- Profile likelihood result: $T_{1/2}^{0\nu}>\!\!2.1\cdot10^{25} \text{ yr at 90\% C.L.}$
- Bayesian analysis result: $T_{1/2}^{0\nu} > 1.9\,\cdot\,10^{25} \text{ yr at }90\% \text{ C.I.}$
- Best fit: $N^{0\nu} = 0$

CUORE

Searching for neutrinoless double beta

200 Kg ¹³⁰Te

decay of ¹³⁰Te

CUORE Hut

Expected 5 Years sensitivity: $T_{1/2} = 2.1 \times 10^{26} \text{ y}, \text{ m}_{\beta\beta}=41-95 \text{ meV}$ background counting rate $10^{-2} \text{ c/keV/kg/y}$

CUORE Principle

The CUORE challenge

- Operate a huge thermal detector array in a extremely low radioactivity and low vibrations environment
 - Closely packed array of 988 TeO₂ crystals (19 towers of 52 crystals 5×5×5 cm³, 0.75 kg each)
 - Mass of TeO₂: 741 kg (~206 kg of ¹³⁰Te)
 - Energy resolution: 5 keV @ 2615 keV (FWHM)
 - Stringent radiopurity controls on materials and assembly
 - Operating temperature: ~ 10 mK
 - Background aim: 10⁻² c/keV/kg/year

CUORE cryo system

- Custom, cryogen-free dilution refrigerator
- Detector suspension independent of refrigerator apparatus
- 🛑 Total mass: ~ 20 tons
- Internal Roman lead shield: 6 cm thick

 Detector Calibration System to calibrate periodically the detector deploying radioactive sources close to the array

CUORE – Pb cold shielding

Bottom plate + 6 sector side rings Suspended to 600 mK plate thermalized to 4K 2 main elements

- side & bottom: roman Pb, 6 cm thick
- top: 5 discs (6 cm thickness) of modern lead

Lead discs interleaved with Cu sheets Suspended to 300K SS plate thermalized to 50 mK

CUORE sensitivity

Use large amount of CdZnTe Semiconductor Detectors

- Source = detector
- Focus on ¹¹⁶Cd Q-value = 2813.50 ±0.13 keV
- Semiconductor Good energy resolution, clean
- Room temperature
- Modular design Coincidences
- Tracking/Pixelisation "Solid state TPC"

Setup at Gran Sasso Lab

Vulcano 2014: Astroparticle Physics at LNGS

Stefano Ragazzi – LNGS & UNIMIB

The pixel option – Semiconductor tracker

Idea: Massive background reduction by particle identification

According to Monte Carlo simulation this reduce background by 2-3 orders of magnitude

LUCIFER

- Tower of 32-40 ZnSe scintillating bolometers at Gran Sasso, enriched in ⁸²Se, ~10 kg of ⁸²Se.
- Background free: α background identified via the scintillation signal, β/γ radioactive background below the ⁸²Se Q-value (2997 keV).
- Operation in 2015. Presently focusing on crystal growth.

LUCIFER

- 431g Zn^{nat}Se crystal operated for 22 days.

 - α background entirely identified via light pulse shape.

- One β/γ event above 2615 keV, in coincidence with several hits in nearby detectors (μ-spallation).
- Easily to tag via coincidence analysis in an array, or via a μ-veto.

LUCIFER

DARK MATTER SEARCHES

Dark Matter @ LNGS

• DAMA/LIBRA

- see R. Bernabei talk on Tuesday

XENON family

- See M. Messina talk on Tuesday

- CRESST
- DarkSide

CRESST-II

- \rightarrow phonon channel provides precise measurement of deposited energy
- \rightarrow Light channel distinguishes types of interaction
- \rightarrow Types of recoiling nuclei distinguished by different slopes in light energy plane

Darkside (LAr Dark Matter Search)

Vulcano 2014: Astroparticle Physics at LNGS

Darkside inner chambers

Darkside key features

- Pulse shape Discrimination

 Primary Scintillation
- Ionization/scintillation Ratio
- Sub-cm Spatial Resolution
- Underground argon
- Active neutron veto (Boron loaded LSD)
- Active muon veto (Water Cherenkov)
- Sensitivity to high-mass WIMPS

DarkSide program @ LNGS

Scalable technology for a two-phase TPC in LAr

- ✓ DarkSide-10 (DS-10)
 - 10 kg active mass
 - Operated in 2012 @ LNGS
 - Technical prototype for larger TPC
- ✓ DarkSide-50 (DS-50)
 - 50 kg active mass
 - Built inside CTF Water Tank with active neutron veto
 - Launch technology for next generation detectors
 - In operation since Nov 2013
 - Expected WIMP sensitivity 10⁻⁴⁵ cm² with UAr

✓ DarkSide-G2

- 3600 kg fiducial
- Can be built inside present DS-50 neutron veto
- Expected sensitivity 10⁻⁴⁷ cm²

2 LOI

- Sabre
 - initially take advantage of Darkside
- DM-lce 250

Initally take advantage of Xenon-100

Sabre

DarkSide Liquid Scintillator Neutron Veto

Darkside L.S. Veto is Operating.

- 4 m diameter sphere
- ~ 30 tons of PC + TMB
- 110 high QE PMTs
- Light-yield ~0.52 p.e./keV with same Lumirror reflector used for SABRE.
- Shielded by >3-4 m of water
- NaI(Tl) 1-kg detector radiopurity tests start Summer 2014.
- Use of 3 ports for 70-kg SABRE to be decided by schedules of SABRE and large Darkside G2 detector.

Sabre

SABRE Veto Detector for 50-60 kg NaI(Tl)

- Sufficient NaI(Tl) mass
 - Bkgnd < 0.4 cpd/kg/keV
- Cylinder: 1.5 m x 1.5 m
- LAB scintillator: 2 tons
- PMTs: Ten 8-inch Ham.
- Reflector: Lumirror
- L.Y.: 0.22 p.e./keV
- Shielding: 25cm steel.
 - Small footprint.
- Portable: LNGS, SNOLab, Australia?
- Funded by NSF.
 - In construction.

NUCLEAR ASTROPHYSICS

The LUNA experiment

nuclear fusion reaction cross sections

Key parameters to model stars

- chemical composition, opacity...
- reactions cross sections
- Many reactions need high precision data

C. Broggini talk today

Nonburning hydrogen Hydrogen fusion Carbon fusion Oxygen fusion Neon fusion Magnesium fusion Silicon fusion Iron ash

Stefano Ragazzi – LNGS & UNIMIB

Summary

- The Scientific Programme at Gran Sasso is
 - World-leading
 - Addresses important astroparticle topics
 - Neutrino physics
 - neutrino oscillations
 - solar physics
 - double beta decay
 - cosmogenic & geo neutrinos
 - Dark Matter
 - And more...
 - Foundations of physics
 - Environment and health Physics

A national lab & international asset

Vulcano 2014: Astroparticle Physics at LNGS