Higgs Boson in the SM and Beyond

Vulcano Workshop 2014 Sergio Bertolucci Cern

An extraordinary combination of three simultaneous fantastic performances!

Data collection

- LHC delivered 5fb⁻¹ in 2011
 Gave first hints for SM Higgs
- \sqrt{s} raised 7 \rightarrow 8TeV in 2012
- 23.3fb⁻¹ delivered
 - 6 fb⁻¹ allowed Higgs discovery
 - Now tests of properties
- Great effort by LHC team!
- ~90% of the delivered luminosity is used in analysis
 - Dedication from the systems experts and shift crews.

CMS Integrated Luminosity, pp

ATLAS & CMS

Detectors and LHC operation

ATLAS - 2012

Subdetector	Number of Channels	Approximate Operational Fraction	c				iiiiia	y U		512				
Pixels	80 M	95.0%	ten	MUON CSC										
SCT Silicon Strips	6.3 M	99.3%	sys	MUON RPC										
TRT Transition Radiation Tracker	350 k	97.5%	qn	MUON DT										
LAr EM Calorimeter	170 k	99.9%	S	HCAL Outer										
Tile calorimeter	9800	98.3%	ł	HCAL Forward										
Hadronic endcap LAr calorimeter	5600	99.6%	F	ICAL Endcaps										
Forward LAr calorimeter	3500	99.8%		HCAL Barrel										
LVL1 Calo trigger	7160	100%		Preshower										
LVL1 Muon RPC trigger	370 k	100%	E	CAL Endcaps	_									
LVL1 Muon TGC trigger	320 k	100%		ECAL Barrel										
MDT Muon Drift Tubes	350 k	99.7%		Strip tracker	_									
CSC Cathode Strip Chambers	31 k	96.0%		Pixel tracker										
RPC Barrel Muon Chambers	370 k	97.1%		0	9 0	0.91 0	92 0	.93 (.94 0	95 0.9	96 0.9	97 0.5	8 0.9	9 1
TGC Endcap Muon Chambers	320 k	98.2%										Activ	e Fra	ction

CMS Proliminary June 2012

- ATLAS and CMS in very good shape: Fraction of Active Channels <u>>96%</u>
- 90% of delivered luminosity used in physics analysis

12/9/2011 3:00:31 pm

LCG

Running jobs: 192041.0 Transfer rate: 5.43 GiB/sec

~ 30 PB data written in 2012...

© 2011 MapLink/Tele Atlas © 2011 Google © 2011 Europa Technologies US Dept of State Geographer

55°19'39.43" N 31°42'11.39" E elev 189 m

Eye alt 8427.92 km 🔘

Pileup in 2012

- Example: $Z \rightarrow \mu \mu$
- Has multiple overlayed interactions
 - 25 seen here
- Tracker can distinguish them by position
- Calorimetry suffers
 - Degrades isolation
 - $\, E_t^{\, \text{Miss}}$

A long history

- 1964 Brout & Englert, Higgs, Guralnik, Hagen & Kibble,
 - Not taken too seriously until...
- 1967 Used in the formulation of the Standard Model
 Proven to be self-consistent in 1971
- 1973 Experimental acceptance of the Standard Model
- 1983 Discovery of W and Z bosons
 - Closely linked to the Higgs boson
- 1993 LEP studies Z's and rules out m_{H} <53 GeV
 - And indirectly excludes m_H>300GeV
- 2000 LEP lower limit reaches 114.4 GeV
 - Hint of production at 115?
- 2011 LHC excludes 130-550GeV, Tevatron 156-175
 - Some indications for a particle at 125?
- 4th July 2012 New particle found at 126GeV
 - Consistent with the Higgs

Hunting the Higgs Boson

Higgs production

- The three most common modes
- Gluon fusion dominated discovery
 - Top loop (+ BSM?)
- Vector boson fusion/associated
 - Also used to tag signal
 - Improves the purity

Higgs production

- Cross-section errors on gluon fusion are the largest systematics in rate measurement
- In the long term the associated or maybe VBF will give stringent test of production rate

Higgs decay modes used

• $H \rightarrow ZZ$

- ► H→WW
- $H \rightarrow \gamma \gamma$
 - Rare, best for low mass
- $H \rightarrow \tau \tau$
 - Uses VBF, low mass
- e H→bb
 - ttH, WH, ZH useful but hard

Rates by decay mode

- Run 1 production in each experiment
- From 100 to 300000 events per channel...
- ..but total pp events:
 2x10¹⁵
- 60 Higgs to IIII events
- Needs incredible background rejection

Standard Model measurements

$H \rightarrow ZZ \rightarrow IIII$

- The golden mode
- Good mass/energy measurement
 - Electrons and muons are measured with O(1%) precision
- Very low backgrounds
 - Dominated by real ZZ→IIII
 - Plus some Zbb where b decays leptonically
- But signal rate low
 - Higgs couples strongly to ZZ
 - But 2 $m_Z > m_H$ so one Z must be
 - off mass shall
 - $Z \rightarrow ee \text{ or } \mu\mu \text{ Br only } 3\%$
 - Challenge to maximise efficiency
 - Especially for low- p_T electrons

CMS Simulation, $\sqrt{s} = 8 \text{ TeV}$

Signal Mass distribution

- Clear peak near 125 GeV
 - S/B better than 1
 - The Z→IIII peak at 91 GeV is seen too; sanity check
- CMS use matrix element for each event to discriminate

$H \rightarrow \gamma \gamma$

- Rare decay,
 - 2 per mille
 - $110 < m_{H} < 150$
- Drove ECAL design
 - CMS: Crystal PbWO₄
 - ATLAS: LAr accordion
- Give good energy measurement
 - Need vertex position to calculate mass
 - Tracking shows it
- Good jet rejection also essential

$H \rightarrow \gamma \gamma$ mass spectra

- Background is assumed to be smooth
- Signal is small but clear
 - And grows in significance when analysed in classes

Higgs Mass Estimation

- Two experiments very compatible
 - Some internal tension in ATLAS
- Mass measured to <0.5%</p>
 - Photons hard to calibrate precisely, experiments improving this

128

The last parameter of the SM?

Is that it?

- The SM was missing just one parameter, m_H
 - With that measured are we done?
- Not by a long way!
 - Is this a Higgs boson?
 - Need coupling to Weak vector bosons W and Z
 - Should be Spin 0
 - And Parity plus
 - Does it match the SM Higgs?
 - Does it interact with fermions at all?
 - Does it do it proportional to their mass?
 - Both quarks and leptons?
 - Does it also couple to dark matter?
- We have started to check all of these questions

- Loop decay like $H \rightarrow \gamma \gamma$; sensitive to corrections
 - Observed(expected) limit 9-11(9)xSM Higgs
- Nothing unexpected here

$H \rightarrow WW \rightarrow Iv/v$

$WW \rightarrow l\nu l\nu$

- The most sensitive channel for 130<m_H<200 GeV
 - Still one of the 3 most important at 125 GeV
 - But poor mass information due to 2 undetected neutrinos
- Good trigger, reasonable rate
 - Largest background is non-resonant WW
 - Also top when looking at WW+1 jet
 - Backgrounds measured from control regions
- Request two leptons
 - p_T >15,25 GeV in ATLAS
 - All flavour combinations used (e-µ has little D-Y background)
- Require missing E_T (E_t^{rel}) and p_T (II) for WW
- Select signal using kinematics : e.g. Δφ and m_{il} selections
- Most backgrounds estimated from data

WW signal region

- Treat 0/1/2 jets separately
 - Same flavour/DF both
 - 2-jets (targeting VBF) right
- Complex background mix
 - Signal is extracted with a fit in 2 or 3 dimensions
 - Poorly represented by plots here
- Excess seen in all channels
- The Higgs boson decays to WW

Spin/parity

- We know integer spin, not 1 from γγ decay observation
 Unless Yang-Mills is evaded; e.g. Each photon is a pair..
- We can measure in ZZ/WW/γγ
- But there are caveats:
 - General spin 2 tensor structure too complex to analyse now
 - assume strawman production/helicity structure
 - E.g. gg or qq production
 - The bosonic decay projects out 0+ from a mixed state
 - We are not sensitive to mixed CP MSSM for instance
- So...we do learn something
 - But most theorists are not expecting surprises here
 - The rates match too well the 0⁺ model...

Spin analysis in Higgs decay

- ZZ decay has 7 observables
 - Mass of the two Z's
 - Overall global phi
 - 4 spin angles
- WW would be better due to large decay asymmetry
 - But the 2 neutrinos rob much sensitivity.
- γγ lacks photon mass and their decay angles
 - But production angle sensitive
- All of them bring sensitivity
 - Analysis typically through BDTs
 - Specific spins 0/1/2 models tested
 - Spin 2 structure complex

WW, *yy* and ZZ

Spin/parity results

- Most important result is that 0⁺ always matches data well
- Spin 1 is strongly disfavoured by γγ observation
- Spin 2 model is example model, other could exist
 - For any gg/qq production fractions

$H \rightarrow \tau \tau$ status

- $H \rightarrow \tau \tau$ is a challenging analysis
- Multiple production:
 - Gluon fusion
 - VBF
 - Most sensitive
 - VH
- Multiple decay modes
 - lep-lep
 - lep-had
 - had-had
- Use BDTs to extract signal from background
- Control with $Z \rightarrow \tau \tau$
 - Control that via $Z \rightarrow \mu \mu$
 - Replace data μ with τ

$H \rightarrow \tau \tau status$

- ATLAS finds 4.1σ evidence (3.2σ expected)
- CMS sees 3.2σ evidence (3.7σ expected)
- Together this looks very solid

- Use categories where the Higgs boson was seen with forward VBF-tagging jets
 - All 4 channels discussed contribute here
- Both ATLAS (4σ) and CMS (2σ) see something
 - Together make good evidence for VBF
- This means we see vector bosons both in production and decay
 - So the interaction is well established

Higgs to µµ

- Expect rate suppressed by (0.106/1.778)² ~ 1/280 w.r.t. тт
- Good efficiency & mass resolution improves things
 - Obs(expected) limit 7(5)xSM CMS
 - Obs(expected) limit 9.8(8.2) xSM ATLAS
- Clear evidence for lepton non-universality

H→*bb* status

- Dominant decay
 - But lost in gg→bb background
- Use WH and ZH to improve s/b
- Both ATLAS and CMS see something of Higgs decay to bb
 - 2.1σ in CMS
 - 0.4σ in ATLAS
- The Tevatron reported 2.9 σ for $H \rightarrow bb$ Phys. Rev. Lett. 109, 071804 (2012).
- There is some evidence
 - But it is not very solid yet
- In the SM 57% of Higgs bosons decay to b quarks
 - We need this well measured to understand total decay rate

So does H interact with quarks?

- Yes!
- The gluon-fusion production process is basically a top quark loop
 - Gluons couple to quarks
 - Top quarks are massive and couple to Higgs
- If we do a 5-parameter fit:
 - K_W, K₇, K_t, K_b, K_T
 - We find the top coupling cannot be zero
 - ATLAS finds it a little low
 - But 14% chance in SM
- But isn't it a bit indirect?

So look for ttH

ttH has low rate but distinctive signature

- But complicated
- Several Higgs decay modes used:
 - $H \rightarrow \gamma \gamma$, bb, leptons or tau
 - ATLAS only used at γγ, bb so far

- CMS results (left) give 2.7σ
 evidence for ttH production
 1.2σ expected
- ATLAS found $\mu = 1.7 \pm 1.4$ in bb mode, no combination yet Together there should be 3σ evidence for this modes

In summary

- 5 big channels reasonably consistent
 - ATLAS have opposite fluctuations to CMS!
- Errors includes systematics;
 - PDF and QCD scale are largest

The couplings fit

■ Basic ingredient: <u>vields per category/channel (e.g.</u>, VBF 2J tag of $H \rightarrow \gamma\gamma$)

Production modes: gg, VBF, W/ZH, ttH + Final states: γγ, WW, ZZ, bb, ττ Zγ, μμ

- Follow prescription form LHC-XS working group assuming:
 - Only one resonance + Narrow Width Approx. + SM Lagrangian tensor structure (also implies CP=0⁺)
- Observed yields parameterized SM prediction x coupling scaling factors κ^2
 - SM equivalent to all κ=1
- This simplified approach is sufficient for today's available statistics

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$
$$(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_{g}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{H}^{2}}$$

The couplings fit

- Fit with only κ_V and κ_f
- Allows multiple different modes to be compared and contributions assessed
- All channels are compatible with standard model expectations in fermion and vector coupling

MSSM constraints

- MSSM Higgs sector is defined by m_A and tanβ at tree level
 - But radiative corrections important
- Old MSSM benchmark scenarios fix all other parameters
 - Do not match m_h=125
- One new approach is to absorb radiative corrections into a single parameter used to fit m_h at each point
 - Only approximately true
- Deduce m_A>400 GeV
 - Within assumptions

New particle search

- Another possibility is to ASSUME a SM Higgs
 - But allow the loops to have unknown particles
 - ggF, $H \rightarrow \gamma \gamma$
- Test for invisible/ undetectable branching ratio
 - CMS find Br < 52% @ 95%
 - ATLAS Br < 41% (55% expected)
- Loop strengths also with 2σ of SM prediction

Direct invisible Higgs hunt

- Search for Higgs decay to invisible particles
- Need to tag production:
 - ZH, Z→II ATLAS/CMS
 - ZZ background dominates
 - ZH, Z→bb CMS
 - VBF (CMS)
 - Z+jets b
- Control of missing energy essential
- Limits:
 - Br < 75% (62%) ATLAS
 - Br < 58% (44%) CMS

DM in Higgs-portal model

Higgs Width

- Direct measurement of the peak lineshape
 - Limited by experimental resolution
 - CMS set 3.4 GeV upper limit from IIII mode
- Extract from peak position
 - Interference with background moves γγ peak c/f III
 - Or even use high/low p_T difference in $\gamma\gamma$
 - No results yet
- Use high-mass tail of BW in IIII (& interference)
 - High-mass cross-section stable; take ratio to peak
 - Assumes line-shape is not distorted by new physics
 - New CMS result next slide
- Extract from invisible, undetected cross-section discussed
 - Assumes relations between couplings
 - 6 MeV upper limit from ATLAS data

Width via ZZ mass distribution

• Use observed lineshape $\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu (\sigma \cdot BR)_{SM}$

- Need to understand interference with gg→ZZ
 - Assume K-factors same to 10%
- Take measured on-peak σH
- Using ZZ in IIII and IIvv modes
 - MELA in IIII suppresses qq→ZZ
- F_H<17MeV (35MeV expected)
 c/f 4.2MeV in SM
- Could this become measurement?
 - Needs improved calculations

What next? Run 2 and beyond

- The increased beam energy increases cross-sections by a factor 2.7
 - ...and a factor 5 for ttH
- 100fb⁻¹ in Run 2 will allow ~10 times the Higgs production
 - Measurements becoming increasingly precise
 - Testing the SM in a new sector
- The BSM Higgs potential is huge
 - New areas in H, A, H⁺ a_1 , H⁺⁺
 - Will naturalness / the Heirarchy problem finally yield?
 - Perhaps we find SUSY in Higgs decays or vice versa
- Then 300fb⁻¹, and finally 3000fb⁻¹ will allow detailed explorations
 - Maybe even access to the self-coupling

To conclude

- After 50 years we have found something remarkably like the SM Higgs boson:
 - Mass ~125.6 GeV
 - 0⁺ j^p strongly preferred over alternatives
 - Decay to ZZ, WW, γγ, ττ, maybe bb
 - Lack of decay to μμ
 - Evidence for VBF and gluon fusion: ttH next?
 - $\Gamma_{\rm H}$ <17 MeV, m_A >400GeV (with assumptions)
- The experiments are preparing for Run2
- In 2012 LHC worked remarkably well
 - We have twice the discovery data already
 - 300fb⁻¹ at 14TeV will allow great precision
 - And maybe more discoveries...

