The Pierre Auger Observatory: results, open questions and future prospects

Antonella Castellina INFN & INAF, Torino, Italy

for the Pierre Auger Collaboration

The scientific case for Auger

assess the existence or absence of the cut-off measure the anisotropy in the quest for the sources find out the nature of the primary cosmic rays ... with a hybrid detector

The results

the ankle and the cut-off clearly measured the anisotropy : LSA, point sources, etc. the composition: primary nuclei, photons, neutrinos the hadronic interactions: muons, p-p cross section ... a wealth of info on UHECRs

The scientific case : beyond 2015

origin of the cut-off : GZK or reach of E_{max} ? the proton fraction at UHE : particle astronomy ? the hadronic interactions and new physics ... improving the composition knowledge ...increasing the statistics

The Pierre Auger Observatory

[©]Water-Cherenkov tanks [₽]1660 in a 1.5 km standard grid ₽71 in 0.75 km infill grid (~30 km²)

- 24 in 4 buildings overlooking SD
- 3 in I building overlooking the Infill

Muon detectors

engineering array phase - 61 aside
the Infill stations

Second Stress Stress Second Stress Second Stress Second Stress Second Stress Second Stress Second Stress Stres

■R&D GHz antennas

 AMBER - MIDAS (2 imaging radio telescopes)
 EASIER (61 radio sensors)

Simultaneous detection of UHE cosmic rays by means of SD : 100% duty cycle - precise determination of aperture and exposure FD : 10% duty cycle - almost calorimetric measure of energy

Two complementary techniques: different shower parameters contribute to identify the primary arrival direction, energy and nature

Different techniques: measurements redundancy and cross checks

Vulcano Workshop, 18-24 May 2014

Vulcano Workshop, 18-24 May 2014

Energy spectrum

SD (1500 m and infill) and FD provide 4 independent measurements
the 4 spectra agree within statistical and systematic uncertainties

7

Energy spectrum combined fit

Vulcano Workshop, 18-24 May 2014

Y

22

Mass composition - Xmax

high quality hybrid data set: anti-bias cuts for a direct data-model comparison
need of very high statistics

Mass composition - Xmax

- energy evolution common to all models: <InA> increasing from light to medium
- $\mathfrak{S} \sigma^2_{max}$ ~1 : the mix is within intermediate nuclei (not p:Fe)
- ${igsirential}$ negative variance within systematics

Mass composition - MPD_{μ}

Mass composition - MPD_{μ}

 \bigcirc novel approach to study the longitudinal distribution of the hadronic component of EAS

 \blacksquare agreement with the conclusion from Xmax (but still compatible with constant comp.)

Solution here, E>20 EeV, ϑ >55°, only stations far from the core. Analysis can be extended to lower angles and energies if able to tag the EM contamination

Interpreting X_{max} and X^{μ}_{max}

the consistency between the two Xmax can help to constrain hadronic interaction model

Large Scale Anisotropy

• % modulation if Galactic,

~0.6% if extragalactic (CMB dipole)

The anisotropy is found to be very small (% level)

Change expected in transition region: e.g. at I EeV

- In clear evidence of anisotropy, but 3 points with chance probability <1%</p>
- Smooth transition in phase from 270° below 1 GeV (Galactic origin?) to 90°

above 4 EeV (random phase expected from isotropy)

Vulcano Workshop, 18-24 May 2014

Upper limits on equatorial dipole

exclusion of models with antisymmetric halo magnetic field >0.25 EeV
for exclusion of Galactic model at few EeV

Point source searches

Galactic neutron sources

VCV Catalog

 fraction of correlating events (33 ± 5) % (21% from isotropy)
 the content in protons at UHE is small : consistency with X_{max} indication, exhaustion of sources?

SeV neutrons searched for in the Galaxy (λdec~ (9.2 E_{EeV}) kpc): different sources (HESS, Fermi sources, Galactic Plane and Galactic center, magnetars, microquasars, etc.)

 \subseteq no candidate found with significant excess : $\phi_{neutrons} < 0.0114 \text{ km}^{-2} \text{ yr}^{-1}$ (> 1 EeV)

challenge the hypothesis of EeV proton sources in the Galaxy, unless they are transient, or emitting in jets, or too faint...

Photons

to set limits on top-down mechanisms
 to search for GZK photons
 to fix the maximum photon fraction in the primary flux

Exploit observable differencies between ${\mathfrak Z}$ and hadrons

- 🖉 g EAS develop deeper in atmosphere: larger Xmax
- SEAS look young: larger rise time, smaller radius of curvature

Diffuse photons

- exotic models disfavoured down to I EeV
- GZK region within reach in the near future
- \bigcirc the primary composition is truly barionic

EeV Photon point sources

Protons near the ankle produce photons ~ I EeV : can we find them?
 as the energy flux in TeV & rays exceeds I eV cm⁻² s⁻¹ for some sources (CenA, Galactic center) with this energy spectrum, we expect similar flux at EeV (as sources with spectrum ~ E⁻², put the same energy flux/decade)

No point sources of EeV photons is found. For d ϕ /dE ~ E⁻² ϕ_{δ} <0.25 eV cm⁻² s⁻¹ well below expectations

No Galactic sources of protons IF --> they are not transient --> they do not emit in jets towards Earth --> they are too faint

The overall view

Solution Ankle : change in composition, hints of anisotropy on large scale O^{20} eV, no data from X_{max} , point source anisotropy at 3σ level

Questions and answers from Auger results

protons	Is there a proton component (~10%) at UHE? above 55 EeV, some indication for anisotropy Are there Galactic protons at the ankle ? the composition is light, but we do not have anisotropy >few %; extreme assumptions on Galactic magnetic fields could reconcile the two info Do EeV proton sources exist in our Galaxy ? No evidence from n and & flux limits, but sources could be transient, or faint
cut-off	Is it due to propagation or source E _{max} ? the cut-off energy E _{1/2} is lower than expected from GZK composition is mixed and getting heavier future detection of cosmological photons and neutrinos as a direct evidence
hadronic interactions	Can we get information on hadronic interactions at UHE ? smooth grow of the pp cross section, measured at 57 TeV muon content of EAS
other info	Are UHECR produced in top-down mechanisms? excluded from photon and neutrino limits Are there information on quantum-gravity structures and possible LIV ? see talk

Vulcano Workshop, 18-24 May 2014

Astrophysical scenarios

photo-disintegration	sources accelerate nuclei to a maximum energy light elements are fragments of heavier nuclei cut-off: energy loss processes of nuclei (photo-disintegration) light elements appear at E shifted by m _{daughter} /m _{parent} N-Si nuclei in the sources, no protons
maximum energy	sources accelerate nuclei to a maximum energy $\propto 2$ composition in the source similar to the Galactic one cut-off: E_{max} reached in the source composition getting heavier for increasing energy protons at the ankle are extragalactic, no GZK g or v
proton dominance	the all particle flux consists of extragalactic protons the source has a cut-off energy cut-off: energy loss processes for protons (pion-photoproduction) ankle due to pair production of protons on CMB new physics to explain heavier composition at UHE

Vulcano Workshop, 18-24 May 2014

- hard spectra: acceleration in rapidly rotating neutron stars, accretion disks with unipolar induction, etc.
 (high metallicity)
- good fit to Auger only above 5 EeV. Below
 - Galactic spectrum extending up to 5 EeV

BUT if light, disfavoured by anisotropy results, if heavy by X_{\max}

extraGal. (ad-hoc) sources injecting p, He. In agreement with Kascade-Grande and IceTop results
 BUT too much Fe at I EeV wrt Xmax result

The science case for an upgrade beyond 2015

the origin of the cut-off : GZK or E_{max} ?

the proton component at UHE: what is its fraction?

the hadronic interactions : particle physics beyond accelerators ?

operate Auger until 2023 (x 3 statistics) with improved detector composition sensitivity : MUONS

Discrimination of muons vs EM component in SD will give

- composition info in the cut-off region
- increase our knowledge in the ankle region

help in disentangling composition and hadronic interactions systematics

The science case for an upgrade beyond 2015

Are hadr.int.models failing in predicting the fraction of E_{EM} ? $N_{\mu} \longrightarrow m$, f_{EM} , A $X_{max} \longrightarrow \sigma$, κ , m, A We can distinguish different primaries if N_{μ} only affected by shower-to-shower fluctuations

UHE physics case is strong Auger is the biggest running observatory

 a very fruitful collaboration is going on between Auger and TA

 the results from the current and upgraded observatories will guide the proposed or planned future experiments

Vulcano Workshop, 18-24 May 2014

Backup slides

Muon deficit in simulations

	Auger SD			Auger hybrid
	1500 m vertical	1500 m inclined	750 m vertical	
Data taking period	01/2004 - 12/2012	01/2004 - 12/2012	08/2008 - 12/2012	11/2005 - 12/2012
Exposure [km ² sr yr]	31645 ± 950	8027 ± 240	79 ± 4	-
Zenith angles [°]	0 - 60	62 - 80	0 - 55	0 - 60
Threshold energy $E_{\rm eff}$ [eV]	3×10^{18}	4×10^{18}	3×10^{17}	10 ¹⁸
No. of events $(E > E_{eff})$	82318	11074	29585	11155
No. of events (golden hybrids)	1475	175	414	-
Energy calibration (A) [EeV]	0.190 ± 0.005	5.61 ± 0.1	$(1.21 \pm 0.07) \cdot 10^{-2}$	
Energy calibration (B)	1.025 ± 0.007	0.985 ± 0.02	1.03 ± 0.02	-

Table 1: Summary of the experimental parameters describing data of the different measurements at the Pierre Auger Observatory.

$\log_{10}(E/eV)$	$\left. \frac{dN}{dt} \right _{\text{infill}}$	$\left. dN/dt \right _{SD}$	$N _{\rm infill}$	$N _{SD}$	
8	$[yr^{-1}]$	$[yr^{-1}]$	[2017-2023]	[2017-2023]	
17.5	11500	-	80700	-	
18.0	900	-	6400	-	
18.5	80	12000	530	83200	
19.0	8	1500	50	10200	
19.5	~1	100	7	700	ubarade
19.8	-	9	-	60	
20.0	-	~1	-	~9	

Neutrinos

- \bigcirc constraints on astrophysical source models (AGN v)
- Auger limit below Waxmann-Bahcall upper limit
- GZK region within reach in the near future

If the 2 neutrino events from lceCube are compatibile with an E⁻² flux with normalized to $E_v^2 F_v = 1.2 \ 10^{-8} \text{ GeV}$ cm⁻²s⁻¹ sr⁻¹ : extension of this upper limit to the flux at 10^{20} eV excluded (2.2 events expected, 0 detected)

Comparison of parameters

2011 spectral parameters

 $\begin{aligned} \log_{10}(E_{\rm a}/{\rm eV}) &= 18.62 \pm 0.01 \\ \gamma_1 &= 3.27 \pm 0.01 \\ \gamma_2 &= 2.63 \pm 0.02 \\ \log_{10}(E_{1/2}/{\rm eV}) &= 19.63 \pm 0.02 \\ \log_{10}W_c &= 0.15 \pm 0.02 \end{aligned}$

2013 spectral parameters $log_{10}(E_a/eV) = 18.72 \pm 0.01$ $\gamma_1 = 3.23 \pm 0.01$ $\gamma_2 = 2.63 \pm 0.02$ $log_{10}(E_{1/2}/eV) = 19.63 \pm 0.01$ $log_{10} W_c = 0.15 \pm 0.01$

Calibration

Vulcano Workshop, 18-24 May 2014

1000

Angular resolution

SD Events better than 1° for ≥ 6 stations (>10 EeV)

Hybrid events: **0.6**⁰ after correction for the true shower geometry

Atmospheric monitoring

Lidar

Atmospheric profiling, "shoot-the-shower" for atm. measurements along the shower path

Central Laser Facility Atmospheric monitoring, timing and calibration Vertical optical depth Relative timing between FDs and between FD-SD

Balloon borne

- measure T,P, humidity...
- measure of the deviation of g/cm² with respect to US std atmosphere

