

Double Chooz: Towards the near Detector Phase Vulcano Workshop 2014

Lee Stokes for the Double Chooz Collaboration

Neutrino Oscillations

Neutrino oscillations occur as a result of non-zero neutrino masses and mixing of flavour & mass eigenstates as:

Until recently, θ_{13} was the only unknown mixing angle \rightarrow First result shown in 2011 by Double Chooz \rightarrow 2012 measured by Double Chooz, Daya Bay & Reno θ_{13} needed to explore CP violation via the phase δ and mass hierarchy

*θ***₁₃ from Reactor Anti-Neutrinos**

- Reactors are a free & rich source of electron antineutrinos
- Direct measurement θ_{13} from $\overline{\nu}_e$ disappearance
- Reduction systematic uncertainties using two detectors at different baselines

RatioRatioProton
numberBaselineEfficiencySurvival
probability
$$R(\sin^2 2\theta_{13}, \Delta m_{31}^2) = \left(\frac{N_{far}}{N_{near}}\right) = \left(\frac{N_{p,far}}{N_{p,near}}\right) \cdot \left(\frac{L_{near}}{L_{far}}\right)^2 \cdot \left(\frac{\epsilon_{far}}{\epsilon_{near}}\right) \cdot \left[\frac{P_{surv}(E, L_{p,surv})}{P_{surv}(E, L_{p,surv})}\right]$$

Detecting Reactor Anti-Neutrinos

Inverse Beta Decay: $\overline{\nu}_e + p \rightarrow e^+ + n$

Double Coincidence Signal
 Background suppression

Prompt signal: positron + annihilation γs 1~8 MeV

Prompt Energy related to neutrino E

 $E_{vis} \simeq E_{\overline{\nu}_e} - 0.8 MeV$

Delayed signal:

ys from neutron capture on Gd/H: 8 MeV/2.2 MeV

Time Difference:

Δt ~ 30μs (Gd) Δt ~ 200μs (H)

Double Chooz Experiment

edf 2 Cores 4.27GWth Each Near Detector

LISSER

~ 400 m ~ 120 m.w.e

Data taking: end of 2014

Far Detector

~ 300 m.w.e

Running

since 04/11

Double Chooz Collaboration

Detector Concept

Inner Detector (ID) – three cylindrical layers ν_e - target

- Gd loaded (1g/L) liquid scintillator (10.3m³)

Target for neutrino interactions

- - - - Transparant acrylic vessel - - - -

 γ - catcher

- Liquid scintillator (22.3 m³)
- "Catch" γ s from ν interactions in target
- - - Transparant acrylic vessel - - Buffer
- 110 m³ mineral oil & 390 10" PMTs, non-scintillating
- Reduces BG

Inner Veto (IV)

- Liquid scintillator & 78 8" PMTs in steel tank
- Identify cosmic µs

Outer Veto (OV)

- Plastic scintillator strips

Steel Shielding - 15 cm shielding

Detector Calibration

PMT & electronics gain non-linearity correction LED light injection

Position and time variation correction Spallation n-H & n-Gd capture

Energy scale radioactive sources ¹³⁷Cs, ⁶⁰Co, ⁶⁸Ge, ²⁵²Cf

Backgrounds (I)

Accidental background Accidental coincidences

 0.261 ± 0.002 events/day 73.45 \pm 0.16 events/day

Prompt: gammas from radioactive materials, rocks... 9

Delayed: neutron-like event

Backgrounds (II)

Correlated background Muon induced fast neutrons & stopping muons

Prompt: recoil protons from neutrons or stopping muons

Delayed: fast neutrons or Michel electrons

Cosmic µ

Backgrounds (III)

Cosmogenic bkg. Long lived β-n emitters

Prompt: electron

Delayed: neutron

Cosmic µ

R+S Oscillation Results

Gd-Analysis

Phys. Rev. D86 (2012) 052008

H-Analysis

Phys. Lett. B723 (2013) 66-70

 $\begin{array}{l} \text{DC-II (Gd)}: \sin^2 2\theta_{13} = 0.109 \pm 0.039 \\ \text{DC-II (H)}: \sin^2 2\theta_{13} = 0.097 \pm 0.048 \\ \text{Combined (Gd+H)}: \ \sin^2 2\theta_{13} = \ 0.109 \ \pm 0.035 \ (\text{preliminary}) \end{array}$

Reactor Off-Off

- Only experiment with 7.53 days all reactors off
- Unique opportunity to measure backgrounds
 - ➡ Expected: 2.0 ± 0.6 [day⁻¹]
 - Observed: 1.0 ± 0.4 [day⁻¹]

Phys. Rev. D87 (2013) 011102(R)

Reactor Rate Modulation (RRM) 15

- New θ₁₃/BG analysis
- Rate only using different reactor powers
- No background model assumed
 - BG-independent θ₁₃
 measurement
 - Cross-check of BG model

ArXiv: 1401.5981

Reactor Rate Modulation (RRM) Analysis16

 $\langle \sin^2(\Delta m^2 L/4E) \rangle$

$$R^{obs} = B + R^{exp} = B + (1 - \sin^2(2\theta_{13})\eta_{osc})R^{\nu}$$

Fit provides sin²2θ₁₃ and background rate

Gd $B = 0.9 \pm 0.4$ (W/O accid.)

Combined (Gd + H): $sin^2 2\theta_{13} = 0.102 \pm 0.043$

In agreement with R+S analysis

New

ArXiv: 1401.5981

Summary of DC results

ArXiv: 1401.5981

- 4 different sin²2θ₁₃ analyses
 - 2 separate samples: Gd / H
 - 2 separate methods: R+S/RRM

- 2 combined results
 - R+S with Gd + H
 - **RRM** with nGd + nH
- **sin²20**₁₃ consistent with 1σ
 - BG model consistent between all

New III) Towards a new selection

Open selection cuts + addition new BG vetoes

Better S/BG

Prompt Energy [MeV]

Delayed Energy [MeV] ΔT prompt-delayed [μ s]

Towards a new selection

New **Open selection cuts + addition new BG vetoes** 19

Better S/BG

Status Near Detector

20

Buffer Lid & PMTs installed

Installation Veto PMTs Last Week - by me!

Start data taking - later this year!

Summary

21

- Successful FD phase : limited by reactor sys
- 4 θ₁₃ measurements: nGd, nH (R+S) & RRM
 - RRM measurement Gd+H: $sin^2\theta_{13} = 0.102 \pm 0.043$
 - Combined Gd+H (R+S): $\sin^2\theta_{13} = 0.109 \pm 0.035$
- 3 independent BG measurements: Rxtr On, Rxtr-Off & RRM
- ND+FD phase to start
 - ND start data taking later this year
 - Selection improvements for FD+ND "ongoing"
- Rich physics beyond 013

New Gd-III results (~ double the data) shown @ Neutrino 2014 !

Thank You!

Back-up Slides

Summary θ₁₃ results

Taken from Daya Bay Talk @ Moriond 2014

Anti-ve Selection Criteria

Selection CutsGdHEnergy prompt0.7-12.2 MeV0.7-12.2 MeVEnergy delayed6 - 12 MeV1.5 - 3 MeV ΔT $2 - 100 \text{ } \mu \text{s}$ $10 - 600 \text{ } \mu \text{s}$ ΔR -< 0.9 m

BG Reduction

THE REAL PROPERTY IN		Gd	н
「「「「「	µ veto	ΔT > 1 ms	
	Showering µ	Ε _μ 0.5s	—
A Contraction	isolation	500 µs	1600 µs
	OV veto	Prompt not coincident OV	

Energy Reconstruction

Gain non-linearity calibration:

$$PE = \sum_{i} pe_{i} = \sum_{i} q_{i}/gain(q_{i}, t)$$

26

Energy definition:

$$E_{vis} = PE^{DATA,MC} \times f_u^{DATA,MC}(\rho, z) \times f_s^{DATA}(t) \times f_{MeV}^{DATA,MC}(\rho, z)$$

Backgrounds

Systematic Uncertainties

Rate Error (%)	Gd	н
Statistics	1.06	1.1
Reactor Flux	1.67	1.8
Det. Efficiency	0.95	1.6
Background	1.47	1.7
Total	2.7	3.1

Shape uncertainties:

- Reactor anti-v_e spectrum
- Energy Scale
- BG spectra

Rate Error (%)	Gd	н
9	1.38	1.6
FN/SM	0.51	0.6
Accidentals	0.01	0.2
Light Noise	-	0.1
Total	1.47	1.7

Reactor neutrino Prediction I

Predicted neutrino rate:

$$N_{\nu}^{exp}(E,t) = \frac{N_{p}\epsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$

$$\langle E_f \rangle = \sum_k \alpha_k(t) \langle E_k \rangle$$

 N_p

 ϵ_L

 $P_{th}(t)$

 $\langle \sigma_f \rangle$

 $\langle E_f \rangle$

 $\alpha_k(t)$

$$\langle \sigma_f \rangle = \langle \sigma_f \rangle^{Bugey} + \sum_k (\alpha_k^{DC}(t) - \alpha_k^{Bugey}(t)) \langle \sigma_f \rangle_k$$
$$\langle \sigma_f \rangle_k = \int_0^\infty S_k(E) \sigma_{IBD}(E) dE$$

- Number protons in detector
- Detection efficiency
- Baseline
- Thermal power
- Mean cross section
- Mean energy per fission
- $S_k(E)\sigma_{IBD}(E)$ Reference spectra × IBD cross section
 - Fuel fraction evolution

Thermal Power

Electricité de France (EDF) provide thermal power of both cores, B1 & B2

Reactor neutrino Prediction II

Predicted neutrino rate:

$$N_{\nu}^{exp}(E,t) = \frac{N_{p}\epsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$
$$\langle E_{f} \rangle = \sum_{k} \alpha_{k}(t) \langle E_{k} \rangle$$

$$\langle \sigma_f \rangle = \langle \sigma_f \rangle^{Bugey} + \sum_k (\alpha_k^{DC}(t) - \alpha_k^{Bugey}(t)) \langle \sigma_f \rangle_k$$
$$\langle \sigma_f \rangle_k = \int_0^\infty S_k(E) \sigma_{IBD}(E) dE$$

- Number protons in detector
- Detection efficiency
- Baseline

 N_p

 ϵL

 $P_{th}(t)$

 $\langle \sigma_f \rangle$

 $\langle E_f \rangle$

 $\alpha_k(t)$

- Thermal power
- Mean cross section
- Mean energy per fission
- $S_k(E)\sigma_{IBD}(E)$ Reference spectra × IBD cross section
 - Fission fraction evolution

Mean Energy per Fission Fuel evolution in reactor cores simulated by MURE & Dragon

Reactor neutrino Prediction III

Predicted neutrino rate:

$$N_{\nu}^{exp}(E,t) = \frac{N_{p}\epsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$
$$\langle E_{f} \rangle = \sum_{k} \alpha_{k}(t) \langle E_{k} \rangle$$
$$\langle \sigma_{f} \rangle = \langle \sigma_{f} \rangle^{Bugey} + \sum_{k} (\alpha_{k}^{DC}(t) - \alpha_{k}^{Bugey}(t)) \langle \sigma_{f} \rangle_{k}$$
$$\langle \sigma_{f} \rangle_{k} = \int_{0}^{\infty} S_{k}(E) \sigma_{IBD}(E) dE$$

- Number protons in detector
- Detection efficiency
- Baseline

 N_p

 ϵL

 $P_{th}(t)$

 $\alpha_k(t)$

- Thermal power
- Mean cross section
- Mean energy per fission
- $S_k(E)\sigma_{IBD}(E)$ Reference spectra × IBD cross section
 - Fuel fraction evolution

Mean Cross Section Used Bugey4 as anchor point

Reference spectra S_k(E)

Reactor neutrino Prediction IV

Predicted neutrino rate:

$$N_{\nu}^{exp}(E,t) = \frac{N_p \epsilon}{4\pi L^2} \times \frac{P_{th}(t)}{\langle E_f \rangle} \times \langle \sigma_f \rangle$$

$$\langle E_f \rangle = \sum_k \alpha_k(t) \langle E_k \rangle$$

 N_p ϵ L

 $\begin{array}{c} P_{th}(t) \\ \left< \sigma_f \right> \end{array}$

 $\left< E_f \right>$

 $\alpha_k(t)$

$$\langle \sigma_f \rangle = \langle \sigma_f \rangle^{Bugey} + \sum_k (\alpha_k^{DC}(t) - \alpha_k^{Bugey}(t)) \langle \sigma_f \rangle_k$$
$$\langle \sigma_f \rangle_k = \int_0^\infty S_k(E) \sigma_{IBD}(E) dE$$

- Number protons in detector
- Detection efficiency
- Baseline
- Thermal power
- Mean cross section
- Mean energy per fission
- $S_k(E)\sigma_{IBD}(E)$ Reference spectra × IBD cross section

- Fuel fraction evolution

Reactor Related Uncertainty

33

Total uncertainty 1.75%

Reactor neutrino Prediction V 34 **Predicted neutrino rate:** $N_{\nu}^{exp}(E,t) = \frac{N_p \epsilon}{4\pi L^2} \times \frac{P_{th}(t)}{\langle E_f \rangle} \times \langle \sigma_f \rangle$ **Detected spectrum** $\langle E_f \rangle = \sum \alpha_k(t) \langle E_k \rangle$ Emitted spectrum Cross-section $\langle \sigma_f \rangle = \langle \sigma_f \rangle^{Bugey} + \sum (\alpha_k^{DC}(t) - \alpha_k^{Bugey}(t)) \langle \sigma_f \rangle_k$ Detected spectrum (arbitrary units) $\langle \sigma_f \rangle_k = \int_0^\infty S_k(E) \sigma_{IBD}(E) \mathrm{d}E$ $\begin{array}{lll} N_p & - & \text{Number protons in } \\ \epsilon & - & \text{Detection efficiency} \\ L & - & \text{Baseline} \\ P_{th}(t) & - & \text{Thermal power} \\ \left< \sigma_f \right> & - & \text{Mean cross section} \end{array}$ - Number protons in detector 3 5 8 2 4 6 7 E_v (MeV) $\langle E_f \rangle$ - Mean energy per fission $S_k(E)\sigma_{IBD}(E)$ - Reference spectra × IBD cross section - Fuel fraction evolution $\alpha_k(t)$

Electronics

HV/sig. splitter

Custom (by CIEMAT)

Photo-multiplier tubes

ID: 390 PMTs (R7081MOD)

44

Gd-III Energy Scale

Source deployed detector Center Data & MC fit to extract peak (x-axis) & resolution (y-axis)

$$\frac{\sigma}{E_{vis}} = \sqrt{\frac{a^2}{E_{vis}} + b^2 + \frac{c^2}{E_{vis}^2}}$$

a: statistical termb: constant termc: e.g electrical noise

Data:MC:0.0773±0.00250.0770±0.00180.0182±0.00140.0183±0.00110.0174±0.01070.0235±0.0061

Further physics

- Background Studies (reactor off) (DC, PRD 87, 011102(R) 2013)
- Lorentz Violation (DC Coll., PRD 86, 112009, 2012)
- Neutrino Directionality (DC, arXiv: 1208.3628)
- Sensitivity to Δm_{13}^2 (arXiv: 1304.6259 [hep-ex])
- Sterile Neutrino (PRD 83, 073006, 2011)
- Muon physics (DC, paper in preparation)
- Orto-positronium observation (DC, La Thuile 2014)

Status Near Detector

