

X-ray Integral Field Unit

Missing Baryons at All Astronomical Scales

Current Evidence & Future Prospects

F. Nicastro (OAR-INAF) [Member of the X-IFU Science Team] Y. Krongold, M. Elvis, S. Mathur

Outline

- The Missing Baryon Problems:
 - Universe & Galaxies
- Theory Solution & Predictions:
 - The Warm-Hot Intergalactic Medium & its Phases
- Current Evidence of the WHIM and First Determination of ΩbWHIM in Xrays
- Future Prospects

Baryon Budget at z>2: the Lyα Forest

ΩbWMAPh-2 = 0.0226 h-2 = 0.0456 ~ 5%: agrees with BBN

Ωb(z>2) > 0.018 h-2 = 0.034 ~ 75% ΩbWMAP

The Universe Missing Baryons Problem

Ω bWMAPh-2 = 0.0226 h-2 = 0.0456 ~ 5%

~ 30-40% (or more) of Baryons Still Missing at z~0

The Galaxy Missing Baryons Problem

Cosmological Baryon Fraction fb = 0.17

The baryon deficit is more severe in smaller galaxies

- →Less massive objects are unable to retain baryons (and metals?) due to feedback processes (winds)?
- ➔ Are these baryons in the surrounding CGM/IGM?

The WHIM in Hydro-dynamical simulations

Most of the WHIM has to be searched for in the X-

First Claimed WHIM Detections: Exceptional Outburst State

(Nicastro+05, Nature)

 $\Omega_b(N_{OVII} > 7 * 10^{14}) = 2 \overline{\mathcal{M}}_{1.9}^{+3.8} * 10^{-[O/H]_{-1}} \% \sim \Omega_{Miss}$

Dest with larger in the **Universe:**

- z > 0.4
- FX ~ 1-2 mCrab
- High S/N COS spectrum with 5 a-priori **BLA** signposts

500 ks Chandra-LETG of 1ES 1553+113

Scanning routine finds only 6 LSFshaped excesses (consistent with Poisson) and 50 deficits at $>3\sigma$

12 of the 50 LSF-shaped deficits are confirmed as unresolved absorption line candidates by fitting procedure 9 of them are tentatively identified with 5 intervening IGM systems

Tentative IGM IDs

Nicastro+13

Reds CV CV OI O O BL OV CI hift (m (m **A) A)** 0.041 NA NA NA NA 2. 9. <6 <1 3σ 6σ 5 3 ± 0.00 2 0.133 3. 2. NA NA NA 5. <1 < 2 $\pm 0.00 8\sigma 7\sigma$ 5 4σ 4

Sensitivity of the Chandra Spectrum of 1ES 1553+113

15

No vu (cm⁻²)

50

With the sensitivity of the current *Chandra* spectrum of 1ES 1553+113 bound to detect only the cool (logT < 5.6) WHIM in CV. 4x exposure = 2x S/N = NOVII > 1015 cm-2 $= \sim 4 \text{ new systems sampling the hot WHIM}$

Cool WHIM at z=0.312: (6.3σ X-ray only)

From COS BLA and OVI b: \pm bth = 52 ± 7 km s-1 (bturb = 30 ± 14 km s-1) \pm logT = 5.2 ± 0.1 Fully Consistent with presence of CV, CVI, OV

Photo-Ionized Lyα Forest or WHIM? (1)

Photo-Ionized Lyα Forest or WHIM? (2)

Hybridly Ionized Gas can fit the FUV-X-ray data and constrain baryon densities

Best-Fitting WHIM Parameters

Redshi ft	logT	NH (1019 cm-2)	nb (10-6 cm-3)	Z/Z ـــ ا [= NH(X)/NH(FUV)]
$0.041 \pm$	$5.45 \pm$	3.8 ±	1.0	0.13,
0.002 * No consistent X-	0.05 Ray-FUV solution: absorber and	0.8 BLA is too narrow d OVI should be vis	and shallow to be sible if logT<5.2	+0.07, imprinted by the X-ray -0.10
** From H(X) div	vided by the avera	ige <u></u>	± 0.24 determine	d for the $z=0.041, 0.190,$
$0.133 \pm$	+0.2,			
0.002	-0.6			

Metallicities and Cosmological Mass Density of the Cool WHIM

00 ks for F0.5-2 = 0.1 mCrab along a random WHIM LOS from Cen+06: etects 5 Systems with logT = 5.2-6.4 K, logNH = 18.7-19.4 (Z/Zᅬ)-1 cm-2 at z< ll in OVII-OVIII; 2 in CV + OIV-OVI (Cool-Phase): excellent Density Diagnostics

- The Missing baryons in the local Universe are likely to reside in hot tenuous medium in the IGM, as predicted by hydro-dynamical simulations
- The galaxy missing baryons are probably concentrated in enriched (because of galaxy-IGM feedback) extended (well beyond the galaxy virial radius) and massive (~1011 M I) halos
- The first detections of the densest and coolest WHIM have finally been secured in the X-rays: only cool portion with current sensitivity.
- Metallicity is relatively high (~0.3 on average), consistent with feedback models and recent cluster outskirts observations.
- After proper ionization and metallicity correction, CV-OVI-BLA dominated WHIM contains ~ 15% of Baryons - 40-50 % of Baryons are still Missing and likely to reside in logT>5.5 WHIM, only detectable in X-rays
- In the future Athena will enable:
 - (a) accurate (few %) measure of the Cosmological Mass Density of Baryons in the Universe
 - (b) study of the interplay between galaxy and AGN outflows and the IGM (feedback)
 - (c) understanding of the role of shocks in the formation of structures in the Universe
 - (d) mapping of the Universe's Dark-Matter concentrations