

The CALET mission on the International Space Station

Paolo Maestro

University of Siena and INFN

INFN Istituto Nazionale di Fisica Nucleare

On behalf of the CALET collaboration

VULCANO WORKSHOP 2014

Frontier Objects in Astrophysics and Particle Physics

Vulcano 18-24 May 2014

CALET collaboration

JAPAN

Waseda University JAXA/Space Environment Utilization Center JAXA/ Institute of Aerospace and Astronautical Sciences Kanagawa University, Aoyama Gakuin University Shibaura Institute of Technology Institute for Cosmic Ray Research, University of Tokyo Yokohama National University Hirosaki University Tokyo Technology Inst. National Inst. of Radiological Sciences High Energy Accelerator Research Organization (KEK) Kanagawa University of Human Services Saitama University Shinshu University Nihon University **Ritsumeikan Universitv**

与宙航空研究開発機構 Japan Aerospace Exploration Agency

ITALY

University of Siena University of Florence & IFAC (CNR) University of Pisa University of Padova University of Roma Tor Vergata

NASA/GSFC Louisiana State University Washington University in St Louis University of Denver

CALET Payload

CALET science objectives

Science Objectives	Observation Targets	Energy range
Nearby CR sources	Electron spectrum	1 GeV – 10 TeV
Dark Matter	Signatures in e/γ spectra	10 GeV – 10 TeV
CR Origin and	p-Fe individual spectra	10 GeV – 10³ TeV
Acceleration	Ultra Heavy Ions (26 <z≤40)< td=""><td>few GeV/amu</td></z≤40)<>	few GeV/amu
Galactic CR Propagation	B/C sub-Fe/Fe ratios	Up to some TeV/n
Solar Physics	Electron flux	< 10 GeV
Gamma-ray Transients	Gamma and X-rays	3 keV – 30 MeV

CALET instrument

32

CHarge Detector (CHD)

(Charge Measurement in Z = 1 - 40)

- 2 layers each made of 14 Plastic Scintillator Paddles EJ204
- Paddle size 45 x 3.2 x 1 cm^3
- Layers orthogonally arranged
- Readout by PMTs (R7400-06 type, Hamamatsu).

IMaging Calorimeter (IMC) (Tracking, Particle ID)

- 7 Tungsten plates total thickness: 3 X_0 , 0.11 λ_1
- 8 Layers x 2 (X,Y) of 448 SciFi
- SciFi size: 44.8 x 0.1 x 0.1 cm³
- Readout MAPMTs (Hamamatsu R5900-00-M64)

Total AbSorption Calorimeter (TASC)

(Energy Measurement, e/p discrimination)

- 12 layers each made of 16 PWO logs
- Each log size 32.6 x 1.9 x 2.0 \mbox{cm}^3
- Layers orthogonally oriented;
- Total depth of PWO: 24 cm (27 X_0 , 1.23 $\lambda_l)$
- Readout system based on PMTs (layer 0) for trigger and Dual APD/PD (layers 1-11).

CHD CHD-FEC 20 IMC-FEC 142 IMC 95 TASC-FEC 240 TASC 20 100 320

(from the zenith) Geometrical Factor: 0.12 m²sr

Field of view: ~ 45 degrees

CALET Imaging capabilities

Proton rejection power >10⁵ can be achieved by shower imaging with IMC/TASC

Residual proton background

CALET will explore the electron spectrum around 1 TeV with low background and high energy resolution (2%) to search for possible spectral features of astrophysical origin or from Dark Matter annihilation/decay.

CR electrons in TeV region

>1 TeV electron astrophysical sources: T<10⁵ years (young) Distance < 1 kpc (nearby) Few known SNRs candidates (Monogem, Vela, Cygnus Loop..) Signatures in the electron spectrum: spectral features and anisotropy

electrons from DM annihilation/decay

Paolo Maestro

Proton and helium spectra

- p and He spectra at TeV are harder than the low-energy spectra and have different slopes in the multi TeV region (CREAM)
- Hardening in the p and He at 200 GV observed by PAMELA
 - →Hint of concavity due to CR interactions with the shock?
 - →Cutoff in the p spectrum (proton knee) ?
 - ➔Different types of sources or acceleration mechanisms?
- However AMS-02 did not observe any break or spectral features

CR nuclei

- All primary heavy nuclei spectra well fitted to single power-laws with similar spectral index (CREAM, TRACER)
- However hint of a hardening from a combined fit to all nuclei spectra (CREAM)
 - ➔ Possible features (concave spectrum) or spectral breaks?

B/C abundance ratio

- > At high energy (> 10 GeV/n) the B/C ratio measures the energy dependence of the escape path-length $\lambda \sim E^{-\delta}$ of CRs from the Galaxy
- Data below 100 GeV/n indicate δ~0.6. At high energy the ratio is expected to flatten out (otherwise CR anisotropy should be larger than that observed)
- Balloon experiments CREAM and TRACER measured the B/C ratio up to ~1 TeV/n But: - large statistical error (limited exposure)
 - large systematic errors due to corrections for B produced by interaction of of heavier nuclei with atmosphere

CALET can measure in 5 years the B/C ratio up to 5-6 TeV/n.

CALET measurements in orbit free from atmospheric production of boron.

CALET can also measure the sub-Fe over Fe abundance ratio.

Paolo Maestro

Ultra heavy nuclei

- Ultra heavy nuclei abundances provide information on CR site and acceleration mechanism.
- CHD resolution is ~constant above 600 MeV/n →Charge ID from saturated dE/dx in scintillator
- The energy threshold cut is based on the vertical cutoff rigidities seen in orbit.
- CALET should collect in 5 years 2-4 times the statistics of TIGER, w/o corrections for residual atmosphere overburden.

Paolo Maestro

Hardware development: Structure and Thermal Model (STM)

TASC

CHD

13

CERN beam test with **CALET** STM

- SPS beams:
- μ 150 GeV/c
- e 10, 20, 30, 50, 80, 100, 150, 200, 250, 290 GeV/c
- p 30, 100, 400 GeV/c

Ion fragments (A/Z=2) from a primary Pb beam @ 30(13) GeV/n on Be target

Charge tagging by a dedicated Si tracker

Beam test results

CHD performance

<u>Summary</u>

CALET is a space-based deep (30 X₀) calorimeter designed to perform cosmic ray measurement with high energy resolution, mainly aimed at the electron component.

CALET is characterized by excellent energy resolution; excellent charge identification, high e/p rejection power.

CALET will investigate the spectrum of many cosmic ray species in a broad energy range, providing valuable information for indirect DM search, and study acceleration and propagation mechanisms.

Integration and test of the flight module are now underway in Tsukuba Space Center.

The CALET project has been approved for flight by HTV-5 to the Japanese Experiment Module (Kibo), to be launched by JFY 2014.

The expected mission time is 2 (approved) to 5 (possible) years.

BACKUP SLIDES

Detection of high-energy gamma rays

Performance for Gamma-ray Detection

Energy Range	4 GeV-10 TeV	
Effective Area	600 cm² (10GeV)	
Field-of-View	2 sr	
Geometrical Factor	1100 cm² <i>sr</i>	
Energy Resolution	3% (10 GeV)	
Angular Resolution	0.35° (106eV)	
Pointing Accuracy	6'	
Point Source Sensitivity	8 x 10 ⁻⁹ cm ⁻² s ⁻¹	
Observation Period (planned)	2014-2019 (5 years)	

117

104

78

52

30

13

Simulation of Galactic Diffuse Radiation

~25,000 photons are expected per one year

*)~7	,000	pho	otons	fre	om e	xtro	Igala	ctic	
		000	0.0			1.9				31

Simulation of point source observations in one year

Vela: ~ 300 photons above 5 GeV

Geminga: ~150 photons above 5 GeV Crab: ~ 100 photons above 5 GeV

Broad energy range (from few keV X-rays to GeV-TeV gamma-rays): long-duration GRBs, short-duration GRBs, X-ray flashes and GeV GRBs. Sensitivity of CGBM: ~10⁻⁸ ergs cm⁻² s⁻¹ (1-1000 keV) for 50 s long bursts.

Parameters	CAL	CGBM
Energy range	1 GeV - 10 TeV (GRB trigger)	HXM: 7 keV - 1 MeV (goal 3 keV - 3 MeV) SGM: 100 keV - 20 MeV (goal 30 keV - 30 MeV)
Energy resolution	3% (10 GeV)	HXM: ~3% (662 keV) SGM: ~15% (662 keV)
Effective area	~600 cm ² (10 GeV)	68 cm ² (2 HXMs), 82 cm ² (SGM)
Angular resolution	2.5° (1 GeV) 0.35° (10 GeV)	-
Field of view	~45° (~2 sr)	~3 sr (HXM), ~4π sr (SGM)
Dead time	2 ms	40 µs
Time resolution	62.5 μs	GRB trigger: 62.5 µs (event-by-event data) Normal mode: 125 ms with 8 ch, 4 s with 512 ch (histogram data)

Chracteristics of HXM and SGM in CGBM

	HXM	SGM
Detector (Crystal)	LaBr ₃ (Ce)	BGO
Number of Detector	2	1
Diameter (mm)	66(front), 79(rear)	102
Thickness(mm)	12.7	76
Geometrical Area (cm ²)	68(front),97(rear)*	82
Energy Range (keV)	7-1000	100-20000
Energy Resolution@662 keV	$\sim 4\%$	$\sim \! 15\%$
Field of View (FOV)	$\sim \pi$ str.	$\sim 4\pi$ str.

* two detectors are combined.

CALET launching procedure

CALET Science Data Flow

* Raw data will be provided based on the agreement between JAXA/Waseda Univ.

2013/11/18

Simulated e⁺+e⁻ spectrum for 2yr from Kaluza-Klein dark matter annihilations with m=620GeV and BF=40

Simulated e⁺+e⁻ spectrum for 2yr from decaying dark matter for a decay channel of D.M.-> I⁺I⁻v with m=2.5TeV and τ = 2.1x10²⁶s

=> CALET has a potential to detect electron + positron signals from dark matter annihilation/decay

Simulated gamma-ray line spectrum for 2yr from neutralino annihilation toward the Galactic center with m=820GeV, a Moore halo profile, and BF=5

Simulated extra-galactic gamma-ray spectrum for 2yr from decaying dark matter for a decay channel of D.M.-> I⁺I⁻ v with m=2.5TeV and τ = 2.1x10²⁶s

=> CALET has a potential to detect gamma-ray signals from dark matter annihilation/decay with the excellent energy resolution of 2%

Paolo Maestro

Nearby sources of electrons in TeV region

>1 TeV electron sources: T<10⁵ years (young) Distance < 1 kpc (nearby) Signatures in the electron spectrum: spectral features and anisotropy

Nearby sources of electrons in TeV region

>1 TeV electron sources: T<10⁵ years (young) Distance < 1 kpc (nearby) Signatures in the electron spectrum: spectral features and anisotropy

