China's Future Space High Energy Astrophysical Missions

Shuang-Nan Zhang zhangsn@ihep.ac.cn Center for Particle Astrophysics Institute of High Energy Physics Chinese Academy of Sciences

China's Future Space Astronomy Missions

China's Future Space Astronomy Missions

China's Future SHE Astrophysics Missions

Hard X-ray Modulation Telescope (HXMT)

➤Main scientific objectives (1-250 keV energy band)
✓Scan monitoring of the Galactic plane → transients watch dog: need ground follow-up observations.

✓Pointed observations → Black hole and neutron star x-ray binaries: need coordinated ground observations

Satellite Facts:

- ✓ Mass: ~2800 kg
- ✓ Orbit: 550 km, 43°
- ✓ Lifetime: 4 yrs

Officially approved in March 2011 Entered Phase-B (Engineering model phase) in 12/2011 Now finishing the construction of the qualification models Planned launch time: Dec. 2015

2014-5-20

HXMT Payloads

High Energg (HE): Nal/Csl, 20-250 keV, 5000 cm²

Medium (ME): Si-PIN,5-30 keV, 952 cm²

Low Energy (LE): SCD,1-15 keV, 384 cm²

HXMT Sensitivity

Current status of HXMT

Gamma-ray burst polarization : POLAR

- China- Switzerland
 collaboration
 - Energy range: 50-350 keV;
 FOV of POLAR: ~¹/₂ sky
- Onboard China's spacelab TG-2: launch time Dec. 2015
- Main science: GRB jet & central engine; tests of quantum gravity theories

POLAR Qualification Modules

2014-5-20

POLAR ESRF Calibration

Results agree with Monte-Carlo simulations

POLAR capability

DAMPE: launch in ~2015

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement \implies high energy γ -ray, electron and CR telescope

Vibration Test

Plastic Hodoscope

BGO Cal.

Neutron Detector

2014-5-20

Energy Resolution

Energy Resolution can reach 0.79%@ 250 GeV

Gamma-ray Sensitivity

DAMPE for gamma-ray line observations

DAMPE will confirm or deny the "suspicious" dark matter annihilation line of Fermi with high significance

SVOM: ~2020 launch

Space instrument performances

	Spectral band	Field of View	Allocation Accuracy	GRBs/yr (Dect. Rate)
GRM	30 keV-5 MeV	2 sr	2-5 deg	~80
ECLAIRs	4-250 keV	2 sr	10 arcmin	~70
MXT	0.3-5 keV	65× 65 arcmin	30 arcsec	~90%
VT	400-650 nm 650-950 nm	26 × 26 arcsec	1 arcsec	~80%

X-ray Timing and Polarization (XTP) mission

- Science: 1-singularity (BH); 2-stars (NS and Magnetar); 3extremes (gravity, density, magnetism)
 - Precise light curve + energy spectrum: Matter under extreme conditions, NS state equation, BH parameters
 - Polarization of X-ray: BH spin, nature of magnetars, pulsar radiation mechanism...
- Instrument Design Goal
 - The most sensitive light curve with good energy resolution and polarization at 1-30 keV → from faint Xray binaries to bright AGNs

XTP satellite

Satellite fitting in launcher

XTP payload layout

Slumped glass mirror

Before D263 & Mandrel

After Mirror & Mandrel

T= 200µm L=200mm Material: D263

Surface roughness: 0.3 nm \rightarrow arcmin angular resolution

Effective Areas

XTP Polarimetry Sensitivity

P = $15\% \pm 5\%$ (Novick et al. 1972) P = $19\% \pm 1\%$ (Weisskopf et al. 1976, 1978)

XTP Polarimetry: GRS 1915+105

Einstein Probe (EP)

Lobster-eye optics

Selected for Phase 0/A in 2013, expected launch in 2020-2025.

EM counterparts of GW explosions

Black holes of all scales in the universe

Capability of Einstein Probe

China's Space Station Program

- Three phases
 - 1st phase: so far 10 Chinese astronauts have been sent out and returned back successfully; many space science research has been done. Completed successfully.
 - 2nd phase: spacelab: docking of 3 spaceships with astronauts delivering and installing scientific instruments. 1st launch on Sept. 29, 2011.
 - 3rd phase: spacestation: several large experimental cabins with astronauts working onboard constantly. 1st launch ~2020.

International collaborations on space science research have been and will continue to be an important part.

Cosmic Lighthouse Program: China's Space Station

Candidate Projects	Main Science Topics		
Large scale imaging and spectroscopic survey facility (approved)	Dark energy, dark matter distribution, large scale structure of the universe		
HERD (concept)	Dark matter properties, cosmic ray composition, high energy electron and gamma-rays		
Soft X-ray-UV all sky monitor (?)	X-ray binaries, supernovae, gamma-ray bursts, active galactic nuclei, tidal disruption of stars by supermassive black holes		
X-ray polarimeter (?)	Black holes, neutron stars, accretion disks, supernova remnants		
Galactic warm-hot gas spectroscopic mapper (?)	The Milky Way, interstellar medium, missing baryons in the Universe		
High sensitivity solar high energy detector (?)	Solar flares, high energy particle acceleration mechanism, space weather		
Infrared spectroscopic survey telescope (?)	Stars, galaxies, active galactic nuclei		

background

He

Gamma-ray

electron

E and

Dark matter particle-

2014-5-20

proton

HERD: High Energy cosmic-Radiation Detector

Science goals	Mission requirements		
Dark matter search	R1: Better statistical measurements of e/γ between 100 GeV to 10 TeV		
Origin of Galactic Cosmic rays	R2: Better spectral and composition measurements of CRs between 300 GeV to PeV* with a large geometrical factor		

Secondary science: monitoring of GRBs, microquasars, Blazars and other transients.

Baseline design of HERD

Characteristics of all components

	type	size	Χ0,λ	unit	main functions
tracker (top)	Si strips	70 cm × 70 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
tracker 4 sides	Si strips	$65~{ m cm} imes$ 50 cm		3 х-у	Nucleon Track Charge
CALO	~10K LYSO cubes	$\begin{array}{c} \text{63 cm} imes \\ \text{63 cm} imes \\ \text{63 cm} \end{array}$	55 X0 3 λ	$3 \text{ cm} \times$ $3 \text{ cm} \times$ 3 cm	e/γ energy nucleon energy e/p separation

Total detector weight: ~2000 kg

Expected performance of HERD

γ/e energy range (CALO)	tens of GeV-10TeV
nucleon energy range (CALO)	up to PeV
γ/e angular resol. (top Si-strips)	0.1°
nucleon charge resol. (all Si-strips)	0.1-0.15 c.u
γ/e energy resolution (CALO)	<1%@200GeV
proton energy resolution (CALO)	20%
e/p separation power (CALO)	<10 ⁻⁵
electron eff. geometrical factor (CALO)	3.7 m ² sr@600 GeV
proton eff. geometrical factor (CALO)	2.6 m ² sr@400 TeV

Simulation results: energy resolutions

Electron < 1%; Proton: ~20% Essential for spectral features!

HERD Eff. Geometrical Factor: CALO

Gamma-ray Sky Survey Sensitivity

HERD sensitivity to gamma-ray line

DM annihilation line of HERD

Expected HERD Proton and He Spectra

Expected HERD Spectra of C and Fe

good economy + international collaboration

48/48