TA Recent Results and Prospects VULCANO-2014

Pierre Sokolsky University of Utah

Outline

- Ultra-High Energy Cosmic Rays
- The TA detector
- Spectrum
- Composition New result from hybrid analysis
- Composition New preliminary result on spectrum from "imaging Cherenkov" mode.
- Anisotropy New result on evidence for hotspot If time permits:
- TARA Bistatic radar detection of Cosmic Rays
- NICHE Cherenkov array for low energy studies

Why UHECR?

- Highest energy particles in Universe 10²⁰ eV
 ~ 10 Joules/nucleon rate ~ 1/km²/century
- Acceleration mechanism and sources unknown
- Interactions with 2.7 deg BB background characteristic signature (GZK cutoff)
- Elucidate by studying spectrum, composition and anisotropy from 10¹⁷ to 10²⁰ eV.

UHECR nature and origin

- Are they predominantly galactic or extra-galactic?
- What is the acceleration mechanism?
 SN, galactic wind, AGN jets, decays of superheavy primordial objects
- What is the composition of the cosmic rays?
- What is the effect of propagation thru space ?
 Interactions with relic BB radiation, starlight, dust, etc.; effect of magnetic fields on trajectories

Reasonable agreement considering energy scale uncertainties –many structures imply variety of sources and acceleration mechanisms

Are things simpler at the highest energies?

• Propagation effects are striking

for distant sources

- Cut off due to relic BB photons (GZK).
- Simplification of composition to protons
- and Fe
- Effect of magnetic fields is minimized
- protons should point back to their sources

How to detect very rare events? Utilize secondary interations

The Hybrid Concept

Surface Detector Array

lateral distribution, 100% duty cycle

Air Fluorescence Detectors

Longitudinal profile, calorimetric energy measurement, ~15% duty cycle

accurate energy and direction measurement

mass composition studies in a complementary way

Typical HiRes Stereo Event

- ~2×10¹⁹ eV event
- (3× vertical scale)

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a,
S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i},
K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^j,
R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,o}, C. C. H. Jui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashev^q, K. Kasahara^r, H. Kawai^s,
S. Kawakamiⁱ, S. Kawana^m, K. Kawata^h, E. Kido^h, H. B. Kim^d, J. H. Kim^a, J. H. Kim^d, S. Kitamura^b, Y. Kitamura^b,
V. Kuzmin^q, Y. J. Kwon^g, J. Lan^a, J.P. Lundquist^a, K. Machida^l, K. Martensⁱ, T. Matsuda^t, T. Matsuyama^j,
J. N. Matthews^a, M. Minamino^j, K. Mukai^l, I. Myers^a, K. Nagasawa^m, S. Nagatakiⁿ, T. Nakamura^u, H. Nanpei^j,
T. Nonaka^h, A. Nozato^f, S. Ogio^j, S. Oh^c, M. Ohnishi^h, H. Ohoka^h, K. Oki^h, T. Okuda^v, M. Onoⁿ, A. Oshima^j,
S. Ozawa^r, I. H. Park^w, M. S. Pshirkov^{*}, D. C. Rodriguez^a, G. Rubtsov^q, D. Ryu^v, H. Sagawa^h, N. Sakurai^j,
A. L. Sampson^a, L. M. Scott^o, P. D. Shah^a, F. Shibata¹, T. Shibata^h, H. Shimodaira^h, B. K. Shin^d, T. Shirahama^m,
J. D. Smith^a, P. Sokolsky^a, R. W. Springer^a, B. T. Stokes^a, S. R. Stratton^{a,o}, T. A. Stroman^a, M. Takamura^e,
A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^{aa}, M. Tanaka^t, S. B. Thomas^a,
G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^h,
Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c,
K. Yashiro^c, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinge^a, Z. Zundel^a

^aUniversity of Utah, ^aTokyo Institute of Technology, ^cEwha Womans University, ^aHanyang University, ^cTokyo University of Science, ^jKinki University, ^aYonsei University, ^bInstitute for Cosmic Ray Research, Univ. of Tokyo, ^jKruli Institute for the Rhysics and Mathematics of the Universe (WRI). Todai Institutes for Advanced Study, the University of Tokyo.

¹Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ¹Osaka City University, ^{*}Kanagawa University, ¹Univ. of Yamanashi, ^{an}Saitama University, ^{*}Astrophysical Big Bang Laboratory, RIKEN, ^aRutgers University, ^aTokyo City University, ^aInstitute for Nuclear Research of the Russian Academy of Sciences, ^cWaseda University, ^aChiba University, ^aInstitute of Particle and Nuclear Studies, KEK, ^aKochi University, ^aRitsumeikan University, ^aSungkyunkwan University, ^aUniversite Libre de Bruxelles, ^aChungnam National University, ^aEarthquake Research Institute, University of Tokyo, ^aHiroshima City University, ^aAdvanced Science Institute, RIKEN, ^aNational Institute of Radiological Science, ^{ad}Ehime University ⁶

TA shower analysis with FD

SD/FD Energy Scale

First estimate of SD Energy: MC lookup table

 $E_{SD} = E'_{SD}/1.27$

Spectrum overview SD, Monocular and Hybrid Spectra

Comparison with other experiments and significance

Status of GZK Cutoff

- Now observed with multiple methods
- HiRes Fluorescence 5 sigma
- PAO Cherenkov water + Fluorescence > 20sig
- TA Plastic scintillator + Fluroescence > 5 sig
- Energy within 20% of each other within systematics
- TA SD is 1.27 x higher energy than FD. Explains AGASA normalization.
- What is the composition?

GZK-suppression clearly exists But ...

- Is this suppression due to onset of inelastic pion photoproduction (protons), nuclear spallation on relic microwave background, or a reflection of the injection spectrum of the sources?
- Composition of cosmic rays needs to be determined.

Composition

- Simulate p, CNO, Fe interactions using: Hadronic models QGS-Jet, Sybill, etc..
- Generate simulated data Corsika + detector simulator
- Assume a mass composition
- Compare simulated data to real data
- Xmax distribution, mean and fluctuations
- All carry composition information

Composition Strategy

- Because the Xmax technique is subject to significant experimental and theoretical model systematics, measurement in various modes is an important check.
- Compare HiRes (stereo), TA (stereo), TA MD (HiRes-like) + SD hybrid, TA BR+LR (new FD) + SD hybrid with results from PAO (FD + H2O Cherenkov)
- Here we present TA MD hybrid results.

Composition – Elongation Rate from Stereo measurements

Composition – North/South Difference?

Fig. 2. (X_{max}) measured by Auger and Yakutsk, together with the (X_{max}^{meas}) as measured by HiRes and TA. Data points are shifted to a common energy scale (text for details).

Summary of differences

- Elongation rate data is ~ consistent
- Interpretation in terms of composition different (acceptance issues?)
- Width in PAO changes from ~ 60 gm/cm2 < 6x10^18 to ~ 40 gm/cm2 > 6x10^18 eV. Not supported by HiRes stereo?
- Resolution and acceptance in Xmax are important issues

TA MD (HiRes-like) hybrid analysis

- FD + SD coincidences found by timing
- Use geometrical cuts after reconstruction similar to "HiRes cuts".
- Resultant data in good agreement with MC predictions from QGS-Jet II proton model – zenith, Rp, tracklength etc.
- Xmax resolution is energy dependent over 10¹⁸ to 10²⁰ eV range (50 – 15 gm/cm²)
- Train pattern recognition program to find "good resolution events" – clear rise and fall of signal
- After pattern recognition, Xmax resolution has much slower energy dependence (30 – 15 gm/cm²)

Xmax resolution "HiRes type cuts" and pattern rec. cuts

HiRes type cuts < 18.4

HiRes type cuts > 18.4

Even with poorer resolution, MC using proton QGS-Jet is "High Fidelity" in app measured Parameters.

HiRes type cuts

Pattern recognition cuts

Hadronic model dependence

Xmax distributions – pattern rec. cuts Preliminary

TALE is now taking data

10 TALE FDs:

- refurbished HiRes-II telescopes
- Installed and running.

TALE SDs

1

- 35 TALE SDs were deployed among 101 SDs.
- 16 in operation

Cherenkov Events in TALE

- Method being developed to study "dominantly Cherenkov light" events.
- Extend energy range to lower energies
- Study "second knee region" and composition
- Method under development: similar to imaging Cherenkov used by CTA -preliminary results

Reconstruction uses "profile constrained technique": profile+timing

- Corsika / IACT (arXiv:0808.2253 [astro-ph])
 - Full 3D MC shower development
 - Cerenkov photons production
 - Cerenkov photons detection (sphere surrounding telescope mirror)
- We can test our reconstruction code (and parameterizations) *against an external, "true MC" simulation*.

Aperture is composition dependent

Hillas Composition Model (H4a) ... (T. Gaisser 2012)

Preliminary spectrum

Comparison to other experiments

Local LSS as source of UHECR

FIG. 5.— Sky map of expected flux at E > 57 EeV (Galactic coordinates). The smearing angle is 6°. Letters indicate the nearby structures as follows: C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); Hy: Hydra supercluster (50 Mpc); N: Norma supercluster (65 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); UM: Ursa Major (20 Mpc); V: Virgo cluster (20 Mpc).

P. Tinyakov, oral, 103

Correlations with LSS

E > 10 EeV: 2130 ev.

E > 40 EeV: 132 ev.

E > 57 EeV: 52 ev.

White dots: TA data with zenith angle < 55

Gray patterns:

expected flux density from proton LSS 2MASS Galaxy Redshift catalog (XSCz)

Blue- isotropic, green -LSS

Search for intermediate scale enhancements (hot-spots)

- AGASA heritage choice of 20 degree integration circles
- Evaluate enhancements relative to background (Li-Ma N – sigma)
- Throw isotropic sets to estimate probability of
 N sigma by chance
- Data set uses looser cuts than LSS analysis: 72 events above 57 EeV. arXiv:1404.5890

Events > 57 integrated over 20 degree circles and Li-Ma significance

R.A 146.7 deg, dec 43.2 deg, 5.1 sigma

Distribution of isotropic distributions

Autocorrelation Probability

Angular spread of "hot spot"

TA Upgrades

- TA x 4
- 3,000 km²
 - 500 SD's, 2 km spacing
 - 1 new FD (HiRes refurbished)
- Proposals fall 2013
- Anisotropy: 20 TA-SD years by 2019

Conclusions (Physics)

- GZK cutoff confirmed by TA at > 5 sigma level with AGASA-like SD array calibrated with FD.
- Composition looks light, but detailed comparisons with PAO results in process.
- Interesting ~3 sigma correlation at highest energies with LSS within ~ 100 Mpc.
 Indications of a "hot spot" off the Supergalactic plane emerging.

Prospect (optimistic)

- If hot spot is confirmed at 5 sigma (~ 2-3 years), North-South universality may not be valid – impact on composition at UHE
- TAx4 will allow much more precise determination of location and energy dependence of hot spot excess. Candidate sources?
- Joint TA/PAO anisotropy in progress global anisotropy. First attempts at multipole analysis. Emergence of a dipole component?

TARA (TA Radar)

J. Belz et al., oral 1192 I. Meyer et al., poster

 An R&D project to observe radar reflections form cosmic ray air showers

- TARA1.5
 - April 2011 to July 2012
 - 54.1 MHz @ 1.5 kW
- TARA40
 - Summer 2013~
 - 54.1 MHz @ 40 kW

T. Shibata, oral 507 Electron Light Source (ELS)

An image of data Measured with FD

- 40-MeV, 10⁹ electrons (typical)
- End-to-end FD energy calibration

Used to calibrate JEM-EUSO detector module

ELS analysis

Real data

- ELS
 - Energy/beam current from monitor
 - FADC counts from FD

MC data

- Shower generation
 - Geant4.9.5 or 4.9.6
- FD simulation
 - TA official software

Longitudinal distribution

Data/MC agreement: within 5%

Lateral distribution

NICHE project

- Non-Imaging CHErenkov Array (NICHE)
- TA/TALE extension to measure the the energy and composition (Xmax) of very-high energy cosmic rays
 - E = 10^{15.5} to 10¹⁷ eV
 - Proposed but not yet funded

TA/LMA: Lightning Mapping

- Cosmic rays may trigger lightning strikes.
- Lightning does emit air shower-like bursts of particles.
- Proposing to deploy lightning mapping array (LMA) at TA to study these phenomena.

Conclusions (projects)

- Major expansion of SD to TAx4 proposed.
- Full power TARA is now taking data
- ELS providing end-to-end calibration and valuable resource for radio/fluorescence and JRM-EUSO calibration
- Low energy extensions TALE currently in test data taking
- NICHE and TALMA in proposal/prototype stage

PAO Spectrum

Pattern recognition – triangle approximation

Training set – eye scan of all data and sample of p and Fe MC Define most sensitive "triangle" parameters Boolean decision tree to find successful candidates ~98% efficiency – apply to all MC data and real data Data and MC distributions in geometrical variables are in excellent agreement after pattern recognition cuts

Figure 9: Decision Tree Pictogram

Figure 10: Dimensional View of Two Branches

HiRes Xmax Fluctuation Study

Xmax resolution well understood

Below and Above 19.0

Pattern recognition cuts

Below and above 19.0

Data/MC comparisons – pattern rec.

Data/MC comparison -zenith

Below and Above 18.5

PAO Composition

X_{max} Distributions

p, Fe, 50:50

PAO elongation rate and fluctuation rms

Note: no bias expected for data so Prediction rails uncorrected HiRes/TA data should be shifted by ~20 gm/cm2 deeper if QGSJET p.

Xmax dist, cont.

Auger-TA Composition Working Group Development of TA-hybrid prediction model

Predictions for BR+LR hybrid

Reconstructed hybrid TA simulated Data for pure protons, PAO mix and Pure Iron, for both mean Xmax And RMS of Xmax distribution – including All acceptance and resolution effects.

TA hybrid will be able to cleanly Distinguish between these three hypotheses

TA hybrid comparison is expected In near future

TA Low Energy Extension (TALE)

- Study 10¹⁶ and 10¹⁷ eV decades in hybrid
- Astrophysics
 - End of "knee"
 - Second knee
 - Galactic-Extragalactic
 Transition
- High-energy physics: Crosssection measurements overlapping LHC

