

Search for Gamma-ray Spectral Lines with the *Fermi* Large Area Telescope and status of the 135 GeV feature

Andrea Albert (SLAC)

On Behalf of the Fermi-LAT Collaboration Vulcano Workshop May 20th, 2014

Disadvantage: low predicted counts (loop-suppressed)

- On board the Fermi Gamma-ray Space Telescope
 - Launched June 11, 2008
 - Started taking science data Aug 2008
 - 5 year mission minimum (goal is 10 years)
 - Mission extended at least through 2016

5/20/2014

to 300-500 Hz

High Energy Line Search Dataset

5 Regions of Interest

R3 (contracted NFW, no src masking) R16 (Einasto) R41 (NFW) R90 (Isothermal) R180 (DM Decay)

- PRD 88, 082002 (2013)
- Search for lines from 5 300 GeV using 3.7 years of data
- Use P7REP_CLEAN event selection
 - Reprocessed data with updated calorimeter calibration constants
 - Clean cuts are recommended for faint diffuse emission analysis
- Mask bright (>10 σ for E > 1 GeV) 2FGL sources

Effective Energy Dispersion Incorporates energy reconstruction quality (P_E) **Effective Area Corrections**

- Maximum likelihood fit at E_{γ} in sliding energy window ($\pm 6\sigma_E$)
 - Fit from 5 to 300 GeV
 - 0.5 σ_E steps (88 fit energies)
- n_{sig} , n_{bkg} , Γ_{bkg} free in fit
- c_{bkg} is given by normalization of background model
- Include P_E distributions for signal and background: w(P_E)
 - Take from data for each fit (entire ROI and energy fit window)

Systematic Effects in each ROI

- Uncertainties that affect the conversion from n_{sig} to $\Phi_{\gamma\gamma}$
 - E.g., exposure uncertainties
 - Do not affect fit significance
- Uncertainties that scale n_{sig}
 - E.g., modeling energy dispersion
 - Affect significance, but will not induce false signals

_	Quantity	Energy	R3	R16	R41	R90	R180
Γ	$\delta\epsilon/\epsilon$	$5 \mathrm{GeV}$	0.10	0.10	0.11	0.12	0.14
Ĺ	$\delta\epsilon/\epsilon$	$300~{\rm GeV}$	0.10	0.10	0.12	0.13	0.16
{	$\delta n_{sig}/n_{sig}$	All	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$
	δf	$5~{ m GeV}$	0.020	0.020	0.008	0.008	0.008
	δf	$50~{\rm GeV}$	0.024	0.024	0.015	0.015	0.015
	δf	$300 {\rm GeV}$	0.032	0.032	0.035	0.035	0.035

Systematic Effects in each ROI

- Uncertainties that affect the conversion from n_{sig} to $\Phi_{\gamma\gamma}$
 - E.g., exposure uncertainties
 - Do not affect fit significance
- Uncertainties that scale n_{sig}
 - E.g., modeling energy dispersion
 - Affect significance, but will not induce false signals
- Uncertainties that induce or mask a signal
 - Express as uncertainty in <u>fractional signal, δf</u> ——

	Quantity	Energy	R3	R16	R41	R90	R180
ſ	$\delta\epsilon/\epsilon$	$5~{ m GeV}$	0.10	0.10	0.11	0.12	0.14
٦	$\delta\epsilon/\epsilon$	$300~{\rm GeV}$	0.10	0.10	0.12	0.13	0.16
-{	$\delta n_{sig}/n_{sig}$	All	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$
٢	δf	$5~{ m GeV}$	0.020	0.020	0.008	0.008	0.008
-	δf	$50~{\rm GeV}$	0.024	0.024	0.015	0.015	0.015
L	δf	$300 {\rm GeV}$	0.032	0.032	0.035	0.035	0.035

$$TS = 2 {
m ln} rac{\mathcal{L}(n_{
m sig} = n_{
m sig, best})}{\mathcal{L}(n_{
m sig} = 0)} \quad m{s}_{
m local} = \sqrt{TS}$$

$$rightarrow f = rac{n_{
m sig}}{b_{
m eff}} \simeq rac{s_{
m local}^2}{n_{
m sig}}$$

- Fit with energy dispersion model that includes event-by-event energy recon. quality estimator P_F ("2D" model)
 - Expected 2D signal model to increase signif. of signals by ~15%

- Let width scale factor float in fit (while preserving shape)
- $s_{\sigma} = 0.32^{+0.22}_{-0.07} (95\% CL)$ $\Delta TS = 9.4$

- Feature in data is <u>much narrower</u> than expected energy resolution ($s_{\sigma}=1$)

- Line-like feature in the limb at 133 GeV (2.0 σ local signif) •
 - Appears when LAT is pointing at the Limb ($|\theta_r| < 52^\circ$)
 - Surprising since limb should be smooth power-law
 - S/N_{limb} ~14%, while S/N_{R3} ~61%
 - Limb feature not large enough to directly explain all the GC signal
 - Just f = 0.14 in GC (fewer events) would be ~0.8 σ
- Dips in efficiency (less stringent Transient cuts -> Clean cuts) below and above 133 GeV •
 - Appear to be related to CAL-TKR event direction agreement
 - Could be artificially sculpting the energy spectrum

PRD 88, 082002 (2013)

- Purpose:
 - To search for DM lines from 100 MeV to 10 GeV
 - This would constrain models of Gravitino decay ($\Psi_{3/2} \rightarrow v\gamma$) see Takayama & Yamaguchi (PhysLettB485:388-392, 2000)
 - Focus on Gravitinos in the $\mu\nu\text{SSM}$
 - » See Lopez-Fogliani & C. Muñoz (Phys.Rev.Lett. 97 (2006) 041801)
 K-Y. Choi, et.al. (JCAP 1003 (2010) 028) and
 - G. A. Gomez-Vargas et al. (JCAP02 (2012) 001)
- People:
 - LAT Collaboration: Andrea Albert, German GV et al
 - External: Carlos Munoz (U.A. Madrid), Michael Grefe (U.A. Madrid), & Christoph Weniger (GRAPPA, Amsterdam)
- Data:
 - P7 REP Clean, ZA < 100°
 - 239557447 < MET < 403509423 (5.2 years)</p>
 - Fit for lines from 100 MeV to 10 GeV
 - $\pm 2\sigma_{E}$ windows -> 56.5 MeV to 11.5 GeV

5/20/2014

Low Energy Line Search Region of Interest (ROI) Optimization

- Use Einasto Profile (α =0.17, ρ_{\odot} =0.4 GeV/cm³, R_{\odot} = 8.5 kpc)
- Optimize for annihilation $(\chi\chi \rightarrow \gamma\gamma)$ and decay $(\Psi_{3/2} \rightarrow v\gamma)$
 - Gravitino decay is the primary model we are testing, but wanted to expand scope to include annihilation too
- Use same ROI parameter definition as high-energy line paper
 - "ROI_{cen}" is the annihilation ROI; $|b| < 10^{\circ}$, $|l| < 10^{\circ}$
 - "ROI_{pol}" is the decay ROI ; $|b| > 60^{\circ}$

Low Energy Line Search This Analysis is Systematics Limited

local

 $n_{\rm sig}$

17

 $n_{
m sig}$

- Focus on systematics that appear at fixed fractional size (δf_{sys})
 - These will mask or induce false signals
- Below ~15 GeV our line search is systematics-limited
 - Fractional statistical uncertainty is $\delta f_{\text{stat}} \sim 1/\text{sqrt}(b_{\text{eff}})$
 - Compare to estimated systematic uncertainties ($\delta f_{sys} \leq 2\%$)
- Can estimate δf_{sys} by fitting for lines in control regions
 - Galactic Ridge (|L|>10°) $\delta f_{\rm sys}$ from Bkg modelling, A_{eff}, and Sources

Low Energy Line Search *f*_{sys} from Galactic Plane scans

- There are some common features likely from the effective area (Aeff)
- Displacement from 0 is mostly from Aeff, while spread is from bkg. modeling
- Larger systematic effect with wider windows (since power law approx. gets worse)

- Include nuisance parameter (n_{sys}) for systematically-induced line-like features
 - For each fit energy in each ROI we determine b_{eff}
 - We add a <u>Gaussian constraint on n_{sys} </u> to the likelihood fit with ($\sigma_{sys} = \delta f_{sys} * b_{eff}$, $\mu = 0$) to break the degeneracy between n_{sys} and n_{sig}
 - *f*_{sys} determined by control regions fits (i.e. off-center Galactic Ridge)
 - Will only be sensitive to detecting lines *above* f_{sys}
 - Will only detect a significant line if it is larger than the line-like features we see in the control regions
 - Similar technique used to incorporate J-factor systematic uncertainties in LAT Collaboration dSph analysis
 - Can be applied whenever accounting for systematic uncertainties is important

$$C(E, \vec{\alpha}) = \left((n_{sig} + n_{sys}) S(E, E_{\gamma}) + n_{bkg} B(E, \Gamma_{bkg}) \right) * G_{sys}$$

Gaussian constraint on n_{sys}
$$\sigma_{sys} = \delta f_{sys} * b_{eff} \quad G_{sys} = \frac{1}{\sigma_{sys} \sqrt{2\pi}} e^{-n_{sys}^2/2\sigma_{sys}^2}$$

- Search for spectral lines from 5--300 GeV in 5 ROIs
 - Use 3.7 year P7_REP_CLEAN dataset
 - Have set 95% CL $\Phi_{\gamma\gamma}$, $\langle \sigma v \rangle_{\gamma\gamma}$, and $\tau_{\gamma\gamma}$ limits
- Search for spectral lines from 100 MeV 10 GeV
 - Dominated by systematic uncertainties
 - Publication being prepared
- See a narrow residual near 133 GeV in the GC
 - Not (completely) an obvious systematically induced feature
 - Larger than expected systematic uncertainty
 - Limb feature cannot account for entire GC feature
 - Bkg fluctuation?
 - Much narrower than expected energy resolution
 - Decreasing with more data
- No globally significant lines detected by LAT Collaboration
- More data and study will improve future line analyses
 - More Limb data from pole stares and future ToOs
 - Pass 8 \rightarrow ~25% increase in A_{eff} and better (different) systematics

BACKUP SLIDES

gravitino relic density

can match the observed dark matter density tuning the If the gravitino is thermally produced its relic density reheating temperature after inflation.

- Improvements to LAT performance
 - Increased energy range
 - Increased effective area
 - Improved angular resolution
 - Better bkg rejection
 - New event classes
- Impacts for DM searches
 - Explore new high-mass parameter space
 - Increased flux sensitivity
 - Greater sensitivity to spatially extended sources
 - Better handle of systematics

$$f = \frac{n_{sig}}{b_{eff}}$$

signif
$$\approx \frac{n_{sig}}{\sqrt{b_{eff}}}$$

• P_E = "CTBBestEnergyProb"

- Probability that the reconstructed energy is within expected 68% containment
- Use triple gaussian model in 10 P_E bins
- Gives ~15% increase in statistical power
 - Similar to adding ~30% more data

• Use "all-sky" MC with diffuse + 2FGL and full orbit history

- Search in a 20x20 GC box (no source removal, 2D model)
- 135 GeV feature appears in low- θ events, but not in high- θ events

- 3.5 σ in θ <50⁰ events should scale to 2 σ for θ >50⁰ events

• Same behavior observed in the Limb feature

- No obvious feature at 133 GeV in the inverse ROIs
 - Would naively expect an instrumental effect to show up everywhere