

γ-ray emission and variability of the Crab Nebula above 100 MeV: theoretically challenging AGILE observations

Bruno Rossi Prize 2012

Marco Tavani and the AGILE team

Vulcano Workshop 2014 - Frontier Objects in Astrophysics and Particle Physics Carlotta Pittori AGILE Data Center at ASDC, on behalf of the AGILE Collaboration Vulcano, 18-24 May 2014

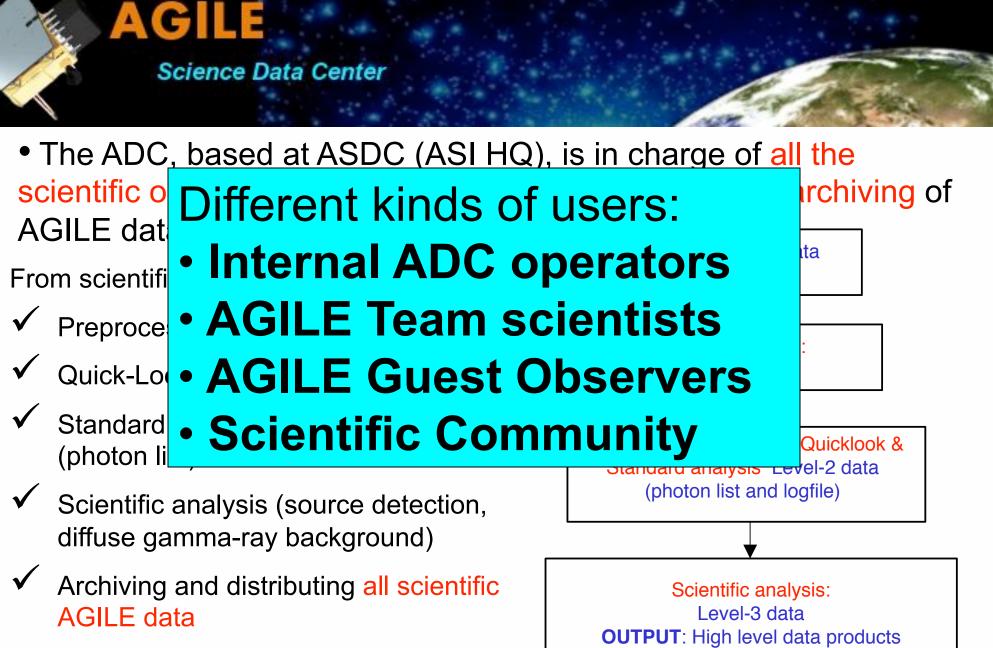
The AGILE Payload: the most compact instrument for high-energy astrophysics

GRID gamma-ray imager (30 MeV- 30 GeV)

• SuperAGILE hard X-ray imager (18-60 keV)

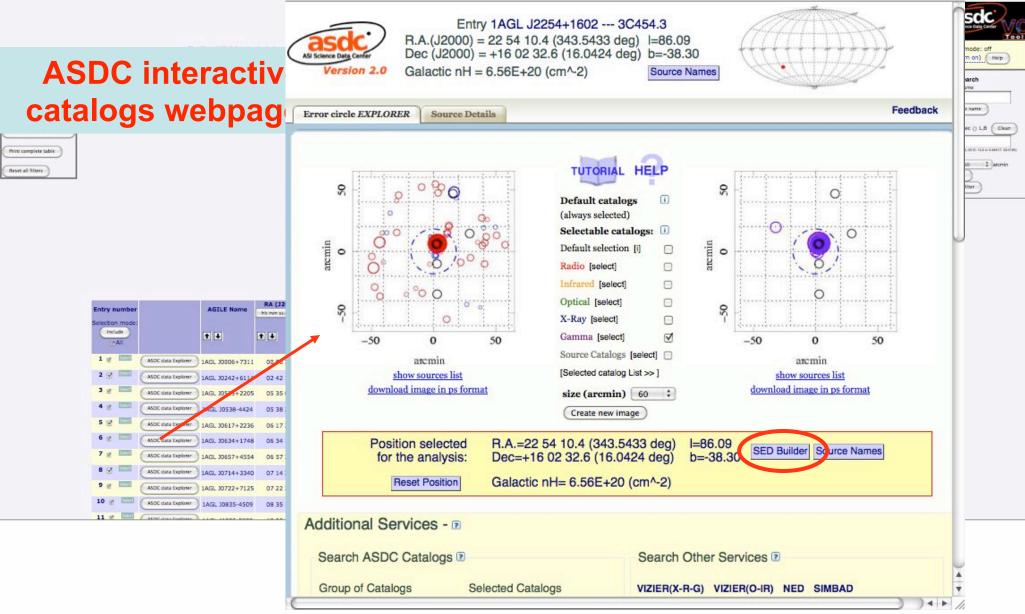
MCAL Minicalorimeter (0.3-100 MeV)

ASI Mission with INFN, INAF e CIFS participation



April 23, 2007: Launch!

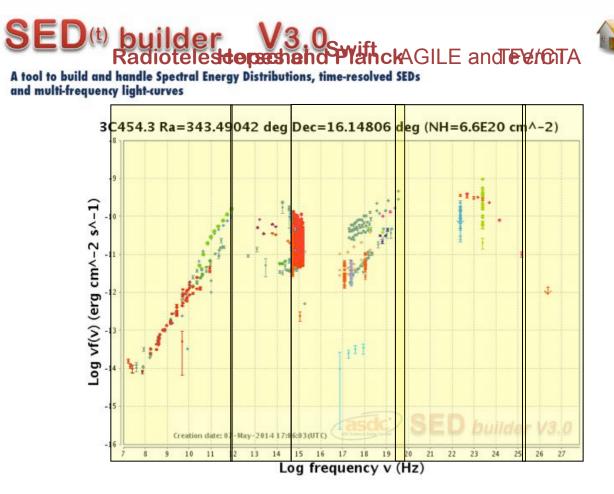
Equatorial orbit: 550 Km, < 3° inclination angle


(count maps, spectra, light curves...)

AGILE Total Intensity Map (E > 100 MeV) Pointing + Spinning (up to Dec 25, 2012)

"The First AGILE-GRID Catalog of High Confidence Gamma-Ray Sources" C. Pittori et al., A&A 506, 2009 (green circles, first year of operations)

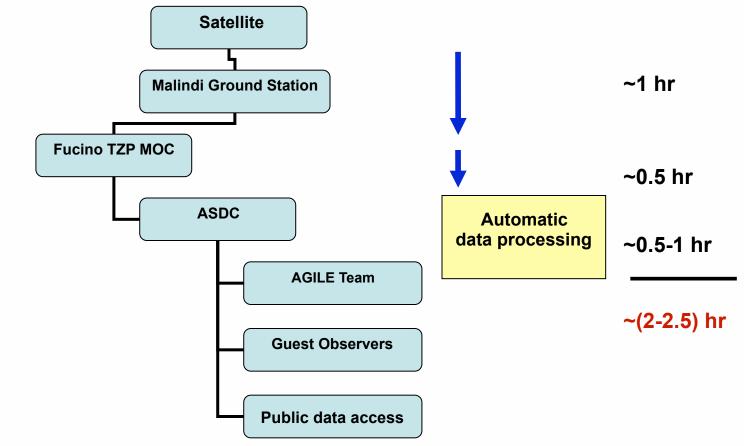
•



ASDC Data Explorer Tool

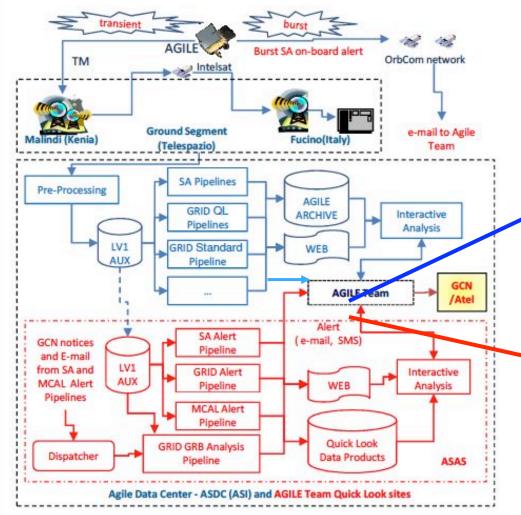
The new ASDC SED Builder

VO tools and TIME domain



Tutorial DAT	A EXPLORER			.)
er Data Exis	ting SEDs		asa	
	rch and build new S	SEDs	ASI Science Data Co	arfar
X Axis: Frequ	Jency (Hz)	Frame: Observe		
rior type. Defai	ult -			
Plot Type: Defai	Time Filtering	Update Plot Energy Filtering	Models	
			Models Plot options]
Input Data	Time Filtering	Energy Filtering		
Input Data Fit Functions	Time Filtering Templates Export	Energy Filtering Instr Sensitivity		Нар
Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio	Time Filtering Templates Export	Energy Filtering Instr Sensitivity VO Tools	Plot options	Нер
Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio Infrared	Time Filtering Templates Export	Energy Filtering Instr Sensitivity VO Tools	Plot options	Hap
Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio Infrared Optical UV	Time Filtering Templates Export	Energy Filtering Instr Sensitivity VO Tools	Plot options	Help
Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio Infrared Optical UV Soft X Ray	Time Filtering Templates Export	Energy Filtering Instr Sensitivity VO Tools	Plot options	Нер
Input Data Fit Functions Existing SEDs SDC Catalogs Name Radio Infrared Optical UV	Time Filtering Templates Export	Energy Filtering Instr Sensitivity VO Tools	Plot options	Hap

External Catalogs


Name			Credits	Search	_	Options	
2MASS	1	-	0			vsu	1
Catalina RTS	1	*	0			vsu	Ŧ
NED	R	-		3C454.3	- Ø	vsu	1

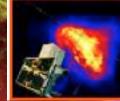
AGILE: "very fast" Ground Segment (with contained costs)

Record for a gamma-ray mission!

Selected alerts sent via email, sms

abel:ag	ile-daily-report		Search M	ail S	learch the W	Web Shew search outcome	
			The lab	el "AGI	LE Daily Re	leport" has been removed from the conversation. Learn more Undo	
0.	Remove label Spam	Delete h	Nove to + L	abels +	More +	C 1-50 of 1931	•
0	no_reply	AG	LE Delly Report	Index	[gridalert]	rt] AGILE Daily Report 11/12/2011 (ok) - AGILE Daily Report 11/12/2011 (MJD:55906) ## ### FM Filter	10:12 :
0	no_reply	AG	LE Daily Report	21004	[gridalent]	AGILE Daily Report Global Proc. 11/12/2011 (ok) - AGILE Daily Report Global Proc. 11/12/2011 (MJD:559	9:49
	no_reply	AGI	LE Daily Report	Index	[gridalen]	() AGILE Daily Report Multi2 Results 10/12/2011 noon (ok) - AGILE Daily Report Multi2 Results 10/12/2011 i	Dec
0	no_reply	AG	LE Daily Report	Intex	[gridalert]	() AGILE Daily Report Global Proc. 10/12/2011 noon (ok) - AGILE Daily Report Global Proc. 10/12/2011 noo	Dec
0	no_reply	AGO	LE Daily Report	2nbox	[gridalert]	() AGILE Daily Report Multi2 Results 10/12/2011 (ok) - AGILE Daily Report Multi2 Results 10/12/2011 (MJD:	Dec
0	no_reply	AG	LE Daily Report	31box	[gridalert]	() AGILE Daily Report 10/12/2011 (ok) - AGILE Daily Report 10/12/2011 (MJD:55905) ## ### FM Filter	Dec
0	no_reply	AGI	LE Daily Report	21box	[gridalen]	() AGILE Daily Report Global Proc. 10/12/2011 (ok) - AGILE Daily Report Global Proc. 10/12/2011 (MJD:559	Dec
0	no_reply	ACI	LE Delly Report	2nbox	[gridalert]	() AGILE Daily Report Global Proc. 09/12/2011 noon (ok) - AGILE Daily Report Global Proc. 09/12/2011 noo	De
0	no_reply	AGI	LE Daily Report	21004	[gridalent]	() AGILE Daily Report Multi2 Results 09/12/2011 (ok) - AGILE Daily Report Multi2 Results 09/12/2011 (MJD:	De
0	no_reply	AGI	LE Daily Report	2 bibles	[gridalen]	() AGILE Daily Report 09/12/2011 (ok) - AGILE Daily Report 09/12/2011 (MJD:55904) WI WWI FM Filter	De
0	no_reply	AD	LE Cally Report	3nbox	[gridalen]	AGILE Daily Report Global Proc. 09/12/2011 (ok) - AGILE Daily Report Global Proc. 09/12/2011 (MJD:556	De
0	no_reply	MGD	LE Daily Report	3nbox	[gridalen]	AGILE Daily Report Multi2 Results 08/12/2011 noon (ok) - AGILE Daily Report Multi2 Results 08/12/2011 (De
	no_reply	AGI	LE Daily Report	Interv	[gridalert]	AGILE Daily Report Global Proc. 08/12/2011 noon (ok) - AGILE Daily Report Global Proc. 08/12/2011 noo	De
0	no_reply	AGI	LE Delly Report	2rbox	[gridalent]	AGILE Daily Report Multi2 Results 08/12/2011 (ok) - AGILE Daily Report Multi2 Results 08/12/2011 (MJD:	De
0	no_reply	AGO	LE Daily Report	3nbox	[gridalent]	() AGILE Daily Report 08/12/2011 (ok) - AGILE Daily Report 08/12/2011 (MJD:55903) ## ### FM Filter	De
0	no_reply	AGI	LE Gally Report	Index	[gridalen]	AGILE Daily Report Global Proc. 08/12/2011 (ok) - AGILE Daily Report Global Proc. 08/12/2011 (MJD:556	De
0	no_reply	AG	LE Daily Report	21box	[gridalent]	AGILE Daily Report Global Proc. 07/12/2011 noon (ok) - AGILE Daily Report Global Proc. 07/12/2011 noo	De
0	no_reply	AGI	LE Daily Report	2rbox	[gridalent]	AGILE Daily Report Multi2 Results 07/12/2011 (ok) - AGILE Daily Report Multi2 Results 07/12/2011 (MJD:	De
0	no_reply	AG	LE Daily Report	Inbox	[gridalent]	() AGILE Daily Report 07/12/2011 (ok) - AGILE Daily Report 07/12/2011 (MJD:55902) ## ### FM Filter	De
0	no_reply	AGI	LÉ Delly Report	3rbox	[gridalent]	AGILE Daily Report Global Proc. 07/12/2011 (ok) - AGILE Daily Report Global Proc. 07/12/2011 (MJD:558	De
0	no_reply	AGO	LE Daily Report	Drbox	[gridalent]	() AGILE Daily Report Global Proc. 06/12/2011 noon (ok) - AGILE Daily Report Global Proc. 06/12/2011 noo	De
0	no_reply	AGO	LE Daily Report	Inbox	[gridalen]	() AGILE Daily Report Multi2 Results 06/12/2011 (ok) - AGILE Daily Report Multi2 Results 06/12/2011 (MJD:	De

Daily reports on a 48h time scale (sent twice a day) FAST


Contact-by-contact alerts on a 48h time scale (sent every ~100 min) VERY FAST

labeligr	id-alert	Search	Mail	Search the We	feb Show search options Create a filter	
				Gmail's	getting a new look soon. Learn more Dismiss	
0.	Remove label Spam Delete	Move to •	Labels •	More *	C 1-50 of 47035	4 🕨
10	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEV	/EL 4.08 185.7+/-79.5 (297.5, 19.9, 165) - 12 - FM3.119_2.SPOT5_100 4.08 297.517 19.9021 off axis	2:28 am
10	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.09 493.7+/-202.9 (151.7, -48.9, 60) - 34 - FM3.119_2.SPOT5_10 4.09 151.732 -48.9168 off axis	Dec 10
100	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	EL 4.53 193.9+/-75.0 (71.2, 26.3, 178) - BZQJ1801+4404 - FM3.119_2 4.53 71.1847 28.2573 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.08 177.3+/-76.0 (223.7, -67.4, 150) - BZBJ0235-2938 - FM3.119 4.08 223.689 -67.3961 off axis	Dec 10
0	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEV	/EL 4.02 325.4+/-128.4 (124.7, -5.2, 124) - 29 - FM3.119_2.SPOT5_10 4.02 124.685 -5.21243 off axis	Dec 10
0	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.59 652.9+/-229.0 (137.9, -33.9, 63) - J0144.5+2709 - FM3.119 4.59 137.945 -33.8679 off axis 3	Dec 10
101	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEVI	/EL 4.33 549.0+/-214.9 (151.7, -48.9, 59) - 34 - FM3.119_2.8POT5_10 4.33 151.732 -48.9168 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEV	/EL 4.13 122.3+/-53.0 (79.0, 1.6, 230) - 1AGL_J2022+4032 - FM3.119 4.13 79.0172 1.57454 off axis	Dec 10
101	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	/EL 4.44 619.0+/-231.5 (151.8, -48.9, 59) - 33 - FM3.119_2.SPOT5_10 4.44 151.753 -48.9366 off axis	Dec 10
101	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	/EL 4.75 715.0+/-250.2 (137.8, -33.3, 61) - BZQJ0151+2744 - FM3.119 4.75 137.777 -33.3226 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	EL 4.42 195.7+/-76.6 (71.2, 26.3, 175) - BZQJ1801+4404 - FM3.119_2 4.42 71.1797 28.2511 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEV	/EL 4.17 200.1+/-83.5 (223.6, -67.4, 149) - BZBJ0235-2938 - FM3.119 4.17 223.641 -67.4126 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.07 184.9+/-76.6 (71.4, 25.9, 490) - BZBJ1811+4416 - FM3.119_2 4.07 71.4071 25.8768 off axis	Dec 10
101	Utente GRID1 BUILD17	GRID ALERT	(gridalert)	ALERT LEV	EL 4.7 662.7+/-230.0 (137.8, -33.3, 67) - J0144.5+2709 - FM3.119_2 4.70 137.771 -33.3317 off axis 3	Dec 10
00	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	/EL 4.38 558.6+/-211.5 (151.8, -48.9, 64) - 33 - FM3.119_2.SPOT5_10 4.38 151.753 -48.9358 off axis	Dec 10
01	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	EL 4.34 183.6+/-72.9 (71.2, 26.2, 188) - BZQJ1801+4404 - FM3.119_2 4.34 71.1877 26.1827 off axis	Dec 10
0	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	/EL 4.04 180.2+/-76.5 (223.6, -67.4, 164) - BZBJ0235-2938 - FM3.119 4.04 223.848 -67.4144 off axis	Dec 10
	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.18 190.5+/-75.2 (71.5, 25.8, 549) - BZBJ1811+4416 - FM3.119_2 4.18 71.4815 25.7513 off axis	Dec 10
10 1	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEVI	/EL 4.0 175.5+/-72.7 (71.3, 26.0, 527) - BZBJ1811+4416 - FM3.119_2 4.00 71.2924 25.9978 off axis :	Dec 10
10:	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.25 527.4+/-205.8 (151.7, -48.9, 64) - 32 - FM3.119_2.SPOT5_10 4.25 151.745 -48.9242 off axis	Dec 10
0	Utente GRID1 BUILD17	GAID ALERT	(gridalert)	ALERT LEV	/EL 4.01 180.2+/-76.9 (223.6, -67.4, 163) - BZBJ0235-2938 - FM3.119 4.01 223.649 -67.4149 off axis	Dec 10
10	Utente GRID1 BUILD17	GRID ALERT	[gridalert]	ALERT LEV	/EL 4.14 502.0+/-200.2 (151.8, -48.9, 63) - 32 - FM3.119_2.SPOT5_10 4.14 151.751 -48.9267 off axis	Dec 10

(Figure adapted from M. Trifoglio et al.)

New: App for mobile devices!

The variable Crab Nebula!

Bruno Rossi Prize 2012

Marco Tavani and the AGILE team

Tavani et al., Science 331 (2011)

AGILE: 7th year in orbit

• AGILI entire resoluti

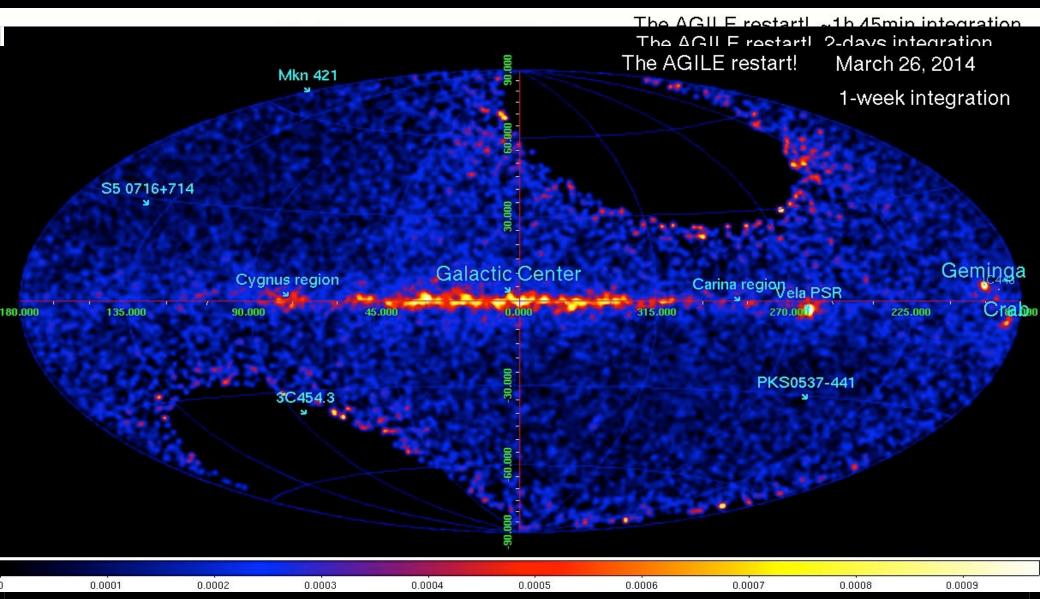
- AGIL gamma
- > 356
- Poi spinnii
- Very
- Gues 4 AS Cycl Cycl

AGILE "WIII" GO ON To continue to unveil the secrets of the cosmos

March 26, 2014: AGILE OPERATIONS EXTENDED FOR AT LEAST ANOTHER YEAR!

1 PUOIDW

Huse August


of the ngular

of its

and

The AGILE restart: data acquisition animation

(1 day final integration, the 2d and 1week)

UNEXPECTED DISCOVERY FROM THE γ -RAY SKY:

AGILE DISCOVERY OF THE CRAB NEBULA VARIABILITY IN γ -RAYS

Tavani et al., <u>Science</u>, 331, 736 (2011)

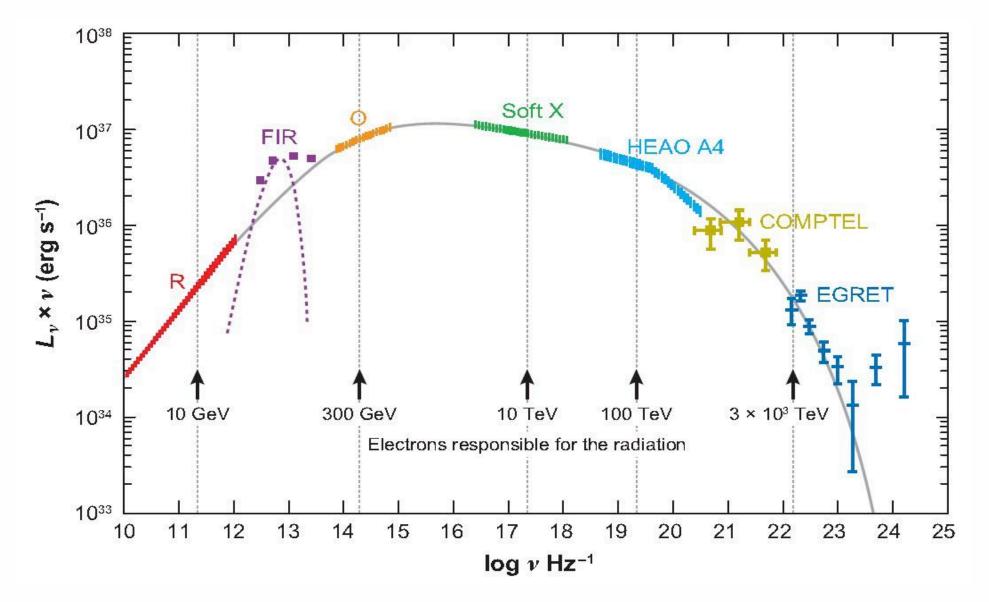
Fermi confirmation:

Abdo et al., <u>Science</u>, 331, 739 (2011)

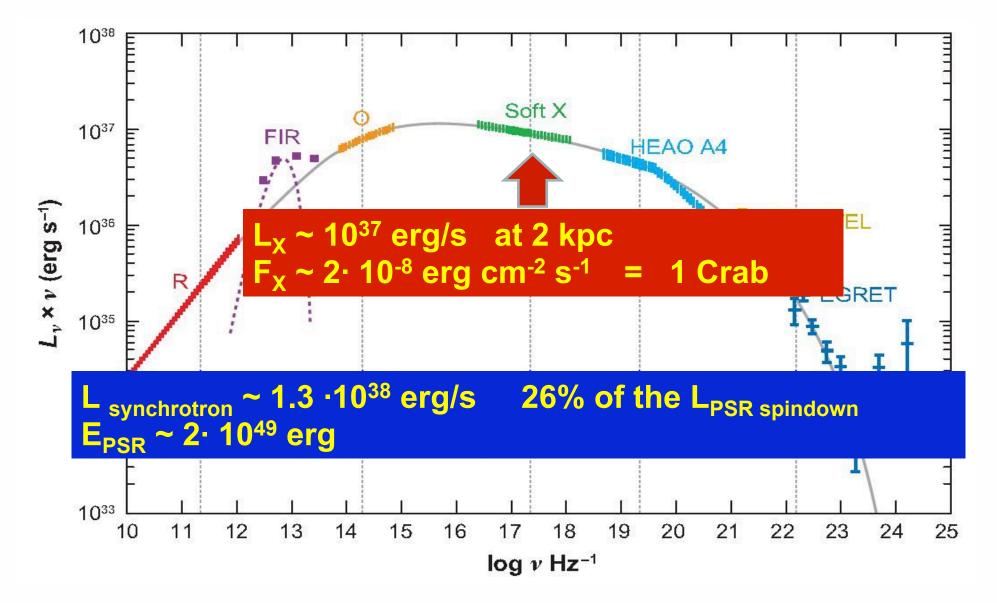
The Crab Nebula: a spectacular cosmic accelerator

Crab Nebula: a remnant of a supernova that exploded in AD 1054 (Chinese astronomers). X-ray data from Chandra (light blue), visible light data from Hubble (dark blue and green) and infrared data from Spitzer (red), 31/1/2001

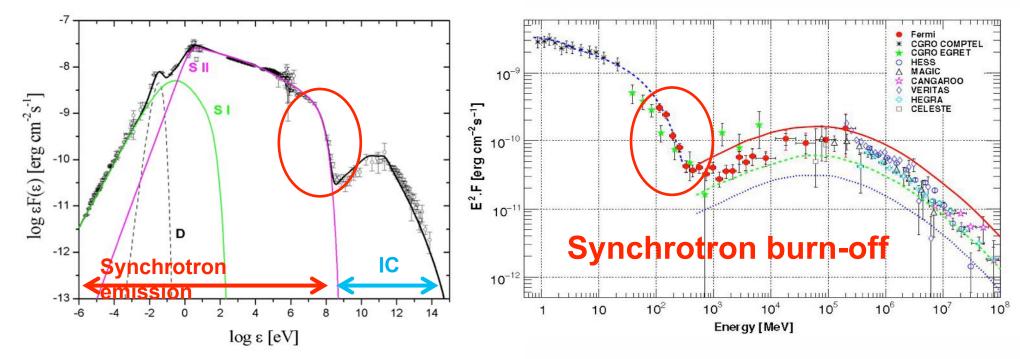
The Crab Nebula: a spectacular cosmic accelerator


THE STANDARD REFERENCE SOURCE IN ASTROPHYSICS

> POWERFUL PULSAR (Neutron Star rotating 30 times a sec)


NEBULA SHOCKED BY THE PULSAR WIND

Crab Nebula: a remnant of a supernova that exploded in AD 1054 (Chinese astronomers). X-ray data from Chandra (light blue), visible light data from Hubble (dark blue and green) and infrared data from Spitzer (red), 31/1/2001


Crab Nebula spectrum (Hester 2008)

Crab Nebula spectrum (Hester 2008)

Updated Crab Nebula spectrum from radio to TeV

Diffusive acceleration

Linear accelerator in ideal MHD framework

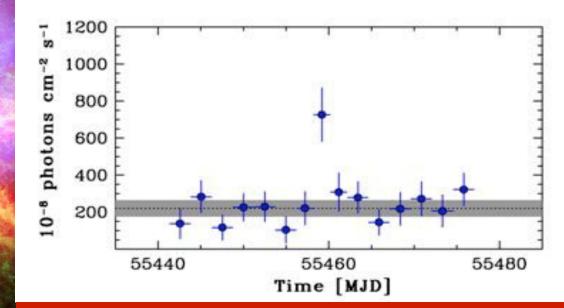
E_{γ,max}≈25 MeV

 $E_{\gamma,max} = 9/4 \text{ mc}^2/\alpha \text{ E/B} \approx 150 \text{ MeV E/B}$

Synchrotron burn-off (E/B<1)

(De Jager et al. 92, Arons 2012)

(Slide adapted from E. Striani, PhD Thesis)


Crab Nebula "standard" modelling

- Average nebular magnetic field B = 200 μ G
- PSR-injected particles $dN/dt \sim 10^{40.5} \text{ s}^{-1}$
- Total emitting particles, N ~ $2 \cdot 10^{51}$
- Many shock accelerating sites in the Nebula
- Inner Nebula variability (weeks-months)
 - Toroidal structures (wisps)
 - Jet-like structures (knots)

The Crab Nebula: a standard candle...?

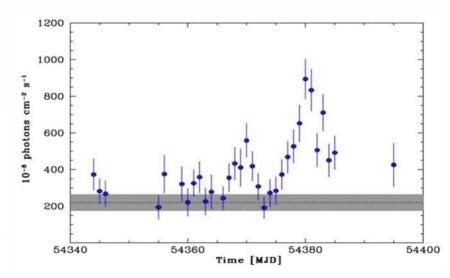
The variable Crab Nebula!

FIRST PUBLIC ANNOUNCEMENT Sept. 22, 2010: AGILE issues the Astronomer's Telegram n. 2855

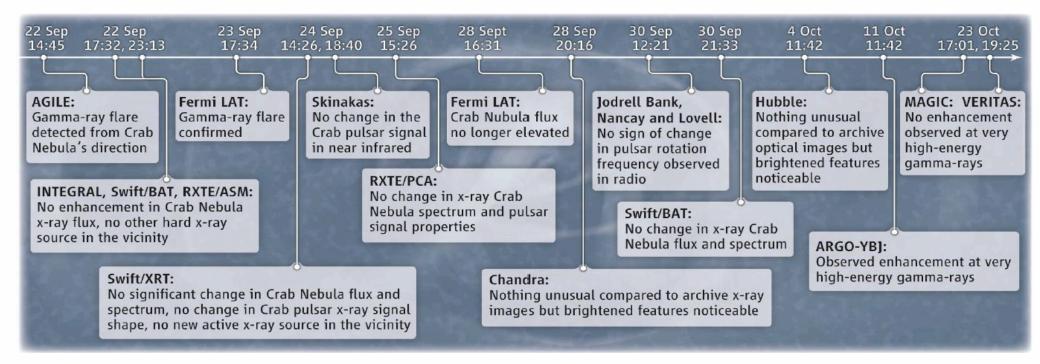
Science Express (6 January 2011)

A&A 506, 1563-1574 (2009) DOI: 10.1051/0004-6361/200911783 © ESO 2009

Astronomy Astrophysics


First AGILE catalog of high-confidence gamma-ray sources

C. Pittori¹, F. Verrecchia¹, A. W. Chen^{2,3}, A. Bulgarelli⁴, A. Pellizzoni⁵, A. Giuliani^{2,3}, S. Vercellone⁶, F. Longo^{7,8}, M. Tavani^{9,10,11,3}, P. Giommi^{1,12}, G. Barbiellini^{7,8,3}, M. Trifoglio⁴, F. Gianotti⁴, A. Argan⁹, A. Antonelli¹³, F. Boffelli¹⁴, P. Caraveo², P. W. Cattaneo¹⁴, V. Cocco¹⁰, S. Colafrancesco^{1,12}, T. Contessi², E. Costa⁹, S. Cutini¹, F. D'Ammando^{9,10}, E. Del Monte⁹, G. De Paris⁹, G. Di Cocco⁴, G. Di Persio⁹, I. Donnarumma⁹, Y. Evangelista⁹, G. Fanari¹, M. Frorini², F. Fornar², F. Fuschino⁴, T. Froysland^{3,11}, M. Frutu⁹, M. Galli¹⁶, D. Gasparrini¹, C. Labanti⁴, I. Lapshov^{9,17}, F. Lazzarotto⁹, F. Liello⁹, P. Lipari^{18,19}, E. Mattaini², M. Marisaldi⁴, M. Mastropietro^{9,21}, A. Mauri⁴, F. Mauri¹⁴, S. Mereghetti², E. Morelli⁴, E. Morelli^{17,8}, A. Morselli¹¹, L. Pacciani⁹, F. Perotti², G. Piano^{9,10,11}, P. Picozza^{10,11}, M. Pila^{222,25}, C. Pontoni^{3,8}, G. Porrovecchio⁹, S. Sabatini¹⁰, P. Santolamazza¹, E. Scalise⁹, P. Sofflito⁹, S. Zanbara¹⁰, F. Tamburelli¹, A. Traci⁴, A. Trois⁹, F. Viltozini^{9,5}, A. Zambra^{2,5}, D. Zanello^{18,19}, B. L. Santolamazza¹, E. Scalise⁹, P. Sofflito⁹, S. Zanbra^{2,5}, D. Zanello^{18,19}, B. L. Santolamazza¹, E. Scalise⁹, P. Sofflito⁹, S. Zanbra^{2,5}, D. Zanello^{18,19}, B. L. Santolamazza¹, P. Scalize⁹, P. Sofflito⁹, S. Zanbra^{2,5}, D. Zanello^{18,19}, and L. Salotti¹²


Sect. 6.1 Notes on individual sources: 1AGL J0535+2205 and 1AGL J0634+1748 (Crab and Geminga). These two well known strong γ -ray pulsars, together with the Vela pulsar, were used for in-flight AGILE calibrations. We report the flux values obtained during calibration subperiods. These values agree with pulsed flux values reported in (Pellizzoni et al. 2009). We note, however, that we observed higher flux values, over 1σ from the reported mean flux, for both sources when merging all the data, including shorter (1 day) integration periods during 2007. This point is under investigation.

1AGL J0617+2236. This AGILE detection provides an improved positioning compared to the 3EG J0617+2238 error box. This source is positionally coincident with the SNR IC443

AGILE first detection of a strong gamma-ray flare in Oct. 2007 reported in the First AGILE source catalog as possible short unexpected flux increase

post-flare excitement

Bernardini E., 2011

Crab Sept. 2010 flare

- gamma-ray flare peak luminosity $L \approx 5 \cdot 10^{35} \text{ erg cm}^{-2} \text{ s}^{-1}$
- kin. power fraction of PSR spindown $L_{sd},$ $\epsilon \approx 0.001 \; (\eta_{\text{-1}}/0.1) \approx 0.01$
- timescales:

−risetime: $\leq 1 \text{ day}$ very efficient
acceleration !−decay: ~2-3 daysfast cooling,
B, Lorentz γ

- Crucial constraints on shock particle acceleration theory !
 - e-/e+ shock acceleration by magnetic turbulence (diffusive vs. non-diffusive)
 - ion cyclotron absorption (e.g., J. Arons et al.)

- Crab Nebula shocks able to accelerate electrons/positrons at γ ~ 10⁹ (PeV) !?
 - already inferred from "static" Nebula models (e.g., deJager & Harding, Atoyan & Aharonian)
 - never observed before within a 1-day timescale !

AGILE first detection of a strong gamma-ray flare in Oct. 2007 reported in the First AGILE source catalog as possible short unexpected flux increase

Flare date	Duration	Peak γ-ray flux	Instruments
October 2007	~ 15 days	~ 6·10 ⁻⁶ ph cm ⁻² s ⁻¹	AGILE
February 2009	<mark>∼ 15</mark> days	~ 4·10 ⁻⁶ ph cm ⁻² s ⁻¹	Fermi
September 2010	<mark>∼ 4</mark> days	∼ 5·10 ⁻⁶ ph cm ⁻² s ⁻¹	AGILE, <i>Fermi</i>
April 2011	<mark>∼ 2</mark> days	∼ 30·10 ⁻⁶ ph cm ⁻² s ⁻¹	Fermi, AGILE

March and Oct 2013: **new** γ -ray flaring states detected by Fermi and AGILE

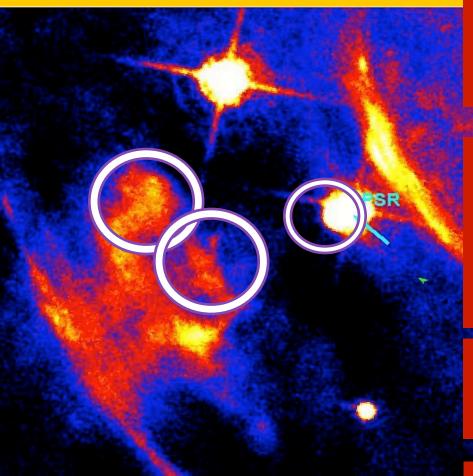
Rate: ≈1/year

 a big theoretical challenge: the Crab Nebula is not a standard candle in gamma-rays!

Where is the site of PeV e- acceleration? Very small size (day-light). Beyond MHD limit of about 200 MeV. MHD origin unlikely (achromatic effects). Very strong localized magnetic fields? Magnetic field reconnection, relax the E< B condition. Kink instabilities in the South East Jet? **Polarization?**

toroidal shocks "jet" shocks

PSR wind inner region, Knot 1


10 ai

30 E

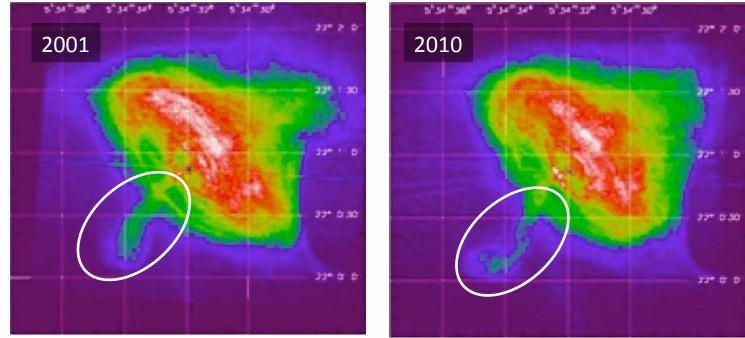
T/ACS F550M

2010-10-02

Hubble (optical) Oct. 2, 2010

PUZZLING ACCELERATION:

• fast flares imply VERY EFFICIENT particle acceleration at shocks, and "small" emission sites

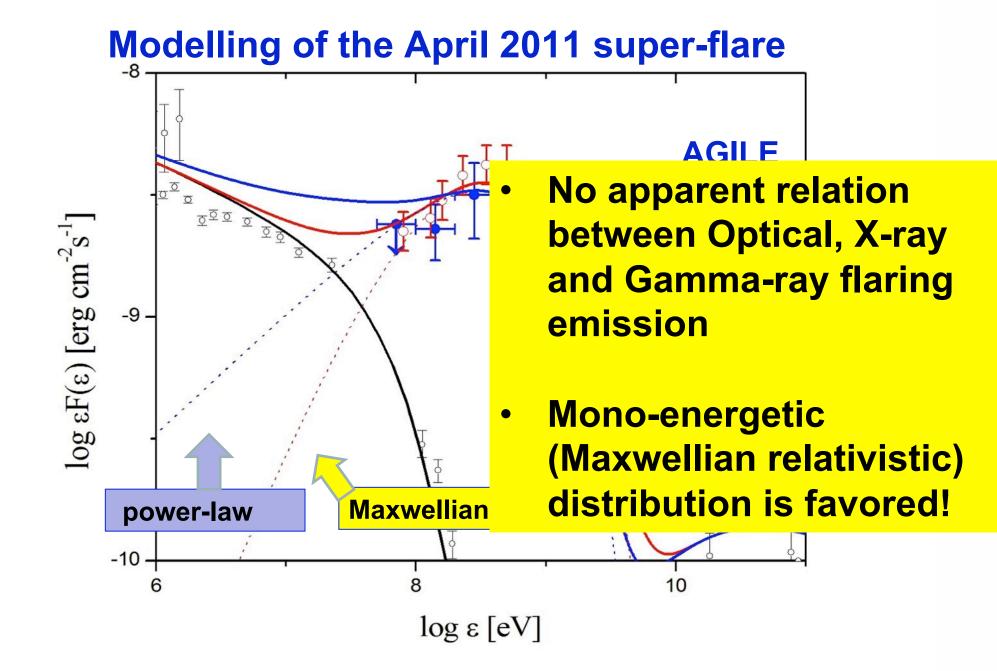

SOURCE A

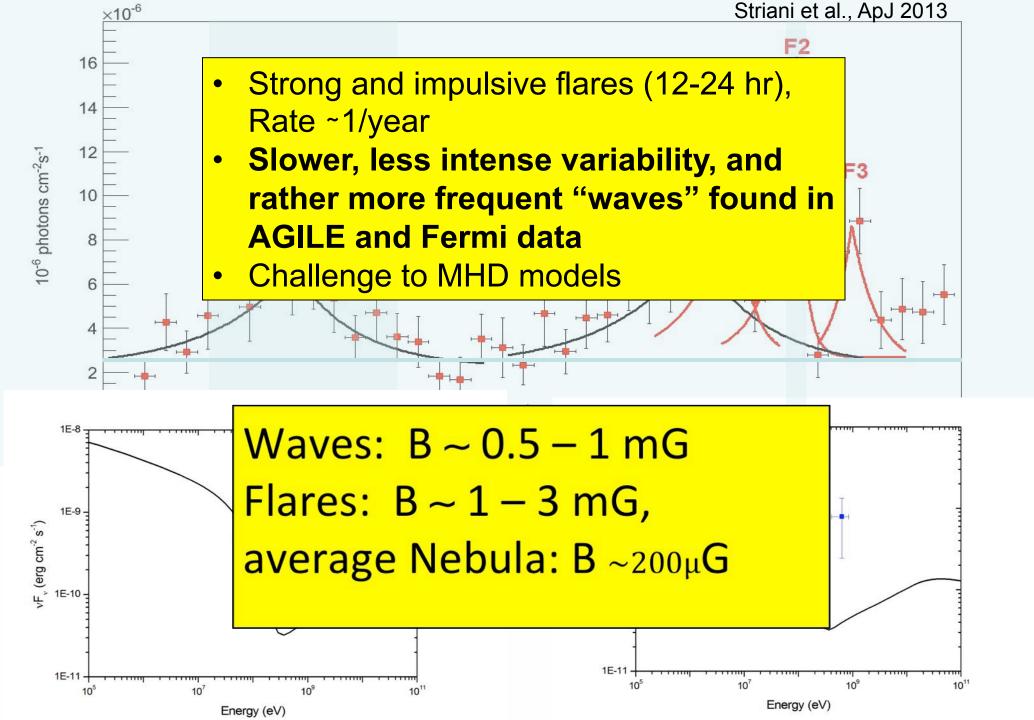
• FAST ACCELERATION inconsistent with "slow" diffusion processes, a challenge to shock acceleration theory !

• acceleration up to 10¹⁵ eV, 1000 times larger than Tevatron or LHC

 shock structures might be the sites of transient gamma-rays, HST and Chandra candidates

(Slide adapted from E. Striani, PhD Thesis) South-East jet




Promising candidate for the gamma-ray flaring site?:

- Remarkable time variability and jet wiggling
- High X-ray variability
- Highly magnetized plasma

Kink instability in the jet could be responsible for the observed jet wiggling and trigger magnetic reconnection and particle acceleration.

(3D rel. MHD simulations + resistivity, Mignone, Striani, et al. 2013, 2014 in progress)

Summing up

- very exciting: the Crab Nebula is not a standard candle in gamma-rays
- we "lost" the stability of an ideal reference source, but gained tremendous information about the fundamental process of particle acceleration
- a big theoretical challenge. Theoretical models of particle acceleration based on the ideal MHD approximation fail: the observed variability timescales and energy peaks are not compatible with diffusive acceleration.
- the ultimate source of particle enhancements in the pulsar wind needs to be established: future surprises (study of vacuum energy in extreme gravity conditions?)


12th AGILE Science Workshop "ASTRO-EARTH: astrophysics and high-energy terrestrial phenomena" May 8 and 9, 2014 ASI Headquarters, Via del Politecnico, Rome

Home Page

Organization Registration Participants

Program

Location Contacts

BACKUP SLIDES

	Table 3:	AGILE	Scientific	Performance
--	----------	-------	------------	-------------

Gamma-ray Imaging Detector (GRID) Energy Range	30 MeV – 50 GeV	
Field of view	$\sim 3 \text{ sr}$	
Sensitivity at 100 MeV (ph cm ⁻² s ⁻¹ MeV ⁻¹)	6×10-9	(5σ in 10 ⁶ s)
Sensitivity at 1 GeV (ph cm ⁻² s ⁻¹ MeV ⁻¹)	4×10 ⁻¹¹	(5σ in 10 ⁶ s)
Angular Resolution at 1 GeV	36 arcmin	(68% cont. radius
Source Location Accuracy	~5-20 arcmin	S/N~10
Energy Resolution	$\Delta E/E \sim 1$	at 300 MeV
Absolute Time Resolution	~1µs	
Deadtime	$\sim 200 \mu s$	
Hard X-ray Imaging Detector (Super-AGII	E)	
Energy Range	10 - 40 keV	
Field of view	107°×68°	FW at Zero Sens.
Sensitivity (at 15 keV)	$\sim 5 \text{ mCrab}$	(50 in 1 day)
Angular Resolution (pixel size)	$\sim 6 \text{ arcmin}$	100.740.0107
Source Location Accuracy	~2-3 arcmin	S/N~10
Energy Resolution	$\Delta E < 4 \text{ keV}$	100000000
Absolute Time Resolution	$\sim 4 \mu s$	
Deadtime (for each of the 16 readout units)	$\sim 4 \mu s$	
Mini-Calorimeter		
Energy Range	0.3 - 200 MeV	120 - X195365 M0356
Energy Resolution	$\sim 1 \text{ MeV}$	above 1 MeV
Absolute Time Resolution	$\sim 3 \mu s$	
Deadtime (for each of the 30 CsI bars)	$\sim 20 \mu s$	

Main galactic AGILE discoveries

 Carina region: γ-ray detection of the colliding wind massive binary system η-Car with AGILE

Tavani et al., ApJ, 698, L142, 2009 (arXiv:0904.2736)

- Cygnus region microquasars:
 - AGILE observations of Cygnus X-1 gamma-ray flares

Sabatini et al., ApJ 2010, Del Monte et al., A&A 2010

 AGILE detects several gamma-ray flares from Cygnus X-3, and also weak persistent emission above 100 MeV

Tavani et al., Nature 462, 620, 2009 (arXiv:0910.5344)

- Detection of Gamma-Ray Emission from the Vela Pulsar Wind
 Nebula with AGILE
 Pellizzoni et al., Science 327, 2010
- Neutral pion emission from accelerated protons in the SNR W44

Giuliani et al., ApJ, 742, 2011

AGILE Announcement of Opportunity: AO4

Multimessenger analysis of possible gravitational wave emitters

F. Garufi et al., proposal ID93. On-going analysis

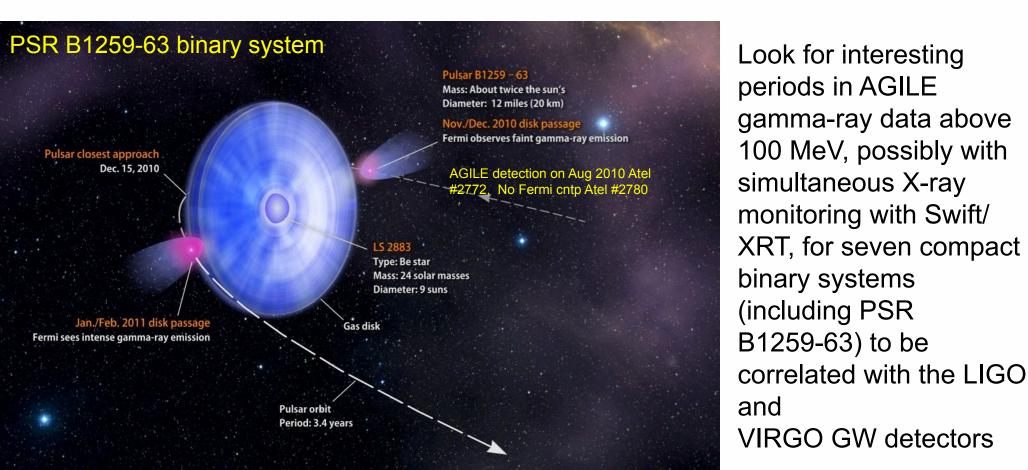


Figure adapted from: NASA's GSFC/Francis Reddy

AGILE on PSLV-C8 Sriharikota, India April 2007

The AGILE Payload: the most compact instrument for high-energy astrophysics:

only ~100 kg ~ 60 × 60 cm Payload

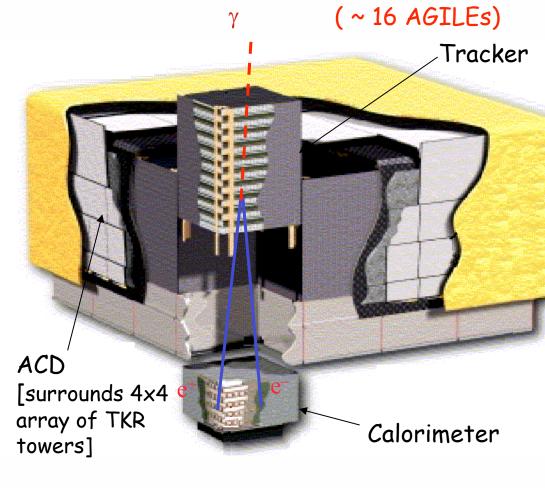
ASI Mission with INFN, INAF e CIFS participation γ-ray astrophysics: 30 MeV - 30 GeV energy range and simultaneous X-ray capability between 18 - 60 keV

AGILE: inside the cube...

ANTICOINCIDENCE

HARD X-RAY IMAGER (SUPER-AGILE)

Energy Range: 18–60 keV

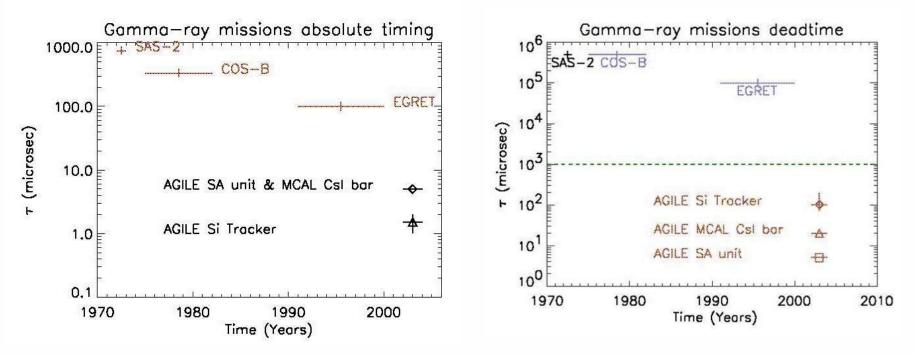

SILICON TRACKER GAMMA-RAY IMAGER (GRID) Energy Range: 30 MeV - 30 GeV

(MINI) CALORIMETER Energy Range: 0.3–100 MeV

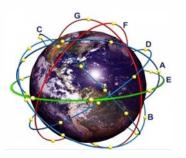
Fermi (formerly GLAST): launched June 11, 2008

Fermi Large Area Telescope LAT:

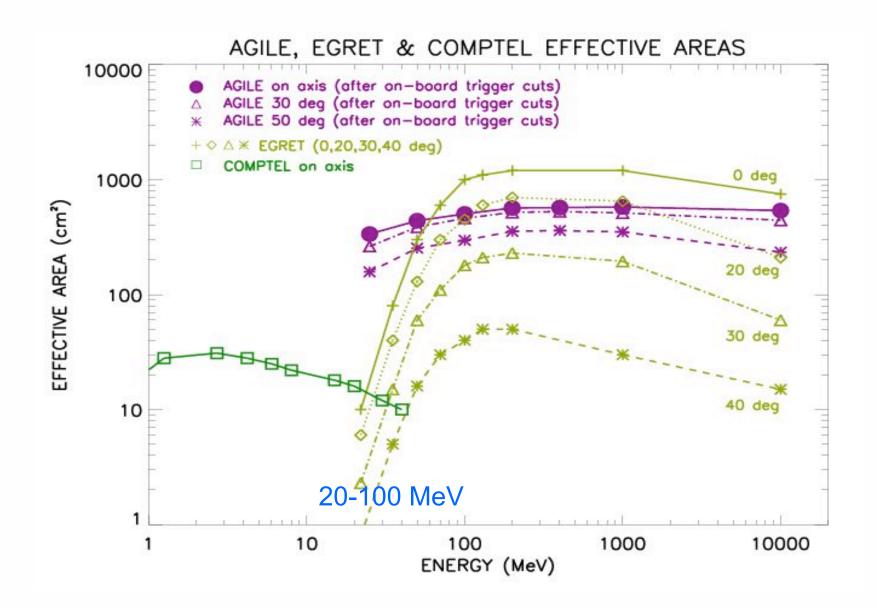
- <u>Precision Si-strip Tracker (TKR)</u>
 70 m² of silicon detectors arranged in 36 planes. 880,000 channels.
- first 12 x y planes with 0.03 X₀ (thin part)
- 4 x y planes with 0.18 X₀ (thick part)
- last 2 planes without converter
- <u>Hodoscopic Csl Calorimeter(CAL)</u> 1536 Csl(Tl) crystals in 8 layers, total mass 1.5 tons.
- <u>Segmented Anticoincidence Detector</u> (<u>ACD</u>) 89 plastic scintillator tiles.
- <u>Electronics System</u> Includes flexible hardware trigger and onboard computing.

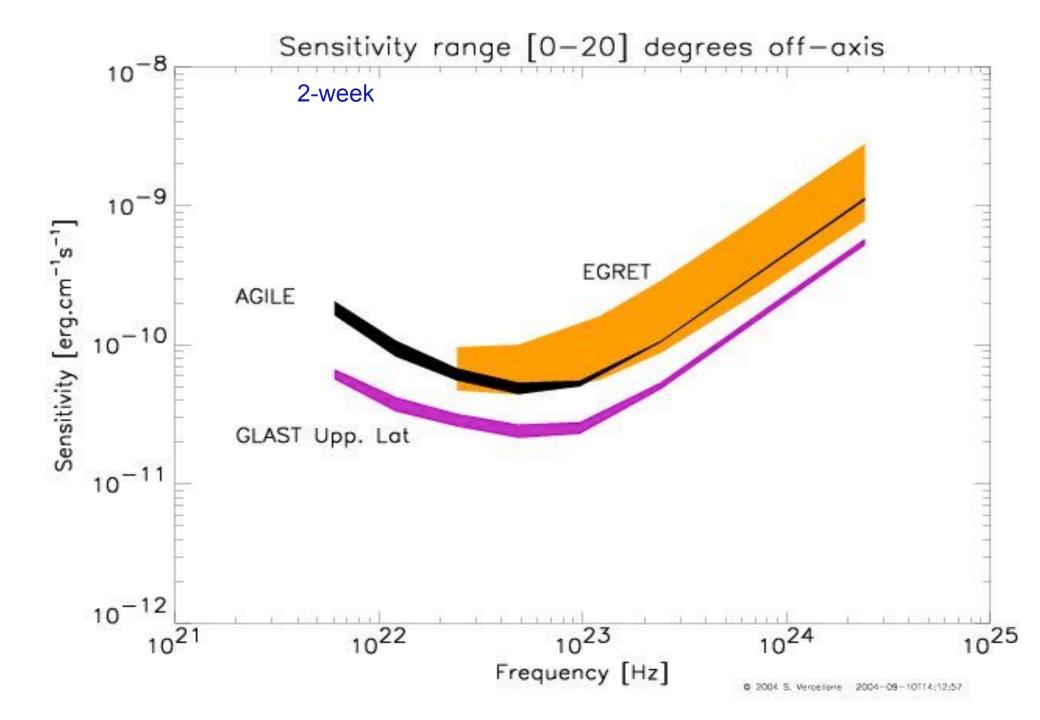


Total power 650 W Total mass 2,789 kg

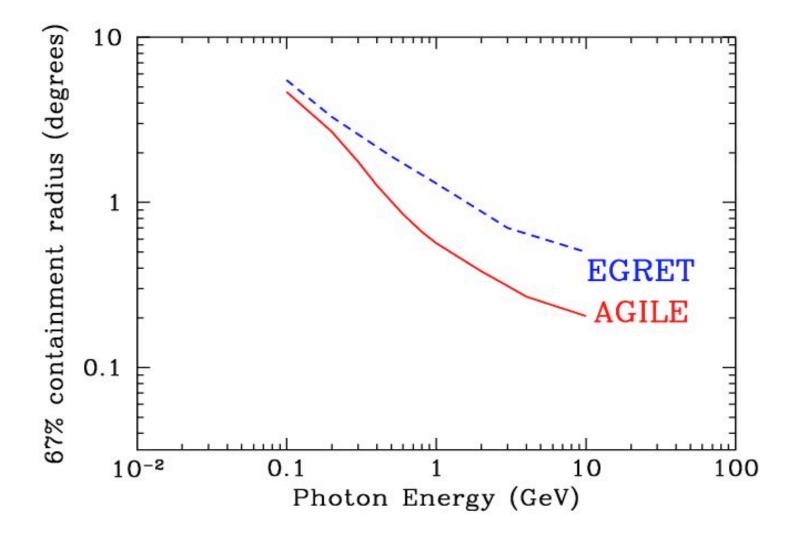


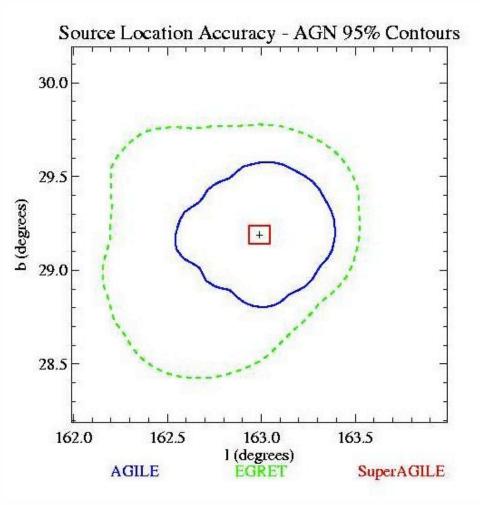
AGILE Temporal Resolution

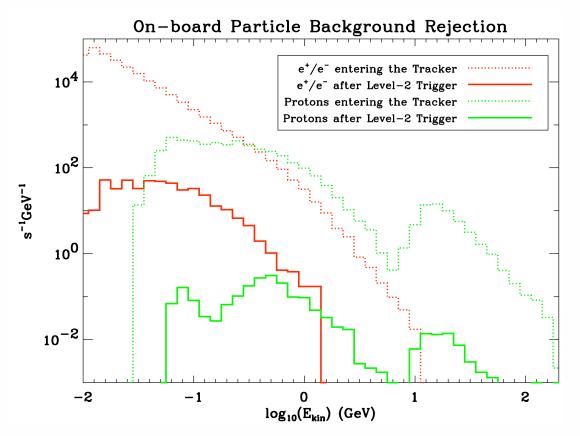



AGILE fast timing allows, for the first time, a search for sub-millisecond transients in the γ -ray energy range.

ORBCOMM AGILE Fast Link




AGILE-GRID angular resolution


AGILE Source Location Accuracy:

AGILE ~ 5-20 arcmin (S/N ~ 10) Super-AGILE: ~ 2-3 arcmin

AGILE

On-board GRID Background Rejection:

Particle background rates : - e+/e-: reduced by a factor ~ 100

- Protons: reduced by a factor ~ 1000

- Earth albedo γ -ray flux : reduced by a factor ~ 30

The GRID on-board background rejection is quite efficient, reducing the total charged-particle rate from ~ 2000 Hz to ~ 20 Hz.