

The OPERA experiment : new results

<u>Chiara Sirignano</u>, on behalf of the OPERA Collaboration

Università di Padova & INFN

Vulcano Workshop 2014 – May 18-24, Vulcano

- \checkmark Introduction
- ✓ The OPERA Detector
- ✓ Data Analysis
- ✓ OPERA latest news ...

Physics motivation

- Super-K (1998), MACRO and Soudan-2 : atmospheric neutrino anomaly interpretable as $\nu_{\mu}\text{-}\!\!>\!\!\nu_{\tau}$ oscillation
- K2K and MINOS (accelerator): confirmation of the Super –K v_{μ} disappearance signal

Challenge

Detection of v_{τ} CC interaction by a full reconstruction of the primary interaction and observation of the t lepton decay topologies.

$\tau^- \rightarrow \mu^- \nu_{\tau} \nu_{\mu}$	17.4%
$\tau^- \rightarrow e^- v_\tau v_\epsilon$	17.8%
$\tau^- \rightarrow h^- \nu_{\tau} n(\pi^o)$	49.5 %
$\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau} n(\pi^o)$	14.5%

Nuclear emulsions + Lead (ECC) "active target"

- 3D particle reconstruction
- Sub-micron spatial resolution

High background rejection

Oscillation Project with Emulsion tRacking Apparatus

- Long baseline neutrino physics experiment
- **CNGS** quasi pure wide band v_{μ} beam, <L> = 732 km, <E> = 17 GeV optimized to maximize the number of v_{τ} CC interactions

v_{μ} (CC + NC)/year	~4700
v_{τ} CC/year	~20
$(v_e + \overline{v_e}) / v_\mu CC$	0.87%
\overline{v}_{μ} / v_{μ} CC	2.1%
v_{τ} prompt	negligible

The OPERA Collaboration

140 physicists - 28 institutions - 11 countries

<u>http://operaweb.lngs.infn.it</u>

OPERA detector

Target area (ECC + CS + TT)

Muon spectrometer (Magnet+RPC+PT) **Brick Manipulator System**

ECC target brick

2 emulsion layers (42 µm thick) poured on a 200 µm plastic base

57 emulsion films + 2 CS interface sheet <u>*Ref:* NIM A556 (2006) 80-86</u>

56 * 1 mm Pb (lead + 0.04 % Ca) plates <u>*Ref: JINST 3 P07002 (2008)</u>*</u>

Lead plate (Goslar Germany)

CS interface sheet

<u>Ref: JINST 3 P07005 (2008)</u> Interface emulsion films: high signal/noise ratio for event trigger and scanning time reduction

Position accuracy of the electronic predictions

Angular accuracy of the electronic predictions

Emulsion films scanning

EU: ESS (European Scanning System)

- Scanning speed/system: 20cm²/h
- Customized commercial optics and mechanics
- Asynchronous DAQ software

Japan: SUTS (Super Ultra Track Selector)

- Scanning speed/system: 75cm²/h
- High speed CCD camera (3 kHz), Piezo-controlled objective lens
- FPGA Hard-coded algorithms

Both systems demonstrate:

- $\sim 0.3 \,\mu m$ spatial resolution
- ~ 2 mrad angular resolution
- ~ 95% base track detection efficiency

Vertex finding

Track follow-up film by film:

- alignment using cosmic ray tracks
- definition of the stopping point

Volume scanning (~2 cm³) around the stopping point

Decay search

IP of the tracks attached to the neutrino vertices found

The charmed hadrons decay has a simar topology to the tau lepton but the muon identified at the primary vertex, the charm sample was used as a «control sample».

arXiv:1404.4357 [hep-ex]

Final performances of the CNGS beam after five years (2008 ÷ 2012) of data taking

Record performances in 2011 Overall 20% less than the proposal value

OPERA brick handling

About 25000 bricks manipulated for event analysis, 12000 bricks developed

Data analysis

Run 2008 \rightarrow 2012

5917 decay search

$$v_{\mu} \rightarrow v_{e}$$
 analysis

4.1 GeV electron

\approx 40 events found in the analyzed sample

Energy distribution

Ref : JHEP 1307 (2013) 004

Observation compatible with background-only hypothesis: 19.8±2.8 (syst) events

3 flavour analysis Energy cut to increase the S/N

4 observed events

4.6 expected ⇒ sin²(2θ₁₃)<0.44 at 90% $\overset{\circ}{C}$.L.

Energy cut	$20~{\rm GeV}$	$30~{\rm GeV}$	No cut	
BG common to	BG (a) from π^0	0.2	0.2	0.2
both analyses	BG (b) from $\tau \to e$	0.2	0.3	0.3
	ν_e beam contamination	4.2	7.7	19.4
Total expected BG in 3-f	4.6	8.2	19.8	
BG to non-standard	ν_e via 3-flavour oscillation	1.0	1.3	1.4
oscillation analysis only				
Total expected BG in nor	5.6	9.4	21.3	
Data		4	6	19

Kinematical cuts for a candidate event

Second v_{τ} candidate

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation search

No muon detected at the primary vertex:

track other than τ lepton candidate not compatible with muon hypothesis based on momentum – range correlation

<u>Ref: JHEP 11 (2013) 036</u>

Event kinematics	Cut	Value	lue Error 7.8 \pm 1.1 7.4 \pm 1.5 .4 \pm 1.7 96 \pm 0.13 80 \pm 0.12 31 \pm 0.11
Phi (Tau - Hadron) [degree]	>90	167.8	± 1.1
average kink angle [mrad]	< 500	87.4	± 1.5
Total momentum at 2ry vtx [GeV/c]	> 3.0	8.4	± 1.7
Min Invariant mass [GeV/c ²]	0.5 < < 2.0	0.96	± 0.13
Invariant mass [GeV/c ²]	0.5 < < 2.0	0.80	± 0.12
Transverse Momentum at 1ry vtx [GeV/c]	< 1.0	0.31	± 0.11

ECC scanning results

	Values	Selection
P daughter (GeV/c)	6.0 ^{+2.2} -1.2	> 2
Kink P _t (GeV/c)	0.82 +0.30	> 0.6
P _t at 1ry (GeV/c)	0.55 +0.30	< 1.0
Phi (degrees)	166 ⁺² -31	> 90
Kink angle (mrad)	137 ± 4	> 20
Decay position (μ m)	1090 ± 30	< 2600

$\Delta m^2 = 2.32 \times 10^{-3} eV^2$	Expected	Observed	Background	Charm	μ scatt	had int
$\tau \rightarrow h$	0.38	2	0.03	0.014		0.019
$\tau \rightarrow 3h$	0.53	1	0.15	0.142		0.003
$\tau \rightarrow \mu$	0.58	1	0.02	0.004	0.016	
$\tau \rightarrow e$	0.58	0	0.02	0.025		
total	2.1	4	0.22	0.185	0.016	0.022

The p values of the single channels are combined into an estimator $p^* = p_{\mu} p_e p_h p_{3h}$. $p^* \le p^*$ (observed) gives the probability of the background-only hypothesis

✓ 4 observed events with 0.22 background events expected
✓ Probability to be explained by background = 1.1 x 10⁻⁵
✓ 4.2 σ significance of non-null observation

Measurement of TeV atmospheric muon charge ratio

- "OPERA RUN" is going on
- More than 6000 neutrino interactions fully reconstructed and studied in ECC.
- 4 candidate events found
- 4.2 σ significance of non-null observation

Spares

Visible energy of all the candidates

Sum of the momenta of charged particles and γ 's measured in emulsion

Muon charge and momentum reconstruction

Muon charge and momentum reconstruction Parabolic fit with p2 as quadratic term coefficient in the magnetized region Linear fit in the non-magnetized region

Track features

					FirstSecondmeasurementmeasurement		Average		
	Track	ID	Parti	cle ID	Slopes		Slopes	Slopes	P (GeV/c)
1ry	1 pare	ent		τ	-0.143	, 0.026	-0.145, 0.014	-0.144, 0.020	-
	2		Ha (Ra	dron inge)	-0.044,	, 0.082	-0.047, 0.073	-0.046, 0.078	1.9 [1.7, 2.2]
	3		Ha (inte	dron eract)	0.122,	0.149	0.139, 0.143	0.131, 0.146	1.1 [1.0, 1.2]
	4		pro	oton	-0.083	, 0.348	-0.080, 0.355	-0.082, 0.352	0.7 [0.6, 0.8] pβ = 0.4 [0.3, 0.5]
	γ1		e-]	pair	-0.229	, 0.068	-0.238, 0.055	-0.234, 0.062	0.7 [0.6, 0.9]
	γ2		e-]	pair	0.111,	-0.014	0.115,-0.034	0.113,-0.024	4.0 [2.6, 8.7]
2ry	daugh	iter	Ha (Ra	dron inge)	-0.084	, 0.148	-0.091, 0.145	-0.088, 0.147	6.0 [4.8, 8.2]
		ΔZ (μm) δ θ _{RM}		δ $θ_{RM}$	(mrad)	IP (µm)	IP Resolution (µm)	Attachment	$M = 0.59^{+0.20}$ GeV/
γ1	To 1ry	e	676	2	1.9	2	8	ОК	
γ2	To 1ry	7	176	9	0.2	33	43	OK	Not a single π^0
	To 2ry	6	124	9	0.2	267	36	Excluded	

Track follow-down: a powerful tool to assess the muonless nature of the event

Follow-down all tracks in downstream bricks

- 3 primary tracks to discard the charm hypothesis
- kink daughter to identify the τ decay channel

Track follow-down: primary track n. 2

Track n. 2 follow-down

Track follow-down: primary track n. 3

Interaction detected

Track 3 found down to the CS of the 2^{nd} brick P = 1.1 GeV/c at 2^{nd} brick

A vertex found near its predicted position in the 3rd downstream brick

Track follow-down: primary track n. 4

From the ionization, the proton hypothesis is made $P\beta \sim 0.4$, (P = 0.7 assuming proton mass)

Track path of 77.8 mm lead, Range/Mass ~ 94 g cm⁻² GeV⁻¹ Expected Range/Mass from measured momentum ~ 70 [45-100] g cm⁻² GeV⁻¹

