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“Hints” for low-mass WIMPs in direct detection experiments
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Particle Physics models provide candidates for light DM

WIMP-nucleon cross section [pb]
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Among other possibilities:
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by sneutrino in extended models
"""" - Sreeusshous. 2 o .'}'—42‘:.
10 R O
Moo Coraat Seatory ¢ Asymmetric DM
107°
HIH,
e % Are these theoretical predictions
RIFSHEGLrinG within the reach of our detectorse
10-14 L 1 1 1 P N T Y 1
1 . o 10 50
Cerdenfo, Peird, Robles WIMP mass [GeV/c?]

arXiv:1404.2572

It is an appealing window of the DM parameter space that is essential to
explore



The search for low-mass WIMPs is challenging

SuperCDMS low-threshold
analysis range

The signal is expected at very low 10° e —
recoil energies — 5GeV WIMP
: : : : — 10 GeV WIMP
107 AN s R e — 20 GeV WIMP |

Favours light targets
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Low-threshold searches

WIMP scatters / kg / d in Ge

Ge is relatively heavy so the threshold  lower recoil energy

has to be just above the noise to be «—\ = T\
‘ sensitivity to lighter WIMPs

sensitive to 5 GeV WIMPs 10 i ‘ i |
0 2 4 6 8 10 12 14 16 18

recoil energy [keV]

trigger threshold 1.6 keVnr

Backgrounds are more difficult to discriminate (this is not a background free
search)



SuperCDMS at SOUDAN

Operational since March 2012

iZIP

interleaved Z-sensitive
lonization & Phonon detectors

~ 3”7 Diameter
2.5 cm Thick

Instrumented on both sides with
2 charge+ 4 phonon sensors

Side 1 Side 2

9.0 kg Ge (15 1ZIPs x 600g)

Data for this analysis:

577 kg-days
taken from March 2012 — July 2013
using the 7 lowest threshold iZIPs



IZIP discrimination of surface events

In the new iZIPs the ionization lines (+2V)
are interleaved with phonon sensors (0V)
on a ~1mm pitch

Bulk events:
charges (e,h) drift to both sides of
the crystal

Surface events:
charges (e,h) drift to only one side
of the crystal

TS
Z-PARTITION: 0=+

The resulting symmetry/asymmetry on
charge collection in sides 1 and 2
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OV phonon
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0V phonon

iZIP discrimination of surface events 2

In the new iZIPs the ionization lines (+2V)
are interleaved with phonon sensors (0V)
on a ~1mm pitch

Bulk events: 0V phonon (4)
charges (e,h) drift to both sides of
the crystal
Sidewalls
Surface events:
charges (e,h) drift to only one side Surface events on the sides of the
of the crystal detector leave more energy in the outer
Sensors.
Z-PARTITION: RADIAL PARTITION:
The resulting symmetry/asymmetry on division of energy between inner and

charge collection in sides 1 and 2 outer sensors




The rejection of surface events with the new iZIPs using Z-partition has been
demonstrated with data from exposure to betas from 219Pb sources

In ~800 live hours, no events leaked
into the 8-115 keV signal region

Leakage < 1.7x10

This could allow a background free search for 5 yr of operation in

SuperCDMS @ SNOLAB (~100 kg)
Appl.Phys.Lett. 103 (2013) 164105

@ Passing Charge Symmetry ® Failing Charge Symmetry O Low Yield Outliers
----Symmetry Cut Bounds ==+2c Nuclear Recoil Yield ® Neutrons from Cf-252 Calibration
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(the low threshold analysis corresponds to smaller energies and some
leakage is expected) 3



Background

Bulk electron recoils

Compton background
1.3 keV activation line

Sidewall & surface events

betas and x-rays from 210Pp, 210B;,
recoils from 296Pp, outer radial
Comptons, ejected electrons from
Compton scattering

Neutrons
(cosmogenic & radiogenic)
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Rejection

Yield = lonization/phonon helps
discriminating NR from ER

Z-Partition and Radial partition
define a fiducial volume

Use active and passive shielding.
Cut on multiple hits.

Simulation determines remaining
imreducible rate



Analysis: Selection criteria and efficiencies

We carry out a blind analysis, with cuts set by examining only events that will never
be accepted as WIMP candidates (mulfiple scatters, calibration events, and
periods following high activation from 2°2Cf calibration)

Data Quality:

Reject periods with poor detector performance

Remove misreconstructed and noisy pulses Lindhard nuclear-recoil energy ékeVnr]
Measure efficiency with pulse MC 2 3 4 5 6 7 8 =

—
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Quality
Trigger and analysis threshold: + Thresholds
Select periods with stable well-defined trigger
threshold

Measure efficiency from '33Ba calibration data
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Efficiency
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+ Preselection

Preselection: 0.4

Single-detector scatter +BDT

Remove events coincident with muon veto 0.2f

lonization fiducial volume

lonization and phonon partitions consistent with NR 0.0; . : 5 15 3

Total phonon energy [keV]

Boosted Decision Tree:

Optimised cut on the phonon fiducial volume and
ionization yield at low energy

Efficiency estimated from fraction of 252Cf passing
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Boosted Decision Tree (BDT)

Inputs (per detector)

1P

10?

10=
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5 10 - - 0 1 2 3
total phonon energy [keV] ionization energy [keV]

1022

10

102
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Qutput
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summed over detector

10 GeV WIMP
o=6x10%cm?

-0.5 0 0.5 1
BDT score
1
0 0.2 04 0.1 . 0.3 0.4
phonon z-partition phonon r-partition
] "‘f'MP s Background: Modelled with simulated data on sidebands
I sidewall *°Pb and calibration.
I sidewall 2'°Pb+2"°Bi
B Face 2°Pb+*"°Bi WIMP Signal: Modelled with NR data from 252Cf, then
I 1.3 keV line rescaled for WIMPs with mass 5, 7, 10, 15 GeV
I Comptons H




Unblinding: Before BDT cut

lonization energy [keV]

1N

applying BDT

Lindhard nuclear-recoil energy [keVnr]
3 4 5 6 7 8 9

Events passing all the cuts prior to
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Unblinding: After BDT cut

11 candidates (6.2 +1.1 -0.8 expected)

Lindhard nuclear-recoil energy [keVnr]
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Unblinding: After BDT cut

lonization energy [keV]

11 candidates (6.2 +1.1 -0.8 expected)

Lindhard nuclear-recoil energy [keVnr]
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Post-unblinding discussion

Events are high in quality. Only the lowest energy candidate looks like spurious
noise
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Post-unblinding discussion

Events are high in quality. Only the lowest energy candidate looks like spurious
noise

()]

Range of counts with p-value>0.05
1o background expectation
observed

* For most of the detectors
there is good agreement
with predicted background
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» However, 1573 observes the
3 highest-energy events

Events passing BDT

—

(Poisson p-value is 0.04%)

T1Z1 T2Z1 T2Z2 T4Z2 T4Z3 T5Z2 T5Z3
Detector

1523 has a shorted ionization guard. This may have affected the background
model performance. Additional studies are undergoing.
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New limit for low-mass WIMPS 90% C.L. optimal interval method
(no background subtraction)

systematics
(efficiency, energy
scale, tfrigger
efficiency)
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Conclusions

e First result using the background
rejection capability of SuperCDMS
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/7 iZIPs analysed (threshold 1.6 keV
Exposure: 577 kg day

0°'>1.2x 10%pb at 8 GeV
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New limit for WIMPs with masses in
the range 4 - 6 GeV

WIMP-nucleon cross section [cm?]
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(below 4 GeV CDMSIite dominates) arXiv:1402.7137 \
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» CoGeNT interpretation of WIMP signal disfavoured in model-independent way

CDMS-II (Si) disfavoured assuming standard WIMP interactions and for the
standard halo model.

e High threshold analysis of SuperCDMS ongoing
SuperCDMS Soudan detectors are a vast improvement over CDMS ||
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