VULCANO Workshop 2014

Frontier Objects in Astrophysics and Particle Physics

18th - 24th, May 2014 Vulcano Island, Sicily, Italy

Observational prospects in the electromagnetic domain of the gravitational wave sources

Ground-based Gravitational Wave Detectors

LIGO and Virgo detectors are currently being upgraded and will observe the sky (10-1000 Hz) as a single network aiming at the first direct detection of GWs

Expected GW sources detectable by LIGO/Virgo

Some Example of GW Science from Initial LIGO/Virgo(2005-2010)

Upper limits on the rate of low mass compact binary coalescence total mass 2-25 Mo

Abadie et al. 2012, Phys. Rev. D, 85

GW amplitude upper limits from 195 known Pulsars

Crab limit at 1% of total energy loss! Vela limit at 10% of total energy loss!

Aasi et al. 2014, ApJ, 785

Advanced Era GW-detectors (ADE)

LIGO and Virgo detectors are currently being upgraded

boost of sensitivity by a **factor of ten** (of 10³ in number of detectable sources)

Advanced era

Detection rates of compact binary coalescencesSourceLowRealHighMaxyr⁻¹yr⁻¹yr⁻¹yr⁻¹yr⁻¹NS-NS0.4404001000

0.2

0.4

10

20

Advanced

(Abadie et al. 2010, CQG 27)

NS-BH

BH-BH

Core-Collapse Supernovae

2-4 yr⁻¹ EM-observed within 20 Mpc

GW-signal detectable

< Milky Way (Ott et al. 2012, Phy.R.D.) few Mpc (Fryer et al. 2002, ApJ, 565)

Rate of GW-detectable events unknown LONG-GRB core-collapse (?) 10 - 100 Mpc (Piro & Pfahl 2007)

300

1000

BH = 10 Mo							
Advanced era							
ky location and orientation							
iveraged range							
197 Mpc	for NS-NS						
10 Mpc	for NS-BH						
68 Mpc	for BH-BH						

Mass: NS = 1.4 Mo

NASA NASA

LIGO

Main motivations for joint GW/EM observations

- Consider the GW signal in its astrophysical context
- Give a precise (arcsecond) localization, identify host galaxy
- Multi-messenger picture for a complete knowledge of the most energetic events in the Universe
- GW and EM provide insight into the physics of the progenitors (mass, spin, distance..) and their environment (temperature, density, redshift..)
- Start the multi-messenger (GW and photon) astronomy

EM emission from transient GW sources

Electromagnetic emission

Merger of NS-NS / NS-BH

Core collapse of massive star

Gamma-Ray Burst: flashes of gamma-rays isotropic-equivalent energy up to 10⁵³ erg

Short Hard GRB

Progenitor indications:

- lack of observed SN
- association with older stellar population
- larger distance from the host galaxy center (~ 5-10 kpc)

Long Soft GRB Progenitor strong evidence: observed Type Ic SN spectrum

Kilonovae (Optical/IR, radio remnant)

Supernovae Type II, Ib/c

GRBs emission - Fireball Model

Kilonovae and Radio Flares

Significant mass (0.01-0.1 m_o) is dynamically ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.2 c)

(Piran et al. 2013, MNRAS, 430; Rosswog et al. 2013, MNRAS, 430)

Macronova – Kilonova

short lived IR-UV signal (days) powered by the radioactive decay of heavy elements synthesized in the ejected outflow Kulkarni 2005, astro-ph0510256; Li & Paczynski 1998, ApJL, 507; Metzger et al. 2010, MNRAS, 406; Barnes & Kasen 2013, ApJ, 775

RADIO REMNANT

long lasting radio signals (years) produced by interaction of ejected sub-relativistic outflow with surrounding matter Piran et al. 2013, MNRAS, 430

Possible HST kilonova detection for short GRB 130603B after 9.4 days Tanvir et al. 2013, Nature ,500

11

EM signals from NS-NS/NS-BH merger and massive star core-collapse

GW detection rate based on short GRB observations

GW/on-axis short GRB detection rate

aLIGO and Virgo NS-NS detection rate

Triggered analysis EM observations \rightarrow GW analysis

GRB prompt emission → TRIGGERED GW SEARCH

Known GRB event time and sky position:

- \rightarrow reduction in search parameter space
- \rightarrow gain in search sensitivity

GW transient searches

Analyzed 154 GRBs detected by gamma-ray satellites during 2009-2010 while 2 or 3 LIGO/Virgo detectors were taken good data No evidence for gravitational-wave counterparts Abadie et al. 2012, ApJ, 760

GRB prompt emission - TRIGGERED SEARCH

Non GW-detection result: lower bounds on the progenitor distance

Abadie et al. 2012, ApJ, 760

GRB prompt emission - TRIGGERED SEARCH

Population exclusion on cumulative redshift distribution

Results 2009-2010 & prospects for Advanced LIGO/Virgo

Abadie et al. 2012, ApJ, 760

- \rightarrow Detection is quite possible in the advanced detector era
- \rightarrow No detection will place relevant constraints on GRB population models

Electromagnetic follow-up GW > prompt EM observations

2009-2010 first EM follow-up of candidate GW events Low-latency GW data analysis pipelines enabled us to: 1) identify GW candidates in "real time" and 2) obtain prompt EM observations

GW triggers

Sky Pointing

EM facilities

Event validation

- "Search Algorithms" to identify the GW-triggers:
- Unmodeled Burst Search
- Matched Filter Search for Compact Binary Coalescence

- **"Software"** to identify GW-trigger for the EM follow-up:
- select statistically significant triggers wrt background
- determine telescope pointing

Abadie et al. 2012, A&A 539 Abadie et al. 2012, A&A 541 Evans et al. 2012, ApJS 203 Aasi et al. 2014, ApJS, 211 ADE latency expected to be improved!

Sky Localization of GW transients

The sky position of a GW source is mainly evaluated by "triangulation" based on arrival time delay between detector sites

low SNR signals were localized into regions of **tens to hundreds of sq. degrees** possibly in several disconnected patches

Necessity of wide field of view EM telescopes

Ground-based and space EM facilities involved in 2009-2010 follow-up program

Optical Telescopes

(FOV, limiting magnitude)

TAROT SOUTH/NORTH 3.4 deg², **17.5** mag

Zadko

0.17 deg², 20.5 mag

ROTSE

3.4 deg² , **17.5** mag

QUEST

9.4 deg², **20.5** mag

SkyMapper 5.7 deg², 21 mag

Pi of the Sky 400 deg², 11.5 mag

Palomar Transient Factory

7.8 deg², 20.5 mag Liverpool telescope

21 arcmin², 21 mag

X-ray and UV/Optical Telescope

Swift Satellite XRT-FOV 0.16 deg² Flux 10⁻¹³ ergs/cm²/s

Radio Interferometer

30 - 80 MHz 110 - 240 MHz

Maximum 25 deg²

5 GHz - 7 arcmin²

Optical telescope 8 GW alerts

Aasi et al. 2014, ApJS, 211

GW/EM transient data analysis results:

EM transients detected in the images consistent with the EM background

Advanced detector era observing scenario

LSC & Virgo Collaborations, arXiv:1304.0670

Advanced Detector Era Observing Scenario

LSC & Virgo Collaborations, arXiv:1304.0670

Progression of sensitivity and range for Binary Neutron Stars

Larger GW-detectable Universe

Sky Localization of Gravitational-Wave Transients

Position uncertainties with areas of **tens to** hundreds of sq. degrees

 \rightarrow 90% confidence localization areas $X \rightarrow$ signal not confidently detected

Example of skymaps for the first two years of operation, 2015 through 2016

Median 90% CR of: about **500 deg²** in 2015 about **200 deg²** in 2016

http://www.ligo.org/science/first2years

Singer et al. arXiv:1404.5623

Summary of plausible observing scenario

SC & Virgo coll arXiv:1304.067	aLIGO/Virgo Range				Rate	Localization		
	Estimated	$E_{\rm GW}=10^{-2}M_\odot c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20{ m deg}^2$
2015	3 months	40 - 60	_	40 - 80	_	0.0004 - 3	_	_
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 – 2	10 - 12
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 – 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

EM-follow up challenges:

- Fast faint transient counterparts
- ★ Large GW error box → difficult to be covered → many transient contaminants
- Larger Universe observed by LIGO/Virgo

EM-follow up key points:

- How to set up an optimal observational strategy? to image the whole GW error box or the most propable galaxy hosts?
- How to uniquely identify the EM counterpart?

TIGHT LINK is required between GW/EM/Theoretical COMMUNITIES!!

Hierachical EM-follow up Search

Aasi et al. 2014, ApJS, 211 Singer et al. 2013, ApJ, 776L

((O))VIRGO LIGO-Virgo EM-follow up plan LSC)

Agreed LVC Policy for releasing GW triggers (dcc.ligo.org/M1200055, VIR-0173A-12)

"Until first four GW events have been published, triggers will be shared promptly only with astronomy partners who have signed an MoU with LVC "

Opened call to sign MoU for the identification of EM counterparts to GW triggers found in the next science runs of aLIGO/Virgo, which will start in 2015 Deadline 16 Feb, 2014

More than
Sixty MoU applications
from 19 countries
about 150 instruments
covering the full spectrum
from radio to
very high-energy gamma-rays!

EXTRA SLIDES

Some (Astro)Physical open questionsthat need GWs, photons and theory to be answered:

- Are NS-NS and/or NS-BH merger progenitors of Short GRBs?
- What are the beaming angle of the GRB prompt emission, and the details of the energy radiation processes?
- Are NS mergers/kilonova able to explain the presence of elements heavier than iron in the Universe?
- How are BHs born and how do they evolve?
- What are the details of the mechanism through which SN explode?
- What is the EoS of matter in the interior of NS?

From VIRGO+ to ADVANCED VIRGO (AdV)

Goal → to realize a competitive detector joining the international network made by the two aLIGO and AdV

Status of the AdV project \rightarrow construction well on track

Gravitational Wave Interferometers

Spatial distortion from a **plus and a cross polarized GW**

Polarization "Plus" "Cross"

The length change is measured interferometrically by using a **laser light beam**

Suspended mirrors as test mass

Goal: to measure length change of 1 part in 10²² or 10⁻¹⁹ meters

Additional priors to improve the localization accuracy and increase the chance to observe the EM counterpart

EM-observation was restricted to the regions occupied by galaxies within 50 Mpc and Galactic globular clusters

(GWGC catalog White et al. 2011, CQG 28, 085016)

To determine the telescope pointing position:

The probability skymap of each GW trigger was 'weighted' taking into account luminosity and distance of nearby galaxies and globular clusters

Kilonovae Light Curves

Source at distance of 200 Mpc

Rate of False Alarm GW triggers

FAR will depend on the data quality of the advanced detectors "instrumental glitches" will produce an elevated background of loud triggers

2009-2010 LIGO-Virgo data

Modelled-search reduces the background

→ conservatively, $\rho_{\rm C}$ of 12 is required for a FAR 10⁻² yr⁻¹ in aLIGO and aVirgo

LSC & Virgo Collaborations, arXiv:1304.0670

Unmodelled search → more difficult to distinguish signal from glitches. At frequencies below 200 Hz significant tails of loud bkg events

EM analysis procedure to identify a GW counterpart

 \rightarrow \bigcirc \rightarrow 1 day

Main steps:

- 1) Identification of all "Transient Objects" in the images
- Removal of "Contaminating Transients"

Main challenge due to the "large sky area" to analyze

"Contaminating transients" rejection:

- by limiting the analysis to the regions occupied by the most likely GW source host galaxies
- by a rapid transient discovery and (light curve/color/shape) classification over wide sky areas
- 3) Multi-wavelength and spectroscopic follow-up of a small number of counterpart candidates to uniquely identify a counterpart of the GW trigger

Promising result: discovery and redshift of optical afterglow for the long GRB 130702 over **71 sq. degree**

Singer et al. 2013, ApJ, 776L

Observational galaxy priors to identify the most likely GW-host

Useful:

- to define an optimal observational strategy
- -to identify the image region to be analyzed

In the 2009/2010 follow up the **"blue luminosity"** was used to identify the most likely hosts **actual star formation**

EM observational results vs GW source population numerical simulation

□ Assuming that the short GRBs trace the binary neutron star mergers:

□ Population synthesis models indicate a relevant fraction (20 - 50%) of elliptical galaxy hosts at z=0 (O'Shaughnessy et al. 2008, ApJ, 675)

Optical transient sky

Exploration of the **optical transient sky** at faint magnitudes and short timescale has started recently, but **it is still unknown..**

Optical contaminating transients:

foreground - asteroids, M-dwarf flares, CVs, Galactic variable stars

background - AGN, Supernovae

For rate see Rau et al. 2009, PASP, 121 and for fast transient (0.5 hr - 1d) see Berger et al. 2013, ApJ, 779

Transient X-ray and radio sky is less populated than the optical sky

X-ray contaminating transients:

tidal disruption events, AGN variability Ultra-luminous X-ray Source variability, background GRBs

For rate in the Advanced LIGO/Virgo Horizon see Kanner et al. 2013, ApJ, 774

Radio contaminating transients:

Supernovae, AGN variability

For rate see Mooley et al. 2013, ApJ,768

Kasliwal 2011, BASI, 39

ElectromagneticTransient Sky

Exploration of the optical transient sky at faint magnitudes and short timescale has started recently

Pan-STARRS searching for fast optical transient (0.5 hr – 1d) brighter 22.5 mag:

→ primary contaminants: M-dwarf flares and asteroids (19/19 transient detections)

→ upper limit on extragalactic fast transients (no detection): rate 0.12 deg⁻² d⁻¹ (0.5 hrs) rate < 2.4 10⁻³ deg⁻² d⁻¹ (1d)

Berger et al. 2013, arXiv 1307.5324

Transient X-ray and radio sky is emptier than in the optical band

X-ray transients in the Advanced LIGO/ VIRGO horizon	Radio transients (1.4 GHz and 150 MHz)
Systematic search in the XMM-Newton	49 epochs of E-CDFS VLA observations
Slew Survey covering 32800 deg ² above	on timescale 1 day – 3 months :
a flux threshold of 3 \times 10 ⁻¹² (erg s ⁻¹ cm ⁻²)	\rightarrow transient density < 0.37 deg ⁻² above
\rightarrow 4 x 10 ⁻⁴ transients per sq. degree	0.21 mJy

Kanner et al. 2013, ApJ, 774

Mooley et al. 2013, ApJ,768 27

Summary of promising EM counterparts

EM Band	Sources	Analysis	Strength	Weakness	Example Facilities
γ-rays	On-axis GRB	EM→GW "off-line"	 → strong EM signal → temporal coincidence 	 → beamed emission/small % of events 	Fermi-GBM Swift-BAT
X-ray	On-axis and "orphan" GRB	GW →EM Low-latency	→ few false positive	→lack of wide FoV facilities	Swift-XRT ISS-Lobster
UV/O/IR	On-axis and "orphan" GRB Kilonova	GW →EM low-latency	 → Transient "survey" facilities →Isotropic 	 →numerous false positive → Faint in UV/O 	PTF, PanStarrs, VISTA, LSST
Radio	GRB Radio flares	GW→EM high-latency EM→GW "Off-line"	 → few false positive →isotropic 	 →long time delay →Dependence on ambient density 	ASKAP Apertif LOFAR

X-ray and radio

Transient X-ray and radio sky is emptier than the optical at the expected fluxes of the EM counterparts

Radio sky

Transient contaminants (1.4 GHz and 150 MHz)

49 epochs of E-CDFS VLA observations on timescale 1 day – 3 months show:

>1% of unresolved sources show variability above 40 μ Jy

density of transients is less than 0.37 deg⁻² above 0.21 mJy

Mooley et al. 2013, ApJ,768

Swift Satellite: analysis and results

Jan GW-alert

X-ray and Optical/UV image analysis

- 1) detection of the sources in the FOV
- 2) comparison with the number of serendipitous sources
- 3) variability analysis

RESULTS: XRT-analysis 20 detections (1.5 o) UV/OP-analysis 6800 detections ALL consistent with EXPECTED SERENDIPITOUS sources
NO single source with

significant variability

Joint GW/X-ray search sensitivity improvement

Figure shows

- an efficiency increase with the X-ray counterpart flux
- an efficiency gain observing with 10 (dashed) wrt 5 (solid) Swift fields

An X-ray telescope with wide FOV increases the chance to observe the counterpart despite the larger serendipitous X-ray Evans et al. 2012, ApJ 2028 ground

Expanded Very Large Array: analysis and results

Three epochs (3,5 weeks,8 months after the GW alert) of 6 cm observations. For each of the two GW-candidates observed **> 3 most probable host galaxies**

Lazio et al. , 2012 IAUS, 285

Radio Flare Light Curves

Source at distance of 300 External ambient density **n= 1cm**⁻³

in the simulation expected brighter emission

Fpeak ~ 0.2- 1 mJy tpeak ~ 2-5 years 1.4 GHz Fpeak ~ 0.04-0.3mJy tpeak ~ 1.5-5 years

Piran et al. 2013, MNRAS, 430

External ambient density critical parameter n=0.1 cm⁻³ → an order of magnitude fainter signals

EM signals from NS-NS/NS-BH merger and massive star core-collapse

Blind radio search → GW search **"Radio Triggered analysis"**

Optical afterglow ON-AXIS GRB

Power-law luminosity decay with time $t^{-\beta} \rightarrow \beta = 1 \div 1.5$

Optical afterglow "Orphan GRB"

X-RAY and Radio GRB Afterglow

Kanner et al. 2013, ApJ, 759

Short GRB 050709:

Fox et al. 2005, Nature 437