

INTRODUCTION

Augusto Ceccucci / CERN

NA62 Collaboration Meeting

September 1 - 5, Ferrara, Italy

FERRARA: A CITY OF ARTS AND SCIENCES

 Nicolaus Copernicus was a Renaissance mathematician and astronomer who formulated a model of the universe that placed the Sun rather than the Earth at its center.

In 1503, Copernicus attended the University of Ferrara, where he prepared to take the canon law exam. After passing the test <u>on his first attempt</u>, he hurried back home to Poland, where he resumed his position as canon and rejoined his uncle at a nearby Episcopal residence (source biography.com)

FERRARA: A CITY OF ARTS AND SCIENCES

• Alfonso II d'Este

(22 November 1533 - 27 October 1597) was Duke of Ferrara from 1559 to 1597. He raised the glory of Ferrara to its highest point, and was the patron of Torquato Tasso, Giovanni Battista Guarini and Cesare Cremonini – favouring the arts and sciences, as the princes of his house had always done....(source Wikipedia)

NA62 GOAL

• We aim to measure precisely

$Br(K^+ \to \pi^+ \nu \overline{\nu})$

exploiting a novel in-flight technique based on:

- Calorimetry to veto extra particles
- Very light trackers to reconstruct the K^+ and the π^+ momenta
- Full particle identification

State of the art:	Decay	Branching Ratio (×10 ¹⁰)				
		Theory (SM)	Experiment			
	$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$			
	$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.27 \pm 0.04^{[3]}$	< 260 (90% CL) ^[4]			
	$B^0_s o \mu^+ \mu^-$	32.3 ± 2.7^{51}	$29 \pm 7^{[6]}$			

[1] J. Brod, M. Gorbahn, PRD78, arXiv:0805.4119
[2] AGS-E787/E949 PRL101, arXiv:0808.2459
[3] M. Gorbahn arXiv:0909.2221
[4] KEK-E391a, arXiv:0911.4789v1
[5] A.J. Buras et al., EPJ C72, arXiv:1208.0934
[6]MS PAS BPH-13-007; LHCb-CONF-2013-012

The NA62 Collaboration

NA62 "NO-LOSE" THEOREM

Measure precisely SM parameters <u>or</u> discover New Physics

Part of a Strong Flavour program worlwide which includes LHCb and BELLEII

NA62 Layout

~10¹² / s protons from SPS (400 GeV/c) on Be target (~1 λ)

750 MHz secondary beam: •Positive •Kaon fraction ~6% • $\Delta p/p \sim 1\%$

NA62 STRAW TRACKER

NA62 RICH

SM and CKM matrix

The unique measure of CP-Violation in the SM is the area of the Unitarity Triangle (Jarlskog invariant J)

 $J = (2.96^{+0.20}_{-0.16}) \times 10^{-5}$

PDG 2014

UNITARITY TRIANGLE FOR KAONS

- When the bd UT is used, the variables extracted from kaons are affected by an apparent parametric uncertainty due to V_{cb}
- The six UTs are all born equal (they have the same measure of CP-violation, the Jarlskog invariant J_{CP})
- K_{e3} , BR($K^+ \rightarrow \pi^+ \nu \nu$) and BR($K^0_L \rightarrow \pi^0 \nu \nu$) (or ε , $\varepsilon' / \varepsilon$) completely determine the ds UT triangle w/o V_{cb} or V_{ub} (S. Kettell et al., 2002)
- A remarkable feature is that in the ds UT
 J_{CP}= 5.6 * sqrt(BRK0) !!!
 This is a determination which is basically free

This is a determination which is basically free from theoretical error (down to 1-2%)

 It is to be compared with the current J_{CP} determination from the bd UT fit where the error ranges from 3% to 7% depending on the treatment of the errors

UNITARITY TRIANGLES (UT)

FIG. 1. The unitarity triangles for three quark generations, as presented in Ref. [9]. The triangles are labeled by the pair of rows or columns whose orthogonality is represented. The angles as numbered are: $1 \equiv \alpha$; $2 \equiv \beta$; $3 \equiv \pi - (\alpha + \beta)$ (conventionally called γ if closure of the triangle is not assumed); $4 \equiv \beta + \epsilon - \epsilon'$; $5 \equiv \pi - (\alpha + \beta + \epsilon - \epsilon')$; $6 \equiv \epsilon$; $7 \equiv \alpha + \beta - \epsilon'$; $8 \equiv \pi - (\beta + \epsilon)$; $9 \equiv \epsilon'$. In all cases, the arrows on the complex vectors are oriented counterclockwise, indicating the experimental positivity of J.

From R.F. Lebed, PRD 55, 348, hep-ph/9607305

 $Br(K_L^0 \to \pi^0 \nu \overline{\nu})$

• Why it is so special:

1. Apart from a small admixture $(\epsilon_{K} \sim 2.229 \ 10^{-3}), K_{L}^{0}$ is a CP eigenstate. Neglecting the CP-even state we can write:

$$<\pi^{0}\nu\bar{\nu} |A| K^{0} > \sim V_{td}V_{ts}^{*}X(x_{t}) + P_{c}(X)V_{cd}V_{cs}^{*}$$

$$<\pi^{0}\nu\bar{\nu} |A| \overline{K}^{0} > \sim V_{td}^{*}V_{ts}X(x_{t}) + P_{c}(X)V_{cd}^{*}V_{cs}$$

$$|K_L^0 > \sim \frac{K^0 - \overline{K}^0}{\sqrt{2}}$$

2. In taking the difference, the charm part (which is almost real) drops off and only the imaginary part of the top contribution remains!

 $<\pi^{0}\nu\overline{\nu}|A|K_{L}^{0}>\sim \mathrm{Im}V_{td}V_{ts}^{*}X(x_{t})$

- 3. The main experimental background $(K_{L}^{0} \rightarrow \pi^{0} \pi^{0})$ is heavily suppressed by CP conservation !
- 4. The very long life time of the K_{L}^{0} makes the interesting partial width "measurable" (Br~O(10⁻¹¹))

 $Br(K_L^0 \to \pi^0 \nu \overline{\nu})$

Formulas from A.J. Buras et al. RMP 80, 2008

$$Br(K_L^0 \to \pi^0 \nu \overline{\nu}) = \kappa_L \times \left(\frac{\operatorname{Im} \lambda_t}{\lambda^5} X(x_t)\right)^2$$
$$\kappa_L = (2.231 \pm 0.013) \times 10^{-10} \left[\frac{\lambda}{0.225}\right]^8$$
Numerical example:

 $\lambda_i = V_{id} V_{is}^*$

$$Im V_{td} V_{ts}^* = \sin \beta_K |V_{td} V_{ts}^*| \sim 1.29 \times 10^{-4}$$

X(x_t) ~ 1.44

 $\lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}$

$$Br(K_L^0 \to \pi^0 \nu \overline{\nu}) \sim 2.3 \times 10^{-11}$$

 $Br(K^+ \to \pi^+ \nu \overline{\nu})$

$$Br(K^{+} \to \pi^{+} \nu \overline{\nu}) = \kappa_{+} (1 + \Delta_{EM}) \times \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) + \frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} \right)^{2} \right]$$
$$\kappa_{+} = (5.173 \pm 0.025) \times 10^{-11} \left[\frac{\lambda}{0.225} \right]^{8}$$

Formulas from A.J. Buras et al. RMP 80, 2008

 $Br(K^+ \to \pi^+ \nu \overline{\nu})$ (MY NUMEROLOGY)

$$Br(K^{+} \to \pi^{+} \nu \overline{\nu}) \propto 1.56 \times 10^{-4} \times \begin{bmatrix} |V_{td}V_{ts}^{*}|^{2} X(x_{t})^{2} + 2\lambda^{5} P_{c}(X) | V_{td}V_{ts}^{*} | X(x_{t}) \cos \beta_{K} + \lambda^{10} P_{c}(X)^{2} \end{bmatrix} \approx \\ \begin{bmatrix} 4.40 + 3.68 + 0.87 \end{bmatrix} \times 10^{-11} = \\ 8.95 \times 10^{-11} \end{bmatrix}$$

The charm- top-quark interference term is comparatively large

$$\cos \beta_{\rm K} = \cos \beta - \beta_{\rm s} \approx 0.94$$

For this set of values the m_c parametric uncertainty is: $\delta Br/Br \sim 0.68 \ \delta P_c/P_c$

 $|V_{td}V_{ts}^*| \sim 3.69 \times 10^{-4}$ (PDG 2014)

 $X(x_t) \sim 1.44$ (Buras et al.)

 $P_{c}(X) = 0.41 \pm 0.05$ (Buras et al.)

CHARM CONTRIBUTION PARAMETRIC SENSITIVITY

$$\frac{\sigma\left(|V_{td}|\right)}{|V_{td}|} = \pm 0.41 \frac{\sigma\left(P_c(X)\right)}{P_c(X)},$$
$$\frac{\sigma\left(\sin 2\beta\right)}{\sin 2\beta} = \pm 0.34 \frac{\sigma\left(P_c(X)\right)}{P_c(X)},$$
$$\frac{\sigma\left(\gamma\right)}{\gamma} = \pm 0.83 \frac{\sigma\left(P_c(X)\right)}{P_c(X)},$$

Thanks to the NNLO calculation (Buras, Gorbahn, Haisch, Nierste, 2006) the charm scale error is now negligible.

The main charm uncertainty now comes from the charm mass

Effects of light quarks loops were computed by Mescia and Smith (2005)

Two loop EW corrections were computed by Brod, Gorbahn and Stamou (2011)

SPS: October 2014

schedule	e issue date: 14-Au	g-2014	Version	n: 2.3										
		Mon Tue Wed T 29 30 1 Sep Sep Oct C	huFriSatSun2345OctOctOctOct	Mon Tue W 6 7 \$ Oct Oct O	⁷ ed Thu Fri 8 9 10 ct Oct Oct	Sat Sun 11 12 Oct Oct	Mon Tue W 13 14 1 Oct Oct O	Ved 15 Oct	ThuFriSatSun16171819OctOctOctOct	Mon Tue We 20 21 22 Oct Oct Oc	d Thu Fri Sat Sun 2 23 24 25 26 t Oct Oct Oct Oct	Mon Tu 27 2 Oct O	ue Wee 8 29 ct Oct	d Thu Fri Sat Sun 30 31 1 2 t Oct Oct Nov Nov
	Week		40		41				42		43			44
Mach	ine			75	19h		7h	19ł	h	7h	19h	7h	UA9 TS MD ^{8h 7h} 1	16h
	T2 - H2		NA Setup	D. Lazic	CMS	Si/GE	D. Lazic	M	S Upgrade 1	D. Lazic	MS Upgrade 2	Z. F	NA odor	61 (SHINE)
	T2 - H4		NA Setup	Y. Itow			LH	Cf	D. Lazic	C	MS EE aging	D. L	azic	ECAL R&D
Area	T4 - H6A		NA Setup	M. Silari		CERF	H. Kaga	an	RD42	S. Vlachos	;	A	FLA	S ITK/NSW
North	T4 - H6B		NA Setup	M. Silari		CERF	P. Mart <mark>i</mark>	inen	ALICE ITS	M. Moll	RD50	F. W	/ilson	Arachnid
	T4 - H8		NA Setup	H. Schin	dler	LHCb	M. Bozz	<u>о</u> т	FEM(+UA9)	H. Schindl	er			LHCb
	T4 - K12		NA Setup	A. Cecci	icci									NA62
	T6 - M2		NA Setup	F. Kunn	e							NA	58	(COMPASS)
For furt	For further information contact the PS/SPS-Coordinator. Email: Sps.Coordinator@cern.ch. Tel: +41 76 487 3845.													

The latest version of the schedule are available here: http://sps-schedule.web.cern.ch/sps-schedule/

This schedule in synchronized with injector schedule v1.6

No access to EHN1 experimental areas 22-25 of September for access system tests.

2 extractions with a 4.8s flat top per supercyle.

No beam during Technical Stops (TS) and Machine Developments (MD)

in H8 UA9 runs parasitically to Totem, ATLAS MDT parasitically to LHC-b.

NA62: BEAM TIME 2014

					SPS i	user	scheo	dul	e for 2	014				
schedule	issue date: 14-Au	g-2014		Version:	2.3	HC Exp.	PS/SPS Ex	p.	INT Exp. Ot	her Exp.				
Oct						Nov				Dec				
	Week	40	41	42	43	44	45	46	47	48	49	50	51	52
Mach	ine		7h 19h	7h 19h	7h 19h	7h 8h 7h6h 8h		8h 7h 19h	7h 19h	7h 7h 7h9h	7h 10h	7h 19h		
	T2 - H2	NA Setup 4	CMS Si/GE	CMS Upgrade 1 7	CMS Upgrade 2 7	NA61 (SHINE) 7				NA61 (SHINE	E)			
Area	T2 - H4	NA Setup 4	LHCf 10	СМ	S EE aging	CMS ECAL R&D 7		CMS ECAL R&D 2	RE29 PHOT DAMPE) ICE-RA 7 7	AG RD51	GIF++ setup 2	RD51		
	T4 - H6A	NA Setup 4	CERF 7	RD42 7	ATLAS IT	rk/nsw		Clic 7	pix RE20 (BELLE	Monopix	Calice (Sdhcal) 7	CERF 7		
North	T4 - H6B	NA Setup 4	CERF 7	ALICE ITS	RD50 7	Arachnid 7		ALICE	ITS ATLAS AFP	RE20 DEPFET(BELI II) 7	LE <mark>(Sdhcal)</mark> 7	CERF 7		
	T4 - H8	NA Setup 4	LHCb 7	тотем (+UA9) 7	LH 1	С <mark>ь</mark> 4		ATLAS	MDT ALICE FOCAI	L LHCb	RD52- (DREAM) 7	TOTEM (+UA9) 7		
	T4 - K12	NA Setup 4					NA 7	62 0						
	T6 - M2	NA Setup 4					NA58 (CC 7	OMPASS 0	5)					
For furt	her information co	ntact the l	PS/SPS-Coo	rdinator. Em	ail: Sps.Coord	linator@cern.	ch, Tel: +41	76 487	3845.					

 $The \ latest \ version \ of \ the \ schedule \ are \ available \ here: \ http://sps-schedule.web.cern.ch/sps-schedule/$

This schedule in synchronized with injector schedule v1.6

No access to EHN1 experimental areas 22-25 of September for access system tests.

2 extractions with a 4.8s flat top per supercyle.

No beam during Technical Stops (TS) and Machine Developments (MD)

in H8 UA9 runs parasitically to Totem, ATLAS MDT parasitically to LHC-b.

ARGON IONS IN SPS: NOT FOR NA62

Dear Colleagues,

there will be a 6 week SPS run with Ar ions for the NA61 experiment early 2015. The exact dates will be finalised in october 2014.

- The momenta which will be available during this run are 13A GeV/c, 19A GeV/c, 30A GeV/c, 40A GeV/c, 75A GeV/c, 150A GeV/c. Ar ions can be made available for test-beams in the H4 and/or H8 beam lines, according to interest of the user community.
- Please let me know you beam time request for these 2 beam lines for the Ar run by filling the attached beam time request form and returning it to me by September 15th 2014.

Best regards,

Henric Wilkens

LHC FUTURE RUNNING 2010 - 2035 ~3000 fb⁻¹ Peak luminosity Integrated luminosity 6.0E+34 1000 5.0E+34 100 4.0E+34 Luminosity [cm⁻²s⁻¹] -S3 S コ 3.0E+34 10 2.0E+34 1 1.0E+34 0.0E+00 0.1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Year

machine and

ovnorimonts

LS3: HL-LHC upgrade -

Presented by M. Lamont at Rencontres du Vietnam 2014: Physics at LHC and beyond

34

Integrated luminosity [fb⁻¹]

LHC schedule beyond LS1

=> 18 months + 3 months BC

Physics

The CERN LHC Roadmap

LS2 starting in 2018 (July)

Availability of the LHC injectors (R. Heuer, March 2014 Council)

For how long should we take data ?

Naive projection: S=S_SM; S_EQ = S/(1+B/S)

δBR/BR (%) = sqrt(S_EQ)/S_EQ

Running until	B/S	δ BR/BR (%)	
LS2	1/10 3/10 1/1	6.1 6.6 8.2	
LS3	1/10 3/10 1/1	4.1 4.4 5.5	
LS4	1/10 3/10 1/1	3.5 3.7 4.6	

It depends crucially on the level and knowledge of the backgrounds

To match the ~5% theory error requires to run until LS3

Implications for operation and maintenance

DISCUSSION/SPARE MATERIAL

NA62 Sensitivity

Decay	evt/year
K ⁺ → π^+ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

Kaon Rare Decays and BSM

C. The Z penguin (and its associated W box)

(courtesy by Christopher Smith)

Example: Rare *K* decay sensitivity to flavor violating *Z*'

Sensitivity beyond direct searches

THE UNITARITY QUADRANGLES

The three elements which are most relevant to our study are

$$U_{ds} = V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts},$$

$$U_{db} = V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb},$$

$$U_{sb} = V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb}.$$
(3.7)

The fact that, in contrast to the Standard Model, the various U_{pq} do not necessarily vanish, allows FCNC at tree level. This may substantially modify the predictions for CP asymmetries.

From: Grossman, Nir and Rattazzi hep-ph/970123

A NICE INTERPLAY BETWEEN KAONS AND BEES IN THE SM

$$\frac{\Gamma(K_L^0 \to \pi^0 \nu \overline{\nu})}{\Gamma(K_S^0 \to \pi^0 \nu \overline{\nu})} = \tan(\beta - \beta_s)^2$$

$$\frac{\Gamma(K_L^0 \to \pi^0 \nu \overline{\nu})}{\Gamma(K^+ \to \pi^+ \nu \overline{\nu})} = r_{is} \sin(\beta - \beta_s)^2$$

Sensitivity BSM

$$A_{SM} + A_{NP} = K_{SM} \frac{\alpha_W}{4\pi} \frac{F_{CKM}}{M_W^2} + K_{NP} L \frac{F_{NP}}{\Lambda^2}$$

Operator	Bounds on A	l in TeV ($c_{NP} = 1$)	Bounds on c	NP $(A = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	Amo 5
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$ \simeq m_{iK}, \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_{-1} = \alpha m _{-1} = \phi_{-1} $
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	$1.5 imes10^4$	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$ \Delta m_{sD_1} q/p _{D_1} \psi_D $
$(\bar{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	$9.3 imes 10^2$	2.3×10^{-6}	1.1×10^{-6}	$A_{m_{P_{1}}} : \sin(2\beta)$ from $B_{1} \rightarrow \psi K$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^{3}	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{a} = \phi n$
$(\overline{b}_L \gamma^\mu s_L)^2$	1.4×10^{2}	2.5×10^{2}	5.0×10^{-5}	1.7×10^{-5}	Am- i gin(A) from R raid
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^{2}	$8.3 imes 10^2$	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{\delta B_{\delta 1}} \sin(\psi_{\delta}) \operatorname{Hom} D_{\delta} \to \psi \psi$

Isidori and Teubert, arXiv:1402.2844