

Physics Overview

Giuseppe Ruggiero (CERN) NA62 Collaboration Meeting Ferrara, 01/09/2014

Giuseppe Ruggiero - NA62 Collaboration Meeting

πνν Physics Program

Giuseppe Ruggiero - NA62 Collaboration Meeting

Decay	Physics	Present Result	SM expectation	NA62
$\pi^+ \nu \nu$	New Physics	$(17 \pm 11) \times 10^{-11}$	$(7.8 \pm 0.8) \times 10^{-11}$	10% precision measurement

- ✗ NA62 has been designed for:
 - **×** Getting O(100) SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events in 2 years of data
 - ★ Reaching a 10⁻¹² single event sensitivity for K⁺ decay
 - **×** Gigatracker
 - **x** L-R asymmetric layout preventing the possibility of reversing B
 - **x** Very long lever arm of the Straw Spectrometer

CERM

Background 0

Signal

0

NA62

٩

1) K⁺ decay modes 2) Accidental single track matched with a K-like track ٩

CÈRN

$\pi\nu\nu$ Sensitivity

Decay	evt/year
K ⁺ → π^+ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ v$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

- Cut & count analysis without any optimization
 - e.g. Use of the m_{miss}^2 shape to add further signal/background discrimination

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Measurement

- Signal selection
 - L0, Higher Levels Trigger
 - Straw tracks reconstruction
 - Single pion track topology
 - Beam tracks reconstruction
 - Kaon ID (KTAG)
 - beam pion matching
 - Event kinematics (m_{miss}^2)
 - Pion ID using RICH
 - Pion ID using calorimeters (muon/electron rejection)
 - Single pion topology downstream to straw spectrometer
 - Beam-induced accidental rejection / measurement
 - Photon rejection
- Background measurement
- Acceptance measurement (trigger efficiency, detector efficiency, random veto ...)
- Normalization

CÉRN

πνν L0 Trigger

Goal: 10 MHz \rightarrow < 1 MHz

- **×** Acceptance:
 - × Q1 (CHOD)
 - $\times \text{ N RICH (Hits > 3)}$
- **×** Energy (γ rejection):
 - $E_{em}(LKr + SAV) < 20 \text{ GeV}$

 - $\bullet \quad E_{LAV,SAV} < 4 \text{ GeV}$

x Muon rejection:

- × !MUV3
- $E_{LKr} > 1.5 \quad OR \\ E_{MIIV} > 8.5 \text{ GeV}$

Table 3: Expected particle rate (KHz) after applying L0 and trigger efficiency

_	•	•	(/ /	
	Process	Original	Rate, no accidentals	Rate, with accidentals
-	$K_{\mu 2}$	8397	$2.4{\pm}0.5$	11.3 ± 1.5
	$\pi^+\pi^0$	2729.9	$40{\pm}2$	$39{\pm}1$
	$\pi^{+}\pi^{+}\pi^{-}$	738.6	39.2 ± 0.9	$34.4{\pm}0.8$
-	$\pi^{+}\pi^{0}\pi^{0}$	232.7	1.0 ± 0.1	$1.2{\pm}0.1$
-	K_{e3}	669.9	13.9 ± 0.5	12.9 ± 0.5
	$K_{\mu 3}$	443.0	8.7 ± 0.3	$6.9{\pm}0.3$
	Beam π^+	526000	48 ± 5	48 ± 5
	Beam protons	173000	3.9 ± 0.7	$3.0{\pm}0.7$
	Muons upstream	135000	1±1	22 ± 5
-	Total L0		158 ± 6	179 ± 8
			Efficiency, no accidentals	Efficiency, with accidentals
0	Signal		$(91.13 \pm 0.004)\%$	$(74.85 \pm 0.006)\%$

πνν HLT Trigger

Goal: $1 \text{ MHz} \rightarrow < 20 \text{ KHz}$

★ At least one track reconstructed (full pattern		Channel	L0 Ra multij	te KHz (without olicity cuts)
	recognition in straw)	$\pi^+\pi^0$	0.5	
×	Momentum between 10 and 45 GeV (no fit, only full pattern recognition)	$\pi^+\pi^+\pi^-$	11.3	
×	Z vertex < 180 m (no fit, only full pattern	$\pi^+\pi^0\pi^0$	0.01	
	recognition, vertex done as intersection with the	$\mu^+ \nu$	1.0	Rough estimation,
	nominal beam axis)	$\pi^0 e^+ v$	10	no accidentals
×	RICH, CHOD mulitplicity		1.0	
×	CEDAR	$\pi^0\mu^+ u$	0.6	
		Beam π^+	7.0	
Track + P + Z requirements applied on events passing $\pi v v$ full L0		Beam p	0.9	
		Total	22.2	

without accidentals (x5 reduction)

Single pion track (Straw Spectrometer)

Goal: $\sigma(P)/P = 0.32\% \oplus 0.008\% P [GeV/c], \quad \sigma(dX, Y/dZ) = 20 - 50 \mu rad$

Straw signal

- **x** T0 for leading and trailing time \rightarrow trigger time
- Straw hit time window for leading time driven by the straw drift time (~ 160 ns).
- ★ Expected resolution on trailing time of single hits \rightarrow 20 ns (measured in lab 35 ns).

Identify single pion track event:

- ★ Bad t0 for accidental tracks → mis-measured drift time → worsening of pattern recogition
- **×** Time resolution of reconstructed track from trailing time: $\sigma(t_{hit})/\sqrt{N_{hit}} \sim 4 8$ ns

High resolution track measurement:

- Accurate straw by straw calibration/alignment
- ★ Map of the MNP33 magnetic field
- × Precise treatment of the MS in the fit

Beam track (Gigatracker)

Goal:
$$\sigma(P_K)/P_K = 0.2\%$$
, $\sigma\left(\frac{dX,Y}{dZ}\right)_K = 15 \,\mu rad$

Pattern recognition

- **×** Fake track reduction
 - Fraction of: Kaons 3.6%, Pileup 5.3%, Fake 91%
- Various methods for reduction under study
 - Best result reached on MC: fake < 0.5%.

High resolution track measurement:

- **x** 3 stations are not enough to use a fit for momentum and slope measurement
- **×** Possibility of adding the target as additional point under study

K⁺ - π^+ Matching

Goal: Mis-matching probability < 1%

- K⁺ and π^+ time matching
 - Gigatracker: $\sigma(t) = 200 \text{ ps} / \text{station}$
 - KTAG: $\sigma(t) < 100 \text{ ps}$
 - RICH: $\sigma(t) < 100 \text{ ps}$

MC '12

-0.8 -0.6 -0.4 -0.2 0

• Main limitations: time resolution, GTK inefficiency

2200

2000

1800 1600

1400 1200 1000

> 800 600

Kaon ID

Event Kinematics

Goal: $\pi^+\pi^0$ rejection factor $\sim 5 \times 10^3$, $\mu^+\nu$ rejection factor $\sim 1.5 \times 10^4$

Cut on m_{miss}^2 :

NA6Z

- Control of the non gaussian tails of the resolution
- Pileup reduction in Gigatracker
- Precise relative alignment between Straw and Gigatracker

Momentum range: (15, 35) GeV:

• Key requirement

Giuseppe Ruggiero - NA62 Collaboration Meeting

Pion ID (RICH)

Goal: $10^2 - 10^3 \pi/\mu$ separation up to 35 GeV, $\sigma(t) \le 100$ ps

Pion ID / Muon rejection (Calorimeters)

Goal: 10^4 - $10^5 \pi/\mu$ separation

MUV3

MUV1-2

 Bulk of the rejection at trigger level

01/09/2014

Photon rejection

Goal: $10^8 - 10^3 \pi^0$ rejection from $K^+ \rightarrow \pi^+ \pi^0$

- Bulk of the rejection at trigger level (high energy photons).
- Offline rejection needed to cover mainly the low energy part of the photon spectrum × **LKr** LAV

E_{γ} (GeV)	Inefficiency
2.5 - 5.5	<10-3
5.5 – 7.5	<10-4
7.5 – 10	< 5 x 10 ⁻⁵
>10	< 8 x 10 ⁻⁶

- Main issues: ×
- pion photon cluster × separation;
- identification of the clusters × due to photo-nuclear interactions.

- Main issue: ×
- rejection vs energy × threshold.

IRC / SAC

Expected inefficiency limited by the γ interactions with the material in front 10⁻² and 10⁻⁴

- Main issue: ×
- Thresholds to × avoid the high rate in IRC and dump back-scattering in SAC

Single pion event topology

Goal: >10⁵ rejection factor on $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

			$N(K^+ \rightarrow \pi^+ \pi^+ \pi^-)$	$N(K^+ \rightarrow \pi^+ \nu \nu)$
9	Multiplicity in RICH	No CHOD	(63 + 9)	53
٩	Multiplicity in CHOD			
	Multiplicity in LKr	No RICH	(12 ± 2)	48
•	Multiplicity in MUV1,2	No Segment	(54 ± 8)	48
٩	Segments in Straws	No LAV	(63 ± 9)	47
0	LAV 9,10,11,12	No MUV0	(52 ± 8)	47
٩	MUV0	No HAC	(10 ± 4)	47
•	HAC	No Segment, RICH, CHOD	$(181 \pm 5) \times 10^3$	54

Accidental rejection

Goal: 10^8 - 10^9 rejection factor	Rate at first straw plane (MC)			
	Hit Type	N2		
K interaction	Elastic	461±20	20	
	CEDAR Gas Inelastic	18±4		
• CEDAK	GTK1 Inelastic	0±1		
• CHANTI	GTK2 Inelastic	3±1	Datas	
• Gigatracker	GTK3 Inelastic	(161±12)	Rates	
0	Other Inelastic	56±7		
Final state topology	Total Rate from Scattering	699±25	_	
• All the detectors downstream.	Total Rate from Decays	9200	-	
Tails of the reconstructed 7 vertex	У			

18

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Measurement

 $\frac{BR(K^+ \to \pi^+ \nu \bar{\nu})}{BR(norm.)} = \frac{(N_{\pi\nu\nu}^{data} - N_{\pi\nu\nu}^{bckg}) \cdot \mathcal{A}_{norm} \cdot \varepsilon_{norm}^{trig}}{(N_{norm}^{data} - N_{norm}^{bckg}) \cdot \mathcal{A}_{\pi\nu\nu} \cdot \varepsilon_{\pi\nu\nu}^{trig}}$

• Background: $N_{\pi\nu\nu}^{bckg} = N_{\pi\nu\nu}^{\pi^+\pi^0} + N_{\pi\nu\nu}^{\mu\nu} + \cdots \approx \mathcal{O}(\mathbf{0}, \mathbf{1}) \cdot N_{\pi\nu\nu}^{data}$

• Acceptance: $\mathcal{A}_{\pi\nu\nu} \approx \mathcal{A}_{\pi\nu\nu}^{geom} \cdot \varepsilon_{K}^{CEDAR} \cdot \varepsilon_{K}^{GTK} \cdot \varepsilon_{\pi}^{Straw} \cdots \approx 0.1$

- Choice of the normalization to avoid the precise measurement of the signal acceptance and trigger efficiency.
- Measurement of the background
 - Measurement by extrapolation from control regions
 - Measurement by «orthogonal» samples
 - Measurement via the direct evaluation of the acceptance factors using control samples $N_{\pi\nu\nu}^{source} = N_{K}^{decay} \cdot \operatorname{Prob}(\operatorname{source}) \cdot \mathcal{A}_{\pi\nu\nu}^{source} \approx \mathcal{O}(10^{-13}) \cdot N_{K}^{decay}$ example: $\mathcal{A}_{\pi\nu\nu}^{\pi^{+}\pi^{0}} \approx \mathcal{A}_{aeom}^{\pi^{+}\pi^{0}} \cdot \varepsilon_{K}^{CEDAR} \cdot \varepsilon_{K}^{GTK} \cdot \varepsilon_{\pi}^{Straw} \cdot \eta_{\pi^{0}} \cdot \eta_{kine}$

Background measurement

Goal: 10% background measurement

× Direct measurement:

- ***** Definition of control regions in m_{miss}^2 vs ... plane
- **×** Direct estimation of the photon / muon / multi-particle event rejection factor
- ***** Measurement from orthogonal samples:
 - **×** Profit from «detector redundancy» to define background-enriched samples
 - Ad-hoc triggered control samples: e.g. sample of events triggered with CEDAR in veto to measure the background from accidentals

× Rejection factor measurements:

- ★ Measurement of the non-gaussian tails of the reconstruction using $K^+ \rightarrow \pi^+ \pi^0$ selected with the LKr only (technical run like).
- ★ Mesurement of the photon veto inefficiency using $K^+ \rightarrow \pi^+ \pi^0$ and $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ selected with the spectrometer only (sensitivity to single photon inefficiency < 10⁻⁵).

× ...

Detector Performances

Performance	Expected	Measured
Kinematic rejection inefficiency	$10^{-3} \div 10^{-4}$	-
Muon ID RICH inefficiency	$10^{-2} \div 10^{-3}$	-
Pion ID RICH efficiency	>90%	-
Positron ID RICH inefficiency	10-3	-
Muon ID Calorimeter inefficiency	10-5	-
Pion ID Calorimeter efficiency	> 90%	-
Positron ID LKr inefficiency	10-2	-
Photon rejection inefficiency in LKr	10 ⁻⁵ (> 10 GeV)	-
Photon rejection inefficiency in LAV	$10^{-3} \div 10^{-4}$	-
Photon rejection inefficiency in SAC	$10^{-2} \div 10^{-3}$	-
Kaon ID efficiency in KTAG	95%	-
Kaon – Pion mis-ID	<1%	-

non – $\pi v v$ Physics Program

Giuseppe Ruggiero - NA62 Collaboration Meeting

NA62 as a K⁺ facility (1)

LFV

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²

NA62 as a K⁺ facility (2)

Forbidden (non LFV)

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10^{-12}
$\pi^+\chi\chi$	New Particle	—	10^{-12}
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10^{-12}

NA62 as a K⁺ facility (3)

Others

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{v_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	$O(10^{6})$
$\pi^0\pi^0\mu^+ u$	χPT	-	O(10 ⁵)

NA62 as a π^0 facility

Single event sensitivity for π^0 decays: 10⁻¹¹

Decay	Physics	Present limit (90% C.L.)	Prediction	NA62
μ^+e^-	LFV	3.8×10^{-10}	Forbidden	
$\mu^- e^+$	LFV	3.4×10^{-8}	Forbidden	
3γ	CV	3.1×10^{-8}	Forbidden	10^{-10}
4 γ	Light Scalar	2.0×10^{-8}	10 ⁻¹¹	10^{-10}
νν	RH v	2.7×10^{-7}	$< 10^{-13}$	< 10 ⁻⁹
e ⁺ e ⁻ e ⁺ e ⁻	TV	$3.34(16) \times 10^{-5}$	$3.26(18) \times 10^{-5}$	
$e^+e^-\gamma$	U boson	$< 10^{-5}$, $M_U = 30 MeV$	-	×100
		$< 3 \times 10^{-6} M_U = 100 MeV$		better

L0 Trigger for non - $\pi\nu\nu$ decays		
Condition	α , kHz	β , kHz/ns
Track multiplicity		
$R_4 \cdot Q_1$	10340	$10 F[\mathrm{R}_4 \cdot \mathrm{Q}_1/1000] \approx 10 \text{ kHz}$
$R_{10} \cdot C_2$	1667	84
$R_{10} \cdot Q_2$	1486	72
$R_{10} \cdot Q_X$	1197	38 $F[R_{10} \cdot Q_X/100] \approx (10 + 0.4\Delta t/ns) \text{ kHz}$
$\begin{array}{l} {\rm Track} + {\rm EM} \ {\rm energy} \\ {\rm R}_4 \cdot {\rm Q}_1 \cdot {\rm E}(10) \end{array}$	2504	18 $F[R_4 \cdot Q_1 \cdot E(10)/50] \approx (50 + 0.4\Delta t/ns) \text{ kHz}$
Di-electron		
$R_{10} \cdot Q_X \cdot E(10)$	905	19 $F[\mathbf{R}_{10} \cdot \mathbf{Q}_{\mathbf{X}} \cdot \mathbf{E}(10)/10] \approx (90 + 2\Delta t/\mathrm{ns}) \mathrm{kHz}$
Di-muon		
M_2	632	103
MO_2	244	46
$R_{10} \cdot M_2$	195	83
$R_{10} \cdot MO_2$	95	42
$R_{10} \cdot Q_X \cdot M_2$	0	25
$R_{10} \cdot Q_X \cdot MO_2$	0	15 $F[R_{10} \cdot Q_X \cdot MO_2] \approx (10 + 15\Delta t/ns) \text{ kHz}$
Muon + tracks + EM energy		
$R_{10} \cdot Q_X \cdot M_1 \cdot E(10)$	150	34
$R_{10} \cdot Q_X \cdot MO_1 \cdot E(10)$	111	26 $F[\mathbf{R}_{10} \cdot \mathbf{Q}_{\mathrm{X}} \cdot \mathrm{MO}_{1} \cdot \mathbf{E}(10)] \approx (100 + 25\Delta t/\mathrm{ns}) \mathrm{kHz}$

2014 run: Pilot Physics Run

Goals:

- 1) Detector commissioning
- 2) Assess physics sensitivity
- **×** Assumptions:

NA62

- ★ 60 days of data taking (vs nominal run 100 days)
- ★ 10% of the nominal Intensity x data taking efficiency

$$N_{K} = 0.06 \cdot 4.5 \times 10^{12} = 2.7 \times 10^{11}$$

$$N_{\pi\nu\nu}^{selected} = N_{K} \cdot BR(\pi\nu\nu) \cdot \mathcal{A}_{\pi\nu\nu} = (2.7 \times 10^{11}) \cdot (0.8 \times 10^{-10}) \cdot 0.1$$

$$N_{\pi\nu\nu}^{selected} \approx 2.2 (SM)$$

× We can reach the SM sensitivity.

CÈRN

2014 Run: Detector commissioning

- ★ Use physics: e.g. $K^+ \rightarrow \pi^+ \pi^0$ method already used for the 2012 Technical run.
- ***** Analysis Method: selection of $K^+ \rightarrow \pi^+ \pi^0$ events
 - × Selection based on the LKr
 - \star π^0 reconstruction
 - **×** Z vertex from 2 γ on the LKr assuming m_{π^0}
 - **×** Beam kinematics well defined by the beam line
 - $P_{\pi^+} = (P_K P_{\pi^0}) \rightarrow P_{\pi^+}^2 = m_{\pi^+}^2 \text{ for } K^+ \rightarrow \pi^+ \pi^0$
 - Powerful method to study the time correlations between sub-detectors
 - The position of the charged pion can be predicted with a resolution of few cm at each detector

★ Different methods needed for commissioning LAV, IRC, SAC

2014 Run: Physics Goals

- 1. Reconstruct all the 6 K⁺ main decay modes
- 2. Establish the level of sensitivity to $\pi v v$
- 3. Level of sensitivity to LFV/forbidden K⁺/ π^0 decay modes

2014 Run Strategy

- Beam tuning
- ★ Low intensity (<1%) kaon run with a minimal L0 trigger configuration
 - Detector commissioning
 - **x** L0 trigger commissioning and definition
 - Sub-detector reconstructions
- × Muon run
 - Alignement
- Reduced instensity (1-10%) kaon run with a more specific L0 trigger configuration
 - ★ HLT trigger definition
 - **×** Event reconstruction
- ✗ Special runs
- ***** Reduced \rightarrow «Full» intensity kaon run with L0 and, possibly, HLT trigger

2014 Run: L0 Trigger Strategy

- ***** Minimal configuration (minimum bias triggrs):
- ★ Q1, Q1 × MUV3, Q1 × !MUV3, Q1 × NHOD, Q1 × NHOD × !MUV3, Q2, ...
- ***** $\pi v v$ main stream:
- ✗ Starting configuration
- $Q1 \times !MUV3 \times (E LKr < 20)$
- ★ Final 2014 configuration :
- ★ $Q1 \times (RICH > 3) \times !MUV3 \times (E LKr < 20) \times (E MUV < 40) \times (E SAV, LAV < 4)$
- **×** Other rare decays:
- × $Q1 \times (RICH > 3) \times (E LKr > 10) / D$
- \star QX \times (RICH > 10) \times (E LKr > 10) / D
- × $QX \times (RICH > 10) \times (MUV3 ≥ 2)$
- ★ QX × (RICH > 10) × (MUV3 \ge 1) × (E LKr > 10)
- **×** Control samples / Main kaon decay modes:
- × Minimum bias, Random, Specific for accidental, ...

Status of the software (a user point of view)

- **×** CEDAR ok
- **×** Gigatracker ok/new version under development
- **×** STRAW problems in the last revision/new version (completely revised) soon
- **x** LKr ok/new calibration on progress
- **× RICH** ok
- **×** CHANTI, LAV not tested recently, but on progress.
- MUV1,2 missing
- ★ MUV3 missing
- × IRC, SAC, HAC missing
- ***** MUV0 missing (but the detector is missing too)

User requests to the software WG for the 2014 run:

- **×** Frozen version of the reconstruction software as soon as possible during the run
- ***** Backward compatibility preserved during the software developments
- ★ Data reconstructed with a central NA62Reconstruction version

Conclusion

NA62 👌

CERN