$K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{\gamma \gamma} e^{\pm} e^{-}$ analysis

NA62 Collaboration meeting Ferrara, September 2014

NA48/2 rare decay session

M. Misheva, JINR – Dubna

Contents – part I

- Introduction
- Monte Carlo status
- Lists of selection criteria
- Background status
- Table of comparison
- Data/MC ratios
- Conclusion of part I

Introduction

$$\Gamma_{\text{total}} = \int |A|^2 d\Phi$$

$$|A|^2 = const.*(|A_E|^2 + |A_M|^2 + A_{EM})/q^4$$

 A_E =electric(Brem+DE), A_M =magnetic and A_{EM} = interference term, $q^2 = Mee^2$

Theoretical papers

1) L.Cappiello, O.Cata, G. D'Ambrosio, Dao Neng Gao, " $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ e+e- :a novel short-distance probe", Eur.Phys.J.C 72 (2012)

2) H. Pichl, "K[±] $\rightarrow \pi^{\pm} \pi^{0}$ e+e- decays and chiral low energy constants", Eur.Phys.J.C20 (2001)

3) S. Gevorkyan "Different approaches to calculate $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ e+e- decay width", Eur. Phys. J. C (2014) 74:

First experimental observation

Reminder

Last year – NA62 Collaboration in Liverpool, August 2013

- I and Mauro had an agreement of ~ 1.5% for the signal (K2pp0ee) and the reference channel (K2piDalitz)
- We used MC list with no radiative corrections for $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$
- The main contributions for the signal were generated Inner Bremsstrahlung (IB) and direct emission (DE)
- Electric Interference missed in order to have complete tree-level description of the K2pp0ee

The 1st MC list of K2pp0ee is based on the article:

L.Cappiello, O.Cata, G. D'Ambrosio, Dao Neng Gao, " $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ e+e- :a novel short-distance probe", Eur.Phys.J.C 72 (2012)

\rightarrow tanks to Mauro

The 2nd MC list is based on the paper:

H. Pichl, "K[±] $\rightarrow \pi^{\pm} \pi^{0}$ e+e- decays and chiral low energy constants", Eur.Phys.J.C20 (2001)

 \rightarrow the generator was realized on rewritten Pichl's formulation of the matrix element in Ke4 variables

by S. Gevorkyan /"Different approaches to calculate $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ e+e- decay width", Eur. Phys. J. C (2014) 74: 2860/

Papers: H. Pichl and L.Cappiello, O.Cata, G. D'Ambrosio, Dao Neng Gao paper - NO RADIATIVE CORRECTIONS:

Mee > MeV	Cappiello etc. MC – IB	Pichl MC - IB	Cappiello etc. MC - DE	Pichl MC - DE
1.022	1	1	1	1
2	0.736	0.735	0.865	0.856
4	0.467	0.463	0.693	0.687
8	0.263	0.2616	0.519	0.515
15	0.135	0.133	0.363	0.359
35	0.0373	0.0368	0.167	0.174
55	0.0136	0.0134	0.082	0.088
85	0.00332	0.00330	0.026	0.031
100	0.00154	0.00154	0.013	0.016
120	0.00051	0.00055	0.005	0.007
140	0.00015	0.00016	0.0016	0.0025

H. Pichl is corrected (due to S.Gevorkyan).

Both generators based on different papers are in a perfect agreement for the main contributions -Inner Bremsstrahlung and Direct Emission. The Electric Interference (BE) is implemented in private cmc007 by using the following expression (thanks to Oscar Cata):

T11*(F1_B*F1_DE) + T22*(F2_B*F2_DE) + T12*(F1_B*F2_DE + F1_DE*F2_B)

Mee > cut MeV	Cappiello et. al.	MC generator	
	El. Interference BE		
1.022	1	1	
2	0.849	0.853	Not perfect agreement for
4	0.662	0.6742	all kinematic region
8	0.473	0.4868	but
15	0.356	0.3276	the generator coincides
35	0.116	0.145	interval of Mee-
55	0.0453	0.0713	distribution where we have ~90% of
85	0.00857 ~ 0.01	0.0242	statistics.
100	0.00288	0.0141	
120	1.6e-04	0.0063	
140	-2.72e-04	0.0026	
180	-4.83e-04	0.0001	6

Now we have all contributions (IB, DE, Electric INT) simulated by cmc007 where the INT between magnetic and electric parts is 0 in tree-level description. We have MC list with Coulomb correction+PHOTOS due to Mauro for the dominant IB contribution.

Thanks to Evgueni there are available 2 MC lists for K2piDalitz with rad.corr. of pi0Dalitz decay – K2pi rad.corr+pi0Dalitz Mikaelian-Smith (MS) corr.; K2pi rad.corr+Prague rad.corr.

Radiation of real photons from pi0Dalitz decay is not simulated in any of these two MC lists.

We use in the analysis MC list of K2pi (Gatti) + Photos of pi0Dalitz decay (due to Mauro)

Selection criteria

Use the full 2003 data (SS0-1-2-3) -

Ke4 split list (thanks to Spasimir) /Only good bursts for PHYS, DCH, MBX, LKR, HODC ;

At least one 3 track vertex satisfying the criteria below ; At least 1 cluster;

Zvertex to be within (-2000. : 8000.) cm ; Distance between vertex tracks

at DCH1 > 1 cm; At least one electron (P>1.5GeV and E/p >0.8) /

Hard cuts are implemented as far as **Evgueni showed that** the acceptance and differential decay rate for pi0Dalitz have very steep (opposite) slopes at low e+e- /requirement for Mee > 10 MeV/.

	Name of correction	Data	MC
Corrections used in the	Lkr nonlinearity	yes	no
selection criteria:	Projectivity	yes	yes
	Alpha and beta	yes	yes
	Blue field	yes	yes

<u>Common selection criteria for the signal and the normalization channel:</u>

3 < Number of clusters < 8

Number of tracks to be < 10

Good vertex:

Z vertex within (-1000 – 8000) cm

N tracks in vertex == 3

Good tracks:

12 cm < R DCH1 < 135 cm

12 cm < R DCH4 < 135 cm

2 GeV< P tracks < 60. GeV

Track quality > 0.7

Time of tracks to be within (116 - 154) ns

Good clusters

Lkr octagon cut

2 GeV < Energy clusters < 60 GeV

Distance cluster to cluster > 10 cm

Distance cluster to dead cell > 2 cm

Status cluster < 4

Selection criteria – I

$K o \pi \pi^0 \; \mathrm{e}^+ \; \mathrm{e}^-$	$K ightarrow \pi \pi \pi^0 ightarrow \pi \mathrm{e}^+ \mathrm{e}^- \gamma$		
N good clusters >= 4	N good clusters >= 3		
N good clusters with no assoc.trk = 2	N good clusters with no assoc.trk = 1		
Energy gamma-clusters > 3 GeV	Energy gamma-clusters > 3 GeV		
N good clusters with assoc. trk ≥ 2	N good clusters with assoc. trk ≥ 2		
N good tracks = 3	N good tracks = 3		
N e+ = 1 & N e- = 1 \rightarrow E/P > 0.85	N $e^+ = 1$ & N $e^- = 1 \rightarrow E/P > 0.85$		
$N \pi = 1 \rightarrow E/p < 0.85$	$N \pi = 1 \rightarrow E/p < 0.85$		
N vertex =1 && Q vertex = ± 1	N vertex =1 && Q vertex = ± 1		
	(av. Time e-/e+ – time γ) to be within 5 ns		
Momenentum of e+/e- > 2 GeV	Momenentum of e+/e- > 3 GeV NEW		
Check vertex consists of e+, e-, π	Check vertex consists of e+, e-, π		
Chi2 vertex < 25 cm	Chi2 vertex < 25 cm		
Dist. Between $e+$ & $e-$ > 0.25 cm at DCH1	Dist. Between $e+$ & $e-$ > 0.25 cm at DCH1		
Z vertex within (-1000 – 8000) cm	Z vertex within (-1000 – 8000) cm		
COG < 2cm	COG < 2cm		
Mee > 3 MeV NEW	Mee > 10 MeV NEW		

Selection criteria – II

$K o \pi \pi^0 \mathrm{e}^+ \mathrm{e}^-$	$K ightarrow \pi \pi^0 ightarrow \pi \mathrm{e}^+ \mathrm{e}^- \gamma$	
Dist. Extrapolated non deflected e+/e- & $\gamma > 2$ cm at LKr	Dist. Extrapolated non deflected e+/e- & $\gamma > 2$ cm at LKr	
Abs(Mee $\gamma 1/\gamma 2 - M\pi 0$) < 7 MeV NEW		
	Momentum charged pion > 10 GeV NEW	
$M \pi \pi > 120 \text{ MeV} $ NEW		
Energy reconstructed K within (54 – 66) GeV	Energy reconstructed K within (54 – 66) GeV	
Abs(Mass K - MK_PDG) < 10 MeV	Abs(Mass K - MK_PDG) < 10 MeV	

Normalization channel (K $\rightarrow \pi \pi^0 \rightarrow \pi e^+ e^- \gamma$):

Mee > 10 MeV && Pe > 3 GeV reduces the statistics more than 50%

Signal channel (K $\rightarrow \pi \pi^0 e^+ e^-$) :

Mππ > 120 reduces K $\rightarrow \pi \pi^0 \pi^0$ Dalitz BGR with a factor of 7

abs(Mee g - M π PDG) > 7 MeV reduces K2 $\pi\pi^0$ Dalitz(γ) BGR with a factor of 2.5

Mee – background status of signal

Background suppression after implementating of the new cut $M\pi\pi > 120$ MeV and abs(Mee $\gamma 1/\gamma 2 - M\pi 0$) < 7 MeV.

Mee – background status of signal

Background suppression after implementating of the new cut $M\pi\pi > 120$ MeV and abs(Mee $\gamma 1/\gamma 2 - M\pi 0$) < 7 MeV.

RED \rightarrow **MC** $\pi\pi^{0}$ ee

Blue \rightarrow K3 π Dalitz + K2 π Dalitz(γ)

Table of comparison between both analyses

	Milena	Mauro	Difference
N data pp0ee	1916 ± 44	1916 ±44	0%
MC IB no rad.corr \rightarrow Acc.	$5.786e-03 \pm 1.351e-05$		
MC IB rad.corr. \rightarrow Acc	$5.495e-03 \pm 1.853e-05$	$5.495e-03 \pm 1.872e-05$	0.11%
MC DE \rightarrow Acc	$2.023e-02 \pm 4.639e-05$	$2.024e-02 \pm 4.74e-05$	0.05%
MC El.Int. \rightarrow Acc	$2.222e-02 \pm 7.999e-05$	$2.235e-02 \pm 7.820 e-05$	0.58%
MC k3pDalitz \rightarrow Acc	$8.450e-07 \pm 1.289e-07$	$9.173e-06 \pm 1.367e-07$	7.8%
MC K2pDalitz \rightarrow Acc	$1.431e-07 \pm 2.920e-08$	$1.393e-07 \pm 2.971e-08$	1.6%
Trig.Eff. (loose cuts) pp0ee	$9.832e-01 \pm 7.440e-03$	9.8693e-01±6.49e-03	0.38%
N data pp0Dalitz	6702346 ± 2589	6714917 ± 2591	0.19%
MC K2piDalitz+Photos \rightarrow Acc	$3.559e-02 \pm 1.482e-05$	$3.556e-02 \pm 1.474e-05$	0.11%
Trig.Eff. pp0Dalitz	$9.798e-01 \pm 5.249e-04$	$9.7635e-01 \pm 4.37e-04$	0.39%

	Milena	Mauro	Diff.
MC Kmu3Dal → Acc	$1.0806e-04 \pm 2.374e-06$		
N kmu3Dal BGR [events]	3369.45	3365.46	0.12%
Kaon flux – regarding BGR	$7.9201e+10 \pm 2.362e+09$	$7.97159e+10 \pm 2.398e+09$	0.65%
N BGR K3piDalitz [events]	27.67 ± 4.31	29.5 ± 4.4	6.1%
N BGR K2piDalitz [events]	27.48 ± 4.39	26.3 ± 5.7	4.2%
N total BGR events	55.1 ± 7.4	55.8 ± 7.4	1.3%
N pp0ee BGR subtraction	1860.85 ± 44.39	1860.2 ± 51.2	0.04%
Br(pp0ee)	$(4.06196 \pm 0.16814)e-06$	$(4.05405 \pm 0.156012)e-06$	0.2%

data mean= $(0.4933 \pm 0.1535e-03)$ sigma= $(0.5325e-02 \pm 0.1597e-03)$

mc mean= $(0.4931 \pm 0.1287e-04)$ sigma= $(0.5611e-02 \pm 0.25323e-04)$

|Mass π^0 |

 $\mathbf{K} \rightarrow \pi \pi^0 \, \mathrm{e}^+ \mathrm{e}^-$

data mean= $(0.1351 \pm 0.51328e-04)$ sigma= $(0.21525e-02 \pm 0.38431e-04)$ mc mean= $(0.13514 \pm 0.36844e-05)$ sigma= $(0.22928e-02 \pm 0.6064e-05)$

M ee inv

Z coord. vertex

 $\mathbf{K} \rightarrow \pi \, \pi^0 \, e^+ e^-$

data mean= $(0.4929 \pm 0.1722e-05)$ sigma= $(0.3864e-02 \pm 0.1544e-05)$

mc mean= $(0.4931\pm0.1357e-05)$ sigma= $(0.3955e-02\pm0.1856e-05)$

Mass π^0

data mean=(0.1347 +- 0.4656e-06)

sigma=(0.1502e-02 +- 0.6113e-06)

mc mean = (0.1348 + 0.522e - 06)

sigma=(0.1560e-02+- 0.7036e-06)

$\mathrm{K} ightarrow \pi \, \pi^0 \, (\mathrm{e}^+ \mathrm{e}^- \, \gamma)$

1.25

M ee inv

Momentum of electrons

$\mathbf{K} \rightarrow \pi \, \pi^0 \, (\mathbf{e}^+ \mathbf{e}^- \, \boldsymbol{\gamma})$

Momentum of charged pion

Conclusion of part I

- 1) We have MC simulatons of all contributions for the tree-level description of $K \rightarrow \pi \pi^0 ee$
- 2) We suppressed the background from 10% to 3 %
- 3) The agreement between both analyses is improved from $\sim 1\%$ to 0.2%
- 4) Data/MC ratios are in a very good agreement for the signal and the normalization channels