Search for Majorana neutrinos in $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decays Status Report

Karim Massri University of Birmingham

1

NA62 Collaboration Meeting – Ferrara – 04/09/2014

Outline

- Motivations
- Method
- MC samples
- $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ Event selection
- Muon reconstruction and Efficiency
- Kaon flux
- Background sources
- Data-MC and Signal-Background study
- Statistical Framework
- Conclusions and Outlook

Motivations

- NA48/2 single event sensitivity for $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decays ~ 10⁻¹¹
- Best UL: BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 1.1 × 10⁻⁹ @ 90% CL [Phys.Lett. **B697**, 107 (2011)] Based on 52 data events observed VS 52.6±19.8 expected ($K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} MC$)
- The world strongest constraints to the sterile-active mixing parameter $|U_{\mu4}|$ for heavy Majorana neutrinos with $m_{\pi}+m_{\mu} < m_{N} < m_{K}-m_{\mu}$ can be obtained from $K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$ search in the NA48/2 data:

$$BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) \ll 10^{-13} \qquad \text{for } m_{N} \ll m_{K} \text{ or } m_{N} \gg m_{K}$$

$$BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) = \tau_{K} \frac{G_{F}^{4} m_{K}}{128 \pi^{2}} f_{K}^{2} f_{\pi}^{2} |V_{us} V_{ud}|^{2} \frac{m_{N}^{5}}{\Gamma_{N}} |U_{\mu 4}|^{4} \qquad \text{for } m_{\pi} + m_{\mu} < m_{N} < m_{K} - m_{\mu}$$

$$\approx 10^{-19} GeV \times \frac{1}{\Gamma_{N}} |U_{\mu 4}|^{4} \qquad [@ m_{N} = 300 \text{ MeV/c}^{2}]$$

$$\approx 10^{-7} ps^{-1} \times \tau_{N} |U_{\mu 4}|^{4}$$

To reach the same limit on $|U_{\mu4}|$ for $m_{\pi}+m_{\mu} < m_{N} < m_{K}-m_{\mu}$ and same τ_{N} , the ULs on BR($h^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$) [h = B, D and D_s] must be 10⁶, 10³ and 10² times smaller than the one on BR($K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$) ^{04/09/2014} Karim Massri – NA62 Collaboration Meeting – Ferrara 3 Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – introduction

Method

- Blind analysis: $m_{\pi\mu\mu} < 0.48 \text{ GeV/c}^2$ for data [SR: $|m_{\pi\mu\mu} m_{K}| < 5 \text{ MeV/c}^2$] Event selection finalised by studying MC simulations (Signal + Bkg)
- Reconstructed 3-trk vertex: sensitive to neutrino lifetimes $\tau_N \le 10$ ps lifetime scan $\tau_N = 0 \rightarrow 10$ ps: to be done soon

[Future development:

displaced vertex studies (to be done soon)]

- Number N_K of kaon decays in the fiducial volume from $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays
 - Same trigger used for the $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ search
 - Similar kinematics $(m_{\mu}/m_{\pi} = 0.76)$

First order cancellation of systematic effects due to trigger inefficiency

- Signal acceptance $\varepsilon_{\pi\mu\mu}$ estimated from $K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}MC$
- Upper Limit for the number of signal events N(K[±] → π[∓]μ[±]μ[±]) in data to be obtained from statistical analysis: observed events VS expected (bkg only)
- Upper Limit for the BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) to be estimated using the relation

$$BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) = \frac{N(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm})}{N_{K} \varepsilon_{\pi \mu \mu}}$$

04/09/2014

MC Samples Signal acceptance $\varepsilon_{\pi u u}$ study

• Three $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ samples, 10M each

2. "Scalar": flat phase space

3. "Vector": $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ -like (with form factor |W(z)| = 1) [contacts with J. Kamenik for model-independent treatment]

- Two $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ samples, 10G+12G produced with the FULL (optimised) MC mode (see my talk @ NA48/2 Analysis Meeting, 17/10/2013)
 - 1st: used exclusively to finalise the event selection;
 - \sim 2nd: used to estimate the number of expected bkg events
- Other bkg sources:

$$= K^{\pm} \to \pi^{+} \pi^{-} \mu^{\pm} \nu \text{ (100M)}, K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-} \text{ (10M) and } K^{\pm} \to \mu^{+} \mu^{-} \mu^{\pm} \nu \text{ (10M)}$$

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – selection

Final $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ event selection

- At least one 3-track vertex with
 - total Q = ± 1 and $\chi^2 < 20$
 - all the vertex tracks with 3 GeV/c LKr, MUV* acceptances * ~2 cm MUV shift detected (see my talk 19/12/13)
 - $P_t^2 < 0.0001 \text{ GeV}^2/c^2$, $|P_{tot} 60 \text{ GeV/c}| < 5 \text{ GeV/c}$
 - VtxZ within (-1800,8000) cm
 - Max 2-trk Vtx distance < 5 m + max 2-trk CDA < 3 cm
- π ID: E/p < 0.95, !(MUV1&MUV2)**

** MUV search radius multiplier = 2.5

- μ ID: E/p < 0.2 , MUV1&MUV2^{**}
- $P_{\pi} > 15 \text{ GeV/c}, P_{\mu} > 5 \text{ GeV/c}$
- Trk-Trk Dist > 2 cm @ DCH, > 20 cm @ LKr, > 20 cm @ MUV1
- μ - μ dist > 0 (NO muon duplication), Max Trk- μ dist < 35 cm

- Signal Region:
$$\lim_{\pi\mu\mu}$$
 - $m_{\rm K}$ < 5 MeV/c² (= 2 σ)
_{04/09/2014} Karim Massri – NA62 Collaboration Meeting – Ferrara

Comparison with $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ selection*

* Phys.Lett. **B697**, 107 (2011)

Published UL can be related to single point $\tau_{N} = 0$, no mass dependence

- 3-track vertex:
 - $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$: $\chi^{2} < 40$
 - New: $\chi^2 < 20 + \max 2$ -trk Vtx dist $< 5 \text{ m} + \max 2$ -trk CDA < 3 cm

→ Acceptance: -1.5% (abs.) or -7% (rel.)

- Total Momentum:
 - $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$: $P_{t}^{2} < 0.0005 \text{ GeV}^{2}/c^{2}$, $|P_{tot} 60 \text{ GeV/c}| < 6 \text{ GeV/c}$
 - New: $P_t^2 < 0.0001 \text{ GeV}^2/c^2$, $|P_{tot} 60 \text{ GeV/c}| < 5 \text{ GeV/c}$
 - → Acceptance: -2.5% (abs.) or -10% (rel.)
- Track Momentum:
 - $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$: $P_{trk} > 10 \text{ GeV/c}$
 - New: $P_{\pi} > 15 \text{ GeV/c}, P_{\mu} > 5 \text{ GeV/c}$
 - → Acceptance: +6% (abs.) or +42% (rel.)

Karim Massri – NA62 Collaboration Meeting – Ferrara

04/09/2014

- Particle ID:
 - $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$: π : E/p < 0.95, no associated muon μ : E/p < 0.2, MUV1&MUV2
 - New: π : E/p < 0.95, !(MUV1&MUV2)**
 - μ : E/p < 0.2, MUV1&MUV2^{**} + μ - μ dist > 0
 - + Max Trk- μ dist < 35 cm
 - → Acceptance: +7% (abs.) or +47% (rel.)

** MUV search radius multiplier = 2.5

* Phys.Lett. **B697**, 107 (2011)

- Signal Region:

•
$$K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
: $|m_{\pi\mu\mu} - m_{K}| < 8 \text{ MeV/c}^{2} (= 3.2\sigma)$
• New: $|m_{\pi\mu\mu} - m_{K}| < 5 \text{ MeV/c}^{2} (= 2\sigma)$
 \rightarrow Acceptance: -1.2% (abs.) or -5% (rel.) Published* acceptance:
 $\epsilon(K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}) = 16.97\%$

Total Acceptance: +6% (abs.) or +40% (rel.)

• $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$: $\varepsilon_{\pi \mu \mu}^{(r)} = (13.28 \pm 0.01)\%$ $\varepsilon_{\pi \mu \mu}^{(s)} = (14.73 \pm 0.01)\%$, $\varepsilon_{\pi \mu \mu}^{(v)} = (17.25 \pm 0.01)\%$

• New: $\epsilon_{\pi\mu\mu}^{(r)} = (19.44 \pm 0.01)\%$ $\epsilon_{\pi\mu\mu}^{(s)} = (20.62 \pm 0.01)\%$, $\epsilon_{\pi\mu\mu}^{(v)} = (22.75 \pm 0.01)\%$

Muon Reconstruction

9

»'/! í

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – muon reconstruction

Reconstructed $K^{\pm} \rightarrow \mu^{\pm}\nu$ decays with applying NO μ -ID requirements

Karim Massri – NA62 Collaboration Meeting – Ferrara

84.52

Published flux: $N_{\kappa}^{tot} = 1.9 \times 10^{11}$

- $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ selection: same requirements as $K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$ except
 - No particle ID for same-sign tracks;
 - Requirement $|m_{\pi\mu\mu} m_{K}| < 5 \text{ MeV/c}^{2}$ replaced by $|m_{\pi\pi\pi} m_{K}| < 5 \text{ MeV/c}^{2}$

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – background

$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ background

- Two MC samples to avoid bias due to the choice of $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ selection
 - 1st sample [10G, used exclusively to finalise the event selection]: 0 events

 2^{nd} sample [12G, used to estimate the number of expected bkg events]: 1 event

 $\rightarrow 0.97 \pm 0.97_{\text{stat}} \pm 0.01_{\text{syst}} \text{ expected } \text{K}^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \text{ events}$

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – background

04/09/2014

- For each variable, final $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ selection except
 - any cut on the variable itself

CR: 0.456 GeV/c² < $m_{\pi u u}$ < 0.48 GeV/c²

- SR requirement changed on purpose to CR requirement

Data-MC comparison in CR

Data-MC comparison in CR

Karim Massri – NA62 Collaboration Meeting – Ferrara

Data-MC comparison in CR

Karim Massri – NA62 Collaboration Meeting – Ferrara

Data-MC comparison in CR

04/09/2014

Karim Massri – NA62 Collaboration Meeting – Ferrara

Signal VS Background (MC only)

- any cut on the variable itself
- No $m_{\pi u u}$ cuts, to increase bkg statistics

Karim Massri – NA62 Collaboration Meeting – Ferrara

NA62 \Lambda

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – Signal-Background

Majorana Neutrinos in $K \rightarrow \pi \mu \mu$ decays – Signal-Background

Signal VS Background (MC only)

Statistical Analysis

 Feldman-Cousins approach abandoned: Poisson-distributed signal with Poisson-distributed bkg with *known* mean
 → actually NOT suitable for this analysis!

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ background uncertainty dominated by statistics: Statistics fluctuations MUST be taken into account!

• Rolke-Lopez method [Nucl.Instrum.Meth. **A551**, 493 (2005)] Poisson-distributed signal with Poisson-distributed bkg with *unknown* mean

TRolke class not extendable to the case of interest with 4 bkg estimations New framework "STAT62" developed for numerical evaluation of Rolke-Lopez confidence intervals [with improved convergence algorithms with respect to TRolke] User-friendly and customisable environment ready: to be released soon

Confidence Belt built using number of expected bkg events

04/09/2014

Neutrino mass scan (preliminary)

Signal acceptance $\varepsilon_{\pi uu}(m_N)$ for resonance model evaluated ($\tau_N \approx 0$)

Conclusions and Outlook

- Fine-tuning of the $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ Event Selection completed
- Final Selection: $1.36 \pm 0.97_{stat} \pm 0.06_{syst}$ background
- Potential sensitivity ~ 3×10^{-11} @ 90% C.L
- Muon efficiency evaluated (and bad bursts removed)
- Kaon flux evaluated (in agreement with previous results)
- New statistical analysis using the Rolke-Lopez method for a Poisson-distributed bkg with *unknown* mean

Next Steps:

- Scan in m_N and in τ_N to evaluate the signal acceptance $\epsilon_{\pi\mu\mu}(m_N, \tau_N)$ for resonance model
- Independent "displaced vertex" analysis to cover region $\tau_{N} > 10$ ps

Conclusions and Outlook

- Standing items will be completed soon (< 1 week)
- Asking for internal referees to be nominated
- Internal "living" note describing the analysis about to be released next week, in order to receive feedback from referees
- Subsequently, asking the permission to open the box