π^0 transition form factor and search for dark photon

Evgueni Goudzovski

(University of Birmingham) eg@hep.ph.bham.ac.uk

NA48/NA62 collaboration meeting Ferrara • 4 September 2014

K_{2πD} event selection (1)

- ✤ Data sample: 2003+2004 SCMP ee-split.
- ✤ Trigger: Q₂ × MBX (1VTX | | 2VTX | | 1TRK).
- Find the best 3-track vertex: least χ² among vertices with -18m<z_{vtx}<80m, |Q|=1 and no common tracks with other vertices.
- Vertex fit quality: $\chi^2 < 25$.
- ✤ Inter-track distance in DCH1 plane: D_{DCH1}>6 cm.
- ✤ Track DCH times: $|t_i| < 25 \text{ ns}; |t_i t_j| < 15 \text{ ns}.$
- ✤ Pion candidate: E/p<0.85; e[±] candidates: 0.85<E/p<1.15.</p>
- ♣ All tracks in LKr acceptance; 12 cm<R_{track}<100 cm in DCH1,2,4.</p>
- ✤ Track separations in LKr plane: R_{LKr}>15 cm.
- ✤ Track momenta: 3.3 GeV/c<p_e<60 GeV/c; 5 GeV/c<p_{π}<60 GeV/c.</p>

[for the time being, 3.3 GeV/c lower cut due to 3 GeV/c cutoff for non- α , β -corrected momentum in the ee-filter algorithm]

$K_{2\pi D}$ event selection (2)

- Exactly 1 photon candidate LKr cluster:
 - ✓ separation from π^{\pm} impact point: $R_{\gamma\pi}$ >50 cm;
 - ✓ separation from e^{\pm} impact points: $\hat{R}_{\gamma e}$ > 10 cm;
 - ✓ separation from undeflected e^{\pm} trajectories: R_{ye} >50 cm;
 - ✓ LKr–DCH timing: $|t_{\gamma}-t_{vtx}| < 10$ ns.
- The photon candidate is in LKr acceptance.
- ↔ Photon candidate E_{γ} >3 GeV, $D_{dead-cell}$ >2 cm.
- ✤ Photon DCH1 intercept: R_{DCH1}>13 cm.
- ★ Total momentum: $|p_{\pi ee\gamma}-60 \text{ GeV/c}| < 7 \text{ GeV/c}$.
- ✤ Transverse momentum wrt z axis: p_T²<5×10⁻⁴ (GeV/c)².
- ♦ $|M_{ee\gamma}-M_{\pi 0}| < 8 \text{ MeV/c}^2$.
- ♦ 475 MeV/c² < $M_{\pi ee\gamma}$ < 510 MeV/c².
- ♦ M_{ee} > 10 MeV/c² (no need for the upper limit).

Selection fully debugged: event-by-event comparisons with Michal and Nicolas with the 2007 data

MC samples (2003+2004)

[thanks to Nicolas Lurkin for integrating the Prague generator into CMC]

- ★ K[±]→π[±]π⁰_D(γ), KLOE IB generator, no radiative corrections to π⁰_D (835M gen. events; data ×2) [mc.k2pigd.kloe.list]
- ★ K[±]→π[±]π⁰_D(γ), KLOE IB generator, Mikaelian-Smith radiative corrections to π⁰_D (835M gen. events) [mc.k2pigd.kloe.pi0d.radcor.MS.list]
- ★ K[±]→π[±]π⁰_D(γ), KLOE IB generator, Prague radiative corrections to π⁰_D (835M gen. events) [mc.k2pigd.kloe.pi0d.radcor.prague.list] STANDARD
- ★ K[±]→π⁰_Dµ[±]ν(γ), KLOE IB generator, Prague radiative corrections to π^{0}_{D} (418M gen. events) [mc.km3gd.kloe.pi0d.radcor.prague.list] STANDARD

Prague vs MS radiative corrections comparison: 5 June 2014 talk

MC samples (2007)

[thanks to Nicolas Lurkin for integrating the Prague generator into CMC]

- ★ K[±]→π[±]π⁰_D(γ), KLOE IB generator, Mikaelian-Smith radiative corrections to π⁰_D (223M gen. events) [mc.2007.k2pigd.kloe.pi0d.radcor.MS.list]
- ★ K[±]→π[±]π⁰_D(γ), KLOE IB generator, Prague radiative corrections to π⁰_D (447M gen. events) [mc.2007.k2pigd.kloe.pi0d.radcor.prague.list]
- ★ K[±]→π⁰_Dμ[±]ν(γ), KLOE IB generator, Prague radiative corrections to π⁰_D (119M gen. events) [mc.2007.km3gd.kloe.pi0d.radcor.prague.list]

Data sample

Candidates: $N(K_{2\pi D}, M_{ee} > 10 MeV/c^2) = 4.687 \times 10^6$, $K_{\mu 3D}$ contribution: 0.15%.

6

K_{2πD} acceptance

Kinematic variables:

^{10²} Lowest-order differential decay rate:

$$\frac{1}{\Gamma_0} \frac{d^2 \Gamma(\pi^0 - \gamma e^+ e^-)}{dx dy} = \frac{\alpha}{\pi} |\mathsf{F}(\mathsf{x})|^2 \frac{(1-x)^3}{4x} \left(1 + y^2 + \frac{r^2}{x}\right)^2$$

Radiative corrections to π^0_{D}

"Prague corrections" (T. Husek, K. Kampf, J. Novotný), to be published

$$rac{d\Gamma}{dxdy} = \delta(x,y) rac{d\Gamma^0}{dxdy}$$

The code to compute $\delta(x,y)$ for any values of (x,y)was developed by Tomas Husek.

Available in NA62MC (public) and CMC (private version, implemented by Nicolas Lurkin).

Coulomb corrections to π^0_D

Well-known. Online: e.g. G.Isidori, EPJ C53 (2008) 567

$$\Omega_{\rm C}(s_{ij}) = \prod_{\{0 < i < j\}} \frac{2\pi\alpha Q_i Q_j}{\beta_{ij}} \frac{1}{e^{\frac{2\pi\alpha Q_i Q_j}{\beta_{ij}}} - 1} \quad , \quad \beta_{ij} = \left[1 - \frac{4m_i^2 m_j^2}{(s_{ij} - m_i^2 - m_j^2)^2}\right]^{1/2}$$

... affects only very low M_{ee}, as expected: this correction is irrelevant for spectrum shape analysis.

Trigger efficiency correction

Measured trigger efficiencies used. Simulated efficiencies presented for comparison only.

Corrections for trigger efficiencies: $\Delta a_{Q2} = (-0.33 \pm 0.11_{stat}) \times 10^{-2};$ $\Delta a_{MBX} = (-0.84 \pm 0.44_{stat}) \times 10^{-2}.$

MBX bits

2VTX: **91.7%**; 1VTX: **4.1%**, 1TRK: **1.9%**, inefficient: **2.3%**.

Pion identification efficiency

MC: pion identification

- If the pion does not decay upstream of the LKr, match a reconstructed track to the true pion.
 - 1) For each reconstructed track, check consistency with the true pion:
 - $$\begin{split} \chi^2 &= ((p-p_{true})/0.6 \ GeV/c)^2 + \\ &\quad ((x-x_{true})/0.5mm)^2 + + ((y-y_{true})/0.5mm)^2 + \\ &\quad ((x'-x'_{true})/10^{-4})^2 + ((y'-y'_{true})/10^{-4})^2 \end{split}$$

(p: track momentum, (x,y): coordinates in DCH1 plane;
 (x',y'): directional cosines; all normalized to measured resolutions)

- 2) Track with $\chi^2 < 100$ is considered the reconstructed pion. Exactly one reconstructed pion is found in >99% of the cases.
- ✤ Reset E/p of the pion track (E/p=0.1) so it passes the selection.

Momentum-dependent weight applied to the event, evaluated from polynomial fits to combined 2003+04+07 efficiency measurements.

Form factor slope measurement

✤ Using re-weighting, build three independent MC templates with different (unphysical) form-factors: |F(x)|²=1, |F(x)|²=x, |F(x)|²=x².

✤ Then |F(x)|²=(1+ax)² is a linear combination of the templates: any hypothesis on slope (a) is tested with the χ^2 method.

The reconstructed M_{ee} spectra with small bin size are re-binned into (almost) equipopulous bins for the test.

Fit result

- The fitting procedure does not involve the plotted ratio.
- This plot is for illustration of the result only, this is not a fit.
- The statistical uncertainty resulting from the fit procedure includes components from data, MC and trigger.

Systematic checks (assigned errors in red)

Spectrometer calibration

Variation of the analysis procedure	∆a×10 ²
1. Spectrometer calibration (α , β corrections) OFF for MC	-1.28
2. Spectrometer calibration OFF for DATA	+1.40
3. Spectrometer calibration OFF for both DATA and MC	+0.07

LKr non-linearity correction

Variation of the analysis procedure	∆a×10 ²
1. LKr non-linearity correction OFF for DATA	-0.69
2. LKr non-linearity correction with FLAG=2 for DATA	+0.56

Backgrounds

- K_{µ3D} component (included into simulation): the result is unchanged if K_{µ3D} neglected; Δa=0.002×10² (negligible) if BR(K_{µ3D}) increased by x10.
- ★ Therefore can neglect e^+e^- pairs from all Dalitz decays ($K_{3\pi D}$, K_{13D} , K_{14D}).
- ♦ e^+e^- pairs not from π^0_D decays (with mis-ID): K_{e3D} , $K_{2\pi D}$ with $\pi^\pm \rightarrow e^\pm \nu$: can be estimated from same-sign ($e^\mp \gamma e^\pm e^\pm$) events.
- ★ $K_{3\pi}$ +accidental photon (with mis-ID and/or $\pi^{\pm} \rightarrow e^{\pm}\nu$): can be estimated from same-sign events x2.
- Subtracting SS from signal M_{ee} spectrum: $\Delta a = -0.002 \times 10^{-2}$ (negligible).17

Systematics: LKr energy scale

Mean reconstructed E/p values: Data: $(E/p)_{mean} = 0.9972$. MC: $(E/p)_{mean} = 0.9986$.

Energy scale correction applied to the data: photon energies scaled by f=1.0014.

(NB: the correction for the 2007 data was evaluated by Andreas separately for each LKr cell).

Effect of the correction: $\Delta a = -0.02 \times 10^{-2}$.

The full size of the correction is conservatively considered as a systematic error.

Systematics: accidentals

Standard selection: the best 3-track vertex,

i.e. least χ^2 among vertices with $-18m < z_{vtx} < 80m$, |Q| = 1and no common tracks with other vertices.

Variation of the selection	∆a×10 ²
0. Standard vertex selection	a=2.42
 Replace best vertex search with N_{vtx}=1 	+0.08
2. N_{vtx} =1 and reject events with "extra tracks" = tracks not belonging to the vertex, $ t-t_{vtx} < 20ns$, p<60 GeV/c, closest approach to z axis: -20m <z<90m, cda<10cm.<="" td=""><td>+0.13</td></z<90m,>	+0.13
3. Remove common tracks condition from best vertex search	-0.05
4. Remove Q =1 condition	-0.01
5. Remove z _{vtx} criteria	+0.01
6. Add p _i <60GeV/c condition	0
7. Add p _{tot} <70GeV/c condition	0

Assigned systematic uncertainty: $\delta a=0.13 \times 10^{-2}$.

Lower M_{ee} limit

Upper M_{ee} limit

Statistical errors (data+MC+trigger) of the individual measurements are indicated

Number of M_{ee} bins

(equipopulous bins in the range $M_{ee} > 10 \text{ MeV/c}^2$)

Statistical errors (data+MC+trigger) of the individual measurements are indicated

E/p cut scan

Pion definition:	E/p<(E/p) ₀ .
Electron definition:	E/p>(E/p) ₀
Standard selection:	(E/p) ₀ =0.85.

- MC selection takes into account the measured pion (but not electron) E/p distribution.
- If using reconstructed (not measured) pion E/p: variation of the result is negligible.
- Measurement is unbiased for low (E/p)₀, i.e. low negligible electron loss. Systematic uncertainty from stability at low (E/p)₀: δa=0.03×10⁻².

Maximum P_T^2

Tracks: minimum R_{DCH}

Tracks: maximum R_{DCH}

Photon: minimum R_{DCH1}

Inter-track distance in DCH1 plane

Inter-track distance in LKr plane

$\pi - \gamma$ distance

Undefl. trajectory: e-y distance

Minimum electron (e[±]) momentum

Minimum pion momentum

Maximum momentum

Photon energy

Kaon charge & magnetic field

TFF slope: error budget

Source	Correction ∆a×10 ²	Uncertainty δa×10 ²
Statistical error		0.33
Trigger efficiency	-1.17	0.45
MC statistical error		0.29
Geometrical acceptance		0.79
Spectrometer calibration		0.07
LKr non-linearity		0.56
LKr energy scale	-0.02	0.02
Particle identification		0.03
Accidentals		0.13
Total		1.23

Preliminary result on the π^0 TFF slope:

a = $(2.4\pm0.6_{stat}\pm1.0_{syst})\times10^{-2} = (2.4\pm1.2)\times10^{-2}$

TFF slope: world data

Measurements with $\pi^0_{\rm D}$ decays since the Mikaelian-Smith paper (1972)

Search for the dark photon in $\pi^0{}_{\rm D}$ decay

DP parameter space

Search via the $\pi^0 \rightarrow \gamma A'$ decay

Batell, Pospelov and Ritz, PRD80 (2009) 095024

43

DP decays into SM fermions

 $BR(A' \rightarrow e^+e^-) = 1$ (unless decays into DM particles kinematically allowed) 44

DP lifetime

Decay width for $M_e \ll M_U < 2M_{\mu}$: $\Gamma_A \approx \alpha \epsilon^2 M_A/3$, $BR(A' \rightarrow e^+e^-)=1$ BateII, Pospelov and Ritz, PRD79 (2009) 115008

DP mass resolution & acceptance

Search for the DP

- Scanned DP mass range:
 10 MeV/c²<M_{DP}<125 MeV/c².
- ♦ Variable mass step: approximately 0.5₀.
- ✤ Mass hypotheses tested: 398.
- Expected background: from π⁰_D
 TFF fit in the range (9–130) MeV/c².
- Sensitivity is determined by the fluctuation of the number of background (π⁰_D) events.
- ◆ Upper and lower limits on N_{DP} are computed from N_{expected}, N_{observed} and δN_{observed} using the Rolke-Lopez method. Feldman-Cousins method is not applicable because δN_{expected} ≠ (N_{expected})^{1/2}.

DP search window optimisation

Upper limits for $BR(\pi^0 \rightarrow \gamma A')$ at 90% CL for different mass search windows

Competing effects: increasing acceptance vs larger background fluctuation.

A broad UL minimum is observed at $1.0\sigma - 1.5\sigma$, similarly to other searches.

A search window width of $\pm 1.5\sigma_M$ is used.

Significance (pulls)

 $\begin{array}{l} \mbox{Pull: } \mbox{P = } N_{diff} \ / \ \delta N_{diff}, \\ \mbox{where } N_{diff} = \ N_{observed} - N_{expected}. \\ \mbox{Statistical, MC statistical and trigger efficiency} \\ \mbox{uncertainties are propagated into } \ \delta N_{expected}. \end{array}$

DP exclusion: summary

- Our result improves the existing limits in the range 10–70 MeV/c².
- ✤ DP as the explanation for (g-2)_µ is now ruled out.
- ✤ As APEX, we conservatively assume N_{observed}=N_{expected} in cases when N_{observed}<N_{expected}. Therefore there are no downward spikes.

Conclusions

- ♦ Preliminary result on the π⁰ TFF slope is proposed for blessing: $a = (2.4\pm0.6_{stat}\pm1.0_{syst})\times10^{-2}.$
- The precision will be improved:
 - ✓ further optimisation of the selection to improve acceptance;
 - ✓ new di-electron split with removed $p_e=3$ GeV/c cutoff;
 - ✓ production of more MC samples;
 - ✓ optimisation of MC grouping into the 3 templates for the fit;
 - ✓ possibly alternative fitting method(s);
 - ✓ understanding the bremsstrahlung effect (try MC without external bremsstrahlung or PHOTOS corrections?)
- ✤ Preliminary limits on the DP produced in the $\pi^0 \rightarrow \gamma A'$ decay proposed for blessing: most stringent limits in the 10–70 MeV/c² mass range.
- Improvements on TFF will lead to improvement of DP limits.