Level 0 Control Trigger Strategy and Selecting a ${\cal K}^+ \to \pi^+ \pi^0 \ {\rm Sample}$

Liam Fulton

NA62 Collaboration Meeting, Ferrara

1st September 2014

Outline

- 1. Control Sample L0 Trigger Strategy
 - 6 main K^+ decay modes in the beam
 - Trigger Primitives
 - 2 minimum bias triggers and downscaling
 - Summary

- 2. Testing Detector Efficiencies
 - Aims from control samples
 - $K^+ \rightarrow \pi^+ \pi^0$ early in the run
 - $K^+ \rightarrow \pi^+ \pi^0$ sample uses
 - Summary

6 Main Decay Modes

6 largest K^+ decay modes are:

 $\begin{array}{l} {\cal K}^+ \rightarrow \mu^+ \nu \ ({\cal K}\mu 2), \\ {\cal K}^+ \rightarrow \pi^+ \pi^0, \\ {\cal K}^+ \rightarrow \pi^+ \pi^+ \pi^-, \\ {\cal K}^+ \rightarrow \pi^0 \mu^+ \nu \ ({\cal K}\mu 3), \\ {\cal K}^+ \rightarrow \pi^0 e^+ \nu \ ({\cal K}e 3), \\ {\cal K}^+ \rightarrow \pi^+ \pi^0 \pi^0. \end{array}$

3 other major components of the beam are:

Beam Pions - Pions in the beam and their subsequent decay products,
Beam Protons - Protons in the beam,
Muons Upstream - Muons originating upstream of GigaTracker 3 (Muon Halo)

6 Main Decay Modes

- 750 MHz beam particles
- 45 MHz of K⁺
- 9 MHz of K^+ decays

	$K\mu 2$	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- Kμ3	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	Muons	Total
Total Rate (MHz)	5.7	1.9	0.5	0.5	0.3	0.2	526	173	135	879

- No higher level trigger available for control channels
- Significant downscaling to get \sim O(10kHz)
- Downscaling will change with beam intensity during the run

Available Trigger Primitives

Triggers Primitives available in 2014

- CHOD Coincidence of hits in two layers of plastic scintillator (Q₁ represents 1 coincidence)
- LKr Energy deposited in a group of liquid krypton cells known as clusters
- RICH Number of PMTs above threshold
- MUV3 Hits above threshold in PMTs
- LAV12 Hits above threshold in PMTs

Trigger Primitives Used

Control Channel triggers must be:

- Minimum bias
- Collect a good sample of 6 main K^+ decay modes
- Implemented in the October 2014 run

All 6 decay modes posses at least 1 charged track.

1 track trigger \rightarrow CHOD, Q1 primitive.

Remove events with muons,

No muon trigger \rightarrow MUV3, !MUV3 primitive.

Simulation Outline

For the 6 main decays + Beam Pions + Beam Protons used Monte Carlo files available on castor. Simulated the Muons Upstream sample.

$$\begin{split} & K^+ \to \mu^+ \nu \ (K\mu 2) - 100,000 \\ & K^+ \to \pi^+ \pi^0 - 10,000 \\ & K^+ \to \pi^+ \pi^+ \pi^+ - 10,000 \\ & K^+ \to \pi^0 \mu^+ \nu \ (K\mu 3) - 10,000 \\ & K^+ \to \pi^0 e^+ \nu \ (Ke3) - 10,000 \\ & K^+ \to \pi^+ \pi^0 \pi^0 - 10,000 \end{split}$$

Beam Pions - 1 Million Beam Protons - 1 Million Muons Upstream - 135,342

NA62MC version 304 NA62Reconstruction version 309

CHOD Q1 Primitive

Q1 Primitive allows us to trigger on at least 1 charged track

Q1 Trigger Rate

	Кμ2	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- Kμ3	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	6 Muons	Total
Total Rate (MHz)	5.7	1.9	0.5	0.5	0.3	0.2	526	173	135	879
Q1 (KHz)	4153	1766	466	271	408	156	3629	692	3335	14877

Left with a total rate of \sim 15,000 KHz.

To achieve 5 KHz downscaling of 3000.

How many $K^+ \to \pi^+ \pi^0$ decays can we hope to collect in 1 day of data taking?

Q1 Trigger Rate

What rate of decays are in detector acceptances (In Acc)?

- Charged Particles are within acceptance of 4 straw planes
- Photons from π^0 are within LKr Acceptance

	$K\mu 2$	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- КμЗ	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	Muons	Total
Total Rate (MHz)	5.7	1.9	0.5	0.5	0.3	0.2	526	173	135	879
Q1 (KHz) In	4153	1766	466	271	408	156	3629	692	3335	14877
Acc	1933	528	72	70	84	18				2707

Q1 Trigger Downscaling

- 528 KHz of $K^+ \rightarrow \pi^+ \pi^0$ decays in detector acceptance
- Downscaling of 3000
- 0.2 KHz of potentially usable $K^+
 ightarrow \pi^+ \pi^0$ decays
- Assuming data taking 30% of the time
- 5 Million decays collected per day

!MUV3 Primitive

Q1 trigger rates dominated by decays containing muons (*Kmu*2, Muons Upstream, Beam Pions)

!MUV3 primitive asks for **NO hits above threshold** in the MUV3 PMTs.

Q1 and !MUV3 Trigger Rate

	$K\mu 2$	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- Kμ3	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	Muons	Total
Total Rate (MHz)	5.7	1.9	0.5	0.5	0.3	0.2	526	173	135	879
Q1 (KHz) Q1 x	4153	1766	466	271	408	156	3629	692	3335	14877
!MUV3 (KHz)	43	1603	372	43	392	139	1052	657	176	4505

Left with a total rate of \sim 4,500 KHz.

To achieve 5 KHz downscaling of 900.

How many $K^+ \to \pi^+ \pi^0$ decays can we hope to collect in 1 day of data taking?

Q1 and !MUV3 Trigger Rate

Applying the same definition for acceptance as previously, i.e charged particles within straw acceptance π^0 photons within LKr acceptance.

	Κμ2	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- Kμ3	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	Muons	Total
Total Rate (MHz)	5.7	1.9	0.5	0.5	0.3	0.2	526	173	135	879
Q1 (KHz) Q1 x	4153	1766	466	271	408	156	3629	692	3335	14877
!MUV3 (KHz) In	43	1603	372	43	392	139	1052	657	176	4505
Acc	7	486	54	7	84	7				670

Q1 x !MUV3 Trigger Downscaling

- 486 KHz of $K^+ \rightarrow \pi^+ \pi^0$ decays in detector acceptance
- Downscaling of 900
- 0.5 KHz of potentially usable $K^+
 ightarrow \pi^+ \pi^0$ decays
- Assuming data taking 30% of the time
- 13 Million decays collected per day

Summary of Trigger Studies

- 2 Minimum bias triggers for October 2014 run, Q1 and (Q1 x !MUV3)

	Κμ2	$\pi^+\pi^0$	$\pi^+\pi^+\pi^-$	- Kμ3	Ke3	$\pi^+\pi^0\pi^0$	Pions	Protons	Muons	Total
Q1 (KHz) Q1 x !MUV3 (KHz)	4153 43	1766 1603	466 372	271 43	408 392	156 139	3629 1052	692 657	3335 176	14877 4505

- Significant downscaling is required due to no higher level triggers
- Can write data to the pc farm at a rate of \sim 10 KHz
- $K^+ \rightarrow \pi^+ \pi^0$ per day (within detector acceptances):
 - + 1 Million \rightarrow Q1 trigger
 - + 3 Million \rightarrow (Q1 x !MUV3) trigger

Outline

- 1. Control Sample L0 Trigger Strategy
 - 6 main K^+ decay modes in the beam
 - Trigger Primitives
 - 2 minimum bias triggers and downscaling
 - Summary

2. Testing Detector Efficiencies

- Aims from control samples
- $K^+ \rightarrow \pi^+ \pi^0$ early in the run
- $K^+ \rightarrow \pi^+ \pi^0$ sample uses
- Summary

Aims of control sample data

Want to analyse any data obtained from the control samples.

- Efficiency measurements of sub-detectors
- Time resoloution of sub-detectors
- Time correlation between sub detectors

Want to do this analysis during the 2014 run.

CHOD - one control sample trigger (Q1) LKr - reconstruct the $K^+ o \pi^+ \pi^0$ decay

Aims of control sample data

Aim

- Reconstruct a sample of $K^+ \rightarrow \pi^+ \pi^0$ using only LKr
- Demonstrate the sample contains < 1% Background
- Reconstructed π^+ can be used for detector commissioning

Reconstructing $K^+ \rightarrow \pi^+ \pi^0$ using the LKr

The following selection cuts are based on a previous study of $K^+ \rightarrow \pi^+ \pi^0$ done using 2012 TR data. G.Ruggiero Physics Working Group Meeting June 2013

Based on a sample of 6,466 $K^+ \to \pi^+\pi^0$ events (Q1 trigger on 10,000 events)

Selection can be sub-divided as follows

- Identifying Photon candidates from LKr clusters
- Reconstructing the π^0 from the photon candidates
- Reconstructing the π^+ assuming a nominal ${\cal K}^+$ beam

Apply the following selection cuts

- Cluster energy > 3 Gev
- Cuts on the energy distribution within the cluster
- Distance from any dead cell > 2cm
- At least two clusters within $\pm \; 1.5$ ns
- Distance between clusters > 20cm

Cluster energy > 3 Gev

- Place a 3 GeV cut on the energy of cluster deposits
- Rejects MIPs at 0.5 \mbox{Gev}/\mbox{c}

Apply the following selection cuts

- Cluster energy > 3 Gev
- Cuts on the energy distribution within the cluster
- Distance from any dead cell > 2cm
- At least two clusters within \pm 1.5 ns
- Distance between clusters > 20cm

Cuts on the energy distribution within the cluster

Cell size \sim 2cm x 2cm

- *E_{Cluster}* is the energy contained within the full cluster of **radius 11cm**
- *E_{Seed}* is the energy contained within the cell at the centre of the cluster
- *E*₇₇ is the energy contained in the 49 central cells

Cuts on the energy distribution within the cluster

- Identify clusters as 'photon like' by placing the following cuts on $E_{\it seed}$ and $1-E_{\rm 77}$

 $0.2 < E_{seed} < 0.45$ $0.03 < 1 - E_{77} < 0.14$

Apply the following selection cuts

- Cluster energy > 3 Gevt
- Distance from any dead cell > 2cm

Rejects poorly reconstructed clusters

26 / 52

- At least two clusters within $\pm \ 1.5$ ns
- Distance between clusters > 20cm

Apply the following selection cuts

- Cluster energy > 3 Gev
- Cuts on the energy distribution within the cluster
- Distance from any dead cell > 2cm
- At least two clusters within \pm 1.5 ns

No meaningful effect in MC

- Distance between clusters > 20cm

28 / 52

Apply the following selection cuts

- Cluster energy > 3 Gev
- Cuts on the energy distribution within the cluster
- Distance from any dead cell > 2cm
- At least two clusters within \pm 1.5 ns
- Distance between clusters > 20cm

Distance between clusters > 20 cm

Require that any cluster center is > 20cm from any other cluster center

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy 105 < Z < 180m

$$Z_{Vertex} = Z_{LKr} - rac{\sqrt{E_1 E_2 d_{12}^2}}{m_{\pi^0}}$$

- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X
- Calculate Photon momentum using Vertex position and cluster energy deposition
- π^0 4-momentum calculated by summing the photon 4-momenta
- Events with only 1 candidate π^0 with 10 $< {\rm E} < 65~{\rm GeV/c}$ considered

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy $105\,<\,Z\,<\,180m$
- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X

No deflection in y 1.2mrad deflection in x from TRIM5

- Calculate candidate photon momentum using Vertex position and cluster energy deposition
- π^0 4-momentum calculated by summing the photon 4-momenta
- Events with only 1 candidate π^0 with 10 $< {\rm E} < 65~{\rm GeV/c}$ considered

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy $105 < {\sf Z} < 180 {\sf m}$
- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X
- Calculate candidate photon momentum using Vertex position and cluster energy deposition

 $|P_{\gamma}| = E_{\gamma} = E_{Cluster}$ \overrightarrow{P} set from $Cluster_{XYZ}$ - $Vertex_{XYZ}$

- π^0 4-momentum calculated by summing the photon 4-momenta
- Events with only 1 candidate π^0 with 10 $< {\rm E} < 65~{\rm GeV/c}$ considered

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy $105\,<\,Z\,<\,180\text{m}$
- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X
- Calculate Photon momentum using Vertex position and cluster energy deposition
- π^0 4-momentum calculated by summing the photon 4-momenta

 $P_{\pi^0} = P_{\gamma 1} + P_{\gamma 2}$

- Events with only 1 candidate π^0 with 10 < E < 65 GeV/c considered

33 / 52

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy $105\,<\,Z\,<\,180m$
- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X
- Calculate Photon momentum using Vertex position and cluster energy deposition
- π^0 4-momentum calculated by summing the photon 4-momenta
- $10 < E_{\pi^0} < 65~{
 m GeV/c}$
- Events with only 1 $\pi^{\rm 0}$ candidate considered

$10 < E_{\pi^0} < 65 { m ~GeV/c}$

- $10 < E_{\pi^0} < 65~{
m GeV/c}$

Reconstruct the π^0 requiring

- Calculated Z vertex must satisfy $105\,<\,Z\,<\,180\text{m}$
- X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X
- Calculate Photon momentum using Vertex position and cluster energy deposition
- π^0 4-momentum calculated by summing the photon 4-momenta
- 10 $< E_{\pi^0} <$ 65 GeV/c
- Events with only 1 π^0 candidate considered
Events with only 1 π^0 candidate considered

- Require exactly 1 π^0 candidate per event

Reconstruct the π^+ requiring

- Assume nominal parameters for the K^+

 $|P_{K^+}| = 75 \text{ GeV}/c^2$ $\overrightarrow{P_{K^+}}$ Mainly along z with small component in x

-
$$P_{\pi^+} = P_{K^+} - P_{\pi^0}$$

- π^+ must be in CHOD and LKr acceptance

- Plot $P_{\pi^+}^2$

39 / 52

Reconstruct the π^+ requiring

- Assume nominal parameters for the K^+
- $P_{\pi^+} = P_{K^+} P_{\pi^0}$
- π^+ must be in CHOD and LKr acceptance
- Plot $P_{\pi^+}^2$

40 / 52

Reconstruct the π^+ requiring

- Assume nominal parameters for the K^+
- $P_{\pi^+} = P_{K^+} P_{\pi^0}$
- π^+ must be in CHOD and LKr acceptance

Pre Acceptance 1294 events

Post Acceptance 1074 events

- Plot $P_{\pi^+}^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

41 / 52

Reconstruct the π^+ requiring

- Assume nominal parameters for the K^+
- $P_{\pi^+} = P_{K^+} P_{\pi^0}$
- π^+ must be in CHOD and LKr acceptance
- Plot $P_{\pi^+}^2$

- Result of ${\cal P}_{\pi^+}^2$ should be $m_{\pi^+}^2=0.0195~{
m Gev}/c^2$

- $m_{\pi^+}^2 = 0.0195 \; (GeV/c^2)^2$
- Define a signal region 0 $< P_{\pi^+}^2 <$ 0.04 $(GeV/c^2)^2$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□□ ◇◇◇

43 / 52

- $m_{\pi^+}^2 = 0.0195~(GeV/c^2)^2$
- Define a signal region 0 $< P_{\pi^+}^2 <$ 0.04 $(GeV/c^2)^2$

Background in signal region $\sim 16\%$ Ke3 $\rightarrow \sim 10\%$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

44 / 52

 $egin{array}{c} {\cal K} \mu 3
ightarrow \sim 5\% \ {\pi^+ \pi^0 \pi^0}
ightarrow \sim < 1\% \end{array}$

Reducing the Backgrounds

Around 70% of the time π^+ will leave a cluster in LKr

Propagate reconstructed π^+ up to LKr and look for matching clusters (Separation < 150mm)

Reducing the Backgrounds

Around 70% of the time π^+ will leave a cluster in LKr

Propagate reconstructed π^+ up to LKr and look for matching clusters (Separation < 150m)

- $m_{\pi^+}^2 = 0.0195 \; (GeV/c^2)^2$
- Define a signal region 0 $< {\cal P}_{\pi^+}^2 <$ 0.04 $({\it GeV}/{\it c}^2)^2$
- Ask for π^+ to have a matching LKr cluster (< 150mm)

Background in signal region \sim 0.5%

 $egin{aligned} & {\it Ke3}
ightarrow \sim 0.03\% \ & {\it K\mu3}
ightarrow \sim 0.17\% \ & \pi^+\pi^0\pi^0
ightarrow \sim 0.35\% \end{aligned}$

Loss of signal $\sim 15\%$

- $m_{\pi^+}^2 = 0.0195~(GeV/c^2)^2$
- Define a signal region 0 $< {\cal P}_{\pi^+}^2 <$ 0.04 $({\it GeV}/{\it c}^2)^2$
- Ask for π^+ to have a matching LKr cluster (< 150mm)

Missing Mass squared Spetrum

Background in signal region \sim 0.5%

 $egin{aligned} & {\it Ke3}
ightarrow \sim 0.03\% \ & {\it K\mu3}
ightarrow \sim 0.17\% \ & \pi^+\pi^0\pi^0
ightarrow \sim 0.35\% \end{aligned}$

Loss of signal $\sim 15\%$

Reconstructed $K^+ \rightarrow \pi^+ \pi^0$ Selection Summary

- Able to select a $K^+
 ightarrow \pi^+ \pi^0$ sample using only LKr
- <1% background in signal region
- Procedure for doing selection during 2014 run

How large a $K^+ \rightarrow \pi^+ \pi^0$ sample can we hope to collect in 1 day?

- 1. 6,466 pass the Q1 trigger
- 2. 1,007 (15.6%) pass the Selection cuts
- 3. Q1 trigger \rightarrow expect to collect ${\sim}1$ Million per day
- 4. \sim 150,000 ${\cal K}^+
 ightarrow \pi^+ \pi^0$ passing the selection per day

Using the $K^+ \rightarrow \pi^+ \pi^0$ Sample

- Now have a reconstructed sample of π^+
- Use the reconstructed π^+ can test sub-detector efficiencies and timings
- Example: Resolution of reconstructed π^+ at the first straw plane

ELE DOG

50 / 52

Seperation(mm) of Monte Carlo Truth Pi+ from the Projected Pi+ on the first straw plane

Using the $K^+ \rightarrow \pi^+ \pi^0$ Sample

- Now have a reconstructed sample of π^+
- Use the reconstructed π^+ can test sub-detector efficiencies and timings
- Example: Resolution of reconstructed π^+ at the first straw plane

글 🖌 🖂 글 🖂

51 / 52

Seperation(mm) of Monte Carlo Truth Pi+ from the Projected Pi+ on the first straw plane

Summary and Next Steps

- 2 Level 0 Control Triggers have been identified
- ${\cal K}^+ \to \pi^+\pi^0$ Selection using only LKr has been investigated
- Use $K^+ \rightarrow \pi^+ \pi^0$ sample **during the run** to aid detector commissioning

Next Steps

- Incorporate magnetic fields into the Vertex calculations
- Prepare routines for efficiency and timing measurements
- Look at what other channels will be useful during the 2014 run

Spares

<ロ > < 部 > < き > くき > 見 = の Q (~ 53 / 52

Cluster energy > 3 Gev

- Place a 3 GeV cut on the energy of cluster deposits.

Distance from any dead cell > 2cm

- Require that any cluster center is > 2cm from any dead cell

At least two clusters within \pm 1.5 ns

- Must be two clusters within a 1.5ns window

Calculated Z vertex must satisfy 105 < Z < 180m

The Z vertex is calculated by assuming the two clusters come from a π^0 decay.

Also that the decay point of the π^0 is the decay point of the parent K^+

$$Z_{Vertex} = Z_{LKr} - \frac{\sqrt{E_1 E_2 d_{12}^2}}{m_{\pi^0}}$$

Calculated Z vertex must satisfy 105 < Z < 180m

- Reject π^0 candidates which are not in the decay volume

X,Y Vertex co-ordinates assuming 1.2 mrad deflection along X

Ideal beam therefore K^+ receives no deflection in Y.

 $Y_{Vertex} = 0$

 K^+ receives 1.2mrad deflection along X from the Trim 5 magnet.

$$X_{Vertex} = (Z_{Vertex} - Z_{Trim5})tan(0.0012)$$

59 / 52

Calculate Photon momentum using Vertex position and cluster energy deposition

- Photon Momentum direction set by Clusterxyz Vertexxyz
- Photon |P| and E set by cluster energy

Assume nominal parameters for the K^+

Assume a |P| = 75 Gev/c K^+ .

Momentum is mainly in z direction with an \times component corresponding to a 1.2mrad deflection

$$p_k = egin{pmatrix} \sqrt{75^2 + m_{\pi^+}^2} \ 75tan(0.0012) \ 0 \ 75(1 - tan(0.0012)) \end{pmatrix}$$

π^+ must be in CHOD and LKr acceptance

- Require π^+ is within the CHOD and LKr acceptance
- Important for reconstruction later

-
$$m_{\pi^+}^2 = 0.0192~{
m Gev/c}$$

Began with 6466 Events, end up with 1074 events after the selection (16.6%)

Issue

The $m_{\pi^+}^2$ distribution has a 'shoulder'

Suspect this is due to a cluster from a π^+ being incorrectly identified as a π^0 cluster

Solution

Propagate the reconstructed π^+ up to the Lkr and look for matching clusters

Attempt to match the π^+ projection to a cluster in the Lkr

Why do 188 events (17.5%) of π^+ not leave a cluster deposit? Try Matching the π^+ to a Q1 condition (More efficient at detecting π^+)

Using Q1 CHOD Matching for the π^+

Only 41 (3.8%) of events do not have a matching CHOD condition. Does not seem to remove 'shoulder'

Possible Origins of the loss of event when requiring Lkr Cluster (Q1) matching for the π^+

- Remove events with muons
- π^+ does not reach the LKr(CHOD)
- π^+ near edges of detector acceptance
- π^+ undergoes large scattering before the LKr(CHOD)
- The vertex and 4-momentum of the π^+ is not accurate

Remove events with muons

Remove events which have any hits above threshold in the MUV3

Possible Origins of the loss of event when requiring Lkr Cluster (Q1) matching for the π^+

- Remove events with muons
- π^+ does not reach the LKr(CHOD)
- π^+ near edges of detector acceptance
- π^+ undergoes large scattering before the LKr(CHOD)
- The vertex and 4-momentum of the π^+ is not accurate

69 / 52

π^+ does not reach the LKr(CHOD)

Remove events were the pi^+ ends before LKr, from MC.

Possible Origins of the loss of event when requiring Lkr Cluster (Q1) matching for the π^+

- Remove events with muons
- π^+ does not reach the LKr(CHOD)
- π^+ near edges of detector acceptance
- π^+ undergoes large scattering before the LKr(CHOD)
- The vertex and 4-momentum of the π^+ is not accurate

π^+ near edges of detector acceptance

Reduce the detector acceptance by 10cm on the inner and outer edges of the LKr and CHOD.

Understanding the $K^+ \rightarrow \pi^+ \pi^0$ Selection

Possible Origins of the loss of event when requiring Lkr Cluster (Q1) matching for the π^+

- Remove events with muons
- π^+ does not reach the LKr(CHOD)
- π^+ near edges of detector acceptance
- π^+ undergoes large scattering before the LKr(CHOD)
- The vertex and 4-momentum of the π^+ is not accurate

π^+ undergoes large scattering before the LKr(CHOD)

Remove π^+ which undergo large scattering.

Understanding the $K^+ \rightarrow \pi^+ \pi^0$ Selection

Possible Origins of the loss of event when requiring Lkr Cluster (Q1) matching for the π^+

- Remove events with muons
- π^+ does not reach the LKr(CHOD)
- π^+ near edges of detector acceptance
- π^+ undergoes large scattering before the LKr(CHOD)
- The vertex and 4-momentum of the π^+ is not accurate

The vertex and 4-momentum of the π^+ is not accurate

Use the MC Vertex and Momentum for propagating π^+ .

