Horizon wave-function
 the way to
 the quantum hoop conjecture

Octavian Micu
Institute of Space Science, Bucharest
First FLAG Meeting
30 May 2014

Abstract

We address the issue of black hole formation by collision of quantum particles. We introduce the horizon wave-function for quantum mechanical states representing a single localised particle, from which we derive a GUP. For two highly-boosted non-interacting particles that collide in (1+1)-dimensions, this wave-function determines a probability that the system becomes a black hole depending on the initial momenta and spatial separation between the particles, thus extending the hoop conjecture to quantum mechanics and yielding corrections to its classical counterpart.

ArXiv:1305.3195, 1306.5298 [EPJ C], 1311.5698 [PLB], 1405.4192,...
Collaboration: R. Casadio, A. Giugno ,A. Orlandi, F. Scardigli, ...

Plan of the talk

1. Physical system: gravitational collapse of quantum matter
2. Hawking radiation: lessons from the semiclassical picture
3. Hoop conjecture: Schwarzschild radius of a classical particle
4.Problem: Schwarzschild radius of a quantum particle?
4. Single particle: horizon wave-function and the GUP
6.2-particle collision: horizon wave-function and the quantum hoop
7.Summary and outlook

1) Gravitational collapse

Standard classical picture: classical matter and "geometrical" space-time"

*Prototype background: $d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}$

But matter is quantum...!

1) Gravitational collapse

Standard semiclassical picture: classical matter and "geometrical" space-time + foreground quantum particles

$$
|0 ; t=+\infty\rangle=\sum \text { excitations }=\text { Hawking radiation }
$$

2) Hoop conjecture

Thorne's hoop conjecture (1972):

A black hole forms when the impact parameter b of two colliding objects (of negligible spatial extension) is shorter than the radius of the would-be-horizon (Schwarzschild radius, for negligible angular momentum) corresponding to the total energy E

Quantum mechanical particle

$$
\begin{aligned}
& \quad b \lesssim 2 \ell_{\mathrm{p}} \frac{E}{m_{\mathrm{p}}} \equiv R_{\mathrm{H}} \\
& \text { Classical geometry }
\end{aligned}
$$

2) Hoop conjecture

Classical spherically symmetric system:

$$
E(r)=\frac{4}{3} \pi \int_{0}^{r} \rho\left(t, r^{\prime}\right) r^{\prime 2} d r^{\prime}
$$

Misner-Sharp mass

R_{H}

Surface is a "Horizon" if: $\quad 4 \pi R_{\mathrm{H}}^{2}=4 \pi r^{2}$ Schwarzschild radius

3) Horizon of QM particle

What is the Schwarzschild radius of QM particles?

From Generalized uncertainty principles (GUPs): $\quad \Delta x \gtrsim \ell_{\mathrm{p}} \frac{m_{\mathrm{p}}}{\Delta p}+\alpha \ell_{\mathrm{p}} \frac{\Delta p}{m_{\mathrm{p}}}$ To Dvali's classicalization (2010):

At high (\sim Planckian) energy, quantum particle scatterings lead to formation of
"classicalons" and quantum degrees of freedom disappear (no UV divergences).
For gravity, "classicalons" = black holes = BEC of gravitons

1) Localised particle at rest:

$\left\langle x \mid \psi_{\mathrm{S}}\right\rangle \sim$ packet

Energy (modes) of choice!

$$
1
$$

2) Spectral decomposition: $\quad\left|\psi_{\mathrm{S}}\right\rangle=\sum_{E} C(E)|E\rangle$

3) Horizon wave-function:
$\left\langle R_{\mathrm{H}} \mid \psi_{\mathrm{H}}\right\rangle \sim C\left(R_{\mathrm{H}}\right)$

Localised particle at rest:
Gaussian wave-function:

$$
\psi_{\mathrm{S}}(r)=\frac{e^{-\frac{r^{2}}{2 \ell^{2}}}}{\ell^{3 / 2} \pi^{3 / 4}}
$$

Energy spectrum: $\left|\psi_{\mathrm{S}}\right\rangle=\sum_{E} C(E)|E\rangle$
Fourier transform:

$$
\psi_{\mathrm{S}}(p)=\frac{e^{-\frac{p^{2}}{2 \Delta^{2}}}}{\Delta^{3 / 2} \pi^{3 / 4}} \quad \Delta=\frac{\hbar}{\ell} \sim m
$$

Horizon wave-function:

$$
R_{\mathrm{H}}=2 \ell_{\mathrm{p}} \frac{E}{m_{\mathrm{p}}}
$$

$$
E^{2}=p^{2}+m^{2} \text { (flat space) }
$$

Probability particle is inside its own horizon:

$$
P_{<}\left(r<R_{\mathrm{H}}\right)=P_{\mathrm{S}}\left(r<R_{\mathrm{H}}\right) P_{\mathrm{H}}\left(R_{\mathrm{H}}\right)
$$

$$
\begin{aligned}
& P_{\mathrm{S}}\left(r<R_{\mathrm{H}}\right)=4 \pi \int_{0}^{R_{\mathrm{H}}}\left|\psi_{\mathrm{S}}(r)\right|^{2} r^{2} d r \\
& P_{\mathrm{H}}\left(R_{\mathrm{H}}\right)=4 \pi R_{\mathrm{H}}^{2}\left|\psi_{\mathrm{H}}\left(R_{\mathrm{H}}\right)\right|^{2}
\end{aligned}
$$

Probability particle is a Black Hole:

$$
P_{\mathrm{BH}}=\int_{0}^{\infty} P_{<}\left(r<R_{\mathrm{H}}\right) d R_{\mathrm{H}}
$$

4) Horizon wave-function

$$
\psi_{H}\left(R_{\mathrm{H}}\right)=\frac{\ell^{3 / 2} e^{-\frac{\ell^{2} R_{\mathrm{H}}^{2}}{8 \ell_{\mathrm{p}}^{4}}}}{2^{3 / 2} \pi^{3 / 4} \ell_{\mathrm{p}}^{3}}
$$

$$
P_{<}\left(r<R_{\mathrm{H}}\right)=\frac{\ell^{3} R_{\mathrm{H}}^{2}}{2 \sqrt{\pi} \ell_{\mathrm{p}}^{6}} e^{-\frac{\ell^{2} R_{\mathrm{H}}^{2}}{4 \ell_{\mathrm{g}}^{4}}}\left[\operatorname{Erf}\left(\frac{R_{\mathrm{H}}}{\ell}\right)-\frac{2 R_{\mathrm{H}}}{\sqrt{\pi} \ell} e^{-\frac{R_{\mathrm{p}}^{2}}{\ell^{2}}}\right]
$$

$$
P_{\mathrm{BH}}(\ell)=\frac{2}{\pi}\left[\arctan \left(2 \frac{\ell_{\mathrm{p}}^{2}}{\ell^{2}}\right)+2 \frac{\ell^{2}\left(4-\ell^{4} / \ell_{\mathrm{p}}^{4}\right)}{\ell_{\mathrm{p}}^{2}\left(4+\ell^{4} / \ell_{\mathrm{p}}^{4}\right)^{2}}\right]
$$

N.B. Uncertainty derived with standard canonical commutators: $[q, p]=i \hbar$ (gravity is more than kinematics...?)

1) Two localised particles: $\quad \psi_{\mathrm{S}}\left(x_{1}, x_{2}\right)=\psi_{\mathrm{S}}\left(x_{1}\right) \psi_{\mathrm{S}}\left(x_{2}\right)$

$$
\psi_{\mathrm{S}}\left(x_{i}\right)=e^{-i \frac{P_{i} x_{i}}{\hbar}} \frac{e^{-\frac{\left(x_{i}-x_{i}\right)^{2}}{\ell_{i}}}}{\sqrt{\pi^{1 / 2} \ell_{i}}}
$$

$$
\Delta_{i}=\hbar / \ell_{i}
$$

2) Two particles in momentum space:

$$
\psi_{\mathrm{S}}\left(p_{i}\right)=e^{-i \frac{p_{i} X_{i}}{\hbar}} \frac{e^{-\frac{\left(p_{i}-P_{i}\right)^{2}}{2 \Delta_{i}}}}{\sqrt{\pi^{1 / 2} \Delta_{i}}}
$$

$$
\left|\psi_{\mathrm{S}}^{(1,2)}\right\rangle=\prod_{i=1}^{2}\left[\int_{-\infty}^{+\infty} d p_{i} \psi_{\mathrm{S}}\left(p_{i}, t\right)\left|p_{i}\right\rangle\right]
$$

$$
X_{i}
$$

$$
P_{i}
$$

3) Unnormalised horizon wave-function:

$$
\left|\psi_{\mathrm{S}}\right\rangle=\sum_{E} C(E)|E\rangle
$$

4) Centre-mass and relativistic limit:

$$
\begin{aligned}
& \ell_{i}=\frac{\hbar}{\sqrt{P_{i}^{2}+m_{i}^{2}}} \simeq \frac{\ell_{\mathrm{p}} m_{\mathrm{p}}}{\left|P_{i}\right|} \\
& P_{1}=-P_{2} \equiv P>0 \\
& X_{1} \simeq-X_{2} \equiv X>0
\end{aligned}
$$

$$
\Delta_{i} \simeq\left|P_{i}\right|
$$

5) Collisions

Horizon wave-function:

5) Collisions

6) Hoop conjecture:

A) classical
$P_{\mathrm{BH}}\left(X, 2 P \gtrsim 2 m_{\mathrm{p}}\right) \gtrsim 80 \%$
$X \lesssim 2 \ell_{\mathrm{p}}\left(2 P / m_{\mathrm{p}}\right)-\ell_{\mathrm{p}} \simeq R_{\mathrm{H}}(2 P)$

B) quantum
$P_{\mathrm{BH}}\left(X, 2 P \lesssim 2 m_{\mathrm{p}}\right) \gtrsim 80 \%$
$2 P-m_{\mathrm{p}} \gtrsim \frac{m_{\mathrm{p}} X^{2}}{9 \ell_{\mathrm{p}}}$

Summary and outlook

1. Horizon wave-function describes spherical particle/BH + GUP
2. Horizon wave-function yields quantum hoop conjecture for 2 particle collisions (in flat $1+1$ dimensions)
3. Account for particle(s) self-gravity (BEC BHs - arXiv:1405.4192)
4. Generalise to non-spherical systems (and spin)
5. Analyse (2-)particle collisions with angular momentum + spin
6. (Hope for?) quantum description of gravitational collapse
