Universality Classes for Quantum Gravity

Frank Saueressig

Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017M. Demmel, F.S. and O. Zanusso, arXiv:1401.5495

First FLAG Meeting "The Quantum and Gravity" Bologna, May 28, 2014

Outline

- Motivations for Quantum Gravity
- Quantum Gravity from a Wilsonian perspective
- Asymptotic Safety program
 - fixed functionals of f(R)-gravity
- projectable Hořava-Lifshitz gravity
 - restoring Lorentz-symmetry in the IR
 - matter induced UV fixed point
- Conclusions

Classical General Relativity

Based on Einsteins equations

1

$$\underbrace{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}_{\text{space-time curvature}} = \underbrace{-\Lambda g_{\mu\nu} + 8\pi G_N T_{\mu\nu}}_{\text{matter content}}$$

- Newton's constant:
- cosmological constant:

$$G_N = 6.67 \times 10^{-11} \frac{\mathrm{m}^3}{\mathrm{kg \, s}^2}$$

 $\Lambda \approx 10^{-35} \mathrm{s}^{-2}$

Classical General Relativity

Based on Einsteins equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}_{\text{space-time curvature}} = \underbrace{-\Lambda g_{\mu\nu} + 8\pi G_N T_{\mu\nu}}_{\text{matter content}}$$

 $G_N = 6.67 \times 10^{-11} \, \frac{\mathrm{m}^3}{\mathrm{kg \, s}^2}$

 $\Lambda \approx 10^{-35} \text{ s}^{-2}$

- Newton's constant:
- cosmological constant:

Passed highly non-trivial experimental tests:

- perihelion precession of Mercury
- deflection of light by sun
- gravitational redshift
- light travel time delay
- equivalence principle
- binary pulsars (strong gravitational fields)

1. internal consistency

1. internal consistency

- 2. singularities in solutions of Einstein equations
 - black hole singularities
 - Big Bang singularity

1. internal consistency

- 2. singularities in solutions of Einstein equations
 - black hole singularities
 - Big Bang singularity
- 3. cosmological observations:
 - initial conditions for structure formation
 - small positive cosmological constant

1. internal consistency

- 2. singularities in solutions of Einstein equations
 - black hole singularities
 - Big Bang singularity
- 3. cosmological observations:
 - initial conditions for structure formation
 - small positive cosmological constant

General Relativity is incomplete

Quantum Gravity may give better answers to these puzzles

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^d x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^d x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- \Rightarrow dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^{d-2} G_N , \quad \lambda_k \equiv \Lambda k^{-2}$$

• GFP: flow governed by mass-dimension:

$$k\partial_k g_k = (d-2)g + \mathcal{O}(g^2)$$

 $k\partial_k \lambda_k = -2\lambda + \mathcal{O}(g)$

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{\rm EH} = \frac{1}{16\pi G_N} \int d^d x \sqrt{g} \left[-R + 2\Lambda \right]$$

• Newton's constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- \Rightarrow dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^{d-2} G_N , \quad \lambda_k \equiv \Lambda k^{-2}$$

• GFP: flow governed by mass-dimension:

$$k\partial_k g_k = (d-2)g + \mathcal{O}(g^2)$$

 $k\partial_k \lambda_k = -2\lambda + \mathcal{O}(g)$

General Relativity is perturbatively non-renormalizable

a) Treat gravity as effective field theory:

[J. Donoghue, gr-qc/9405057]

- compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
- breaks down at $E^2 \approx M_{\rm Pl}^2$

a) Treat gravity as effective field theory:

[J. Donoghue, gr-qc/9405057]

- compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
- breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - string theory:
 - requires: supersymmetry, extra dimensions
 - loop quantum gravity:
 - keeps Einstein-Hilbert action as "fundamental"
 - new quantization scheme
 - causal sets

a) Treat gravity as effective field theory:

[J. Donoghue, gr-qc/9405057]

- compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
- breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - string theory:
 - requires: supersymmetry, extra dimensions
 - loop quantum gravity:
 - keeps Einstein-Hilbert action as "fundamental"
 - new quantization scheme
 - causal sets
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion beyond perturbation theory:
 - UV-completion by relaxing symmetries:

Asymptotic Safety Hořava-Lifshitz

a) Treat gravity as effective field theory:

[J. Donoghue, gr-qc/9405057]

- compute corrections in $E^2/M_{\rm Pl}^2 \ll 1$ (independent of UV-completion)
- breaks down at $E^2 \approx M_{\rm Pl}^2$
- b) UV-completion requires new physics:
 - string theory:
 - requires: supersymmetry, extra dimensions
 - loop quantum gravity:
 - keeps Einstein-Hilbert action as "fundamental"
 - new quantization scheme
 - causal sets
- c) Gravity makes sense as Quantum Field Theory:
 - UV-completion beyond perturbation theory:
 - UV-completion by relaxing symmetries:
- Asymptotic Safety

Hořava-Lifshitz

Quantum Gravity from a Wilsonian perspective

- theory \Leftarrow specify
 - a) field content
 - b) symmetries

(e.g. graviton) (e.g. coordinate transformations)

- theory \Leftarrow specify
 - a) field content (e.g.
 - b) symmetries

(e.g. graviton)

(e.g. coordinate transformations)

- **action** = specific combination of interaction monomials \mathcal{O}
 - build from field content
 - compatible with symmetries

(e.g. $\mathcal{O} = \int d^4x \sqrt{g}R$)

- - a) field content
 - b) symmetries

(e.g. graviton)

(e.g. $\mathcal{O} = \int d^4x \sqrt{g}R$)

(e.g. coordinate transformations)

- **action** = specific combination of interaction monomials \mathcal{O}
 - build from field content
 - compatible with symmetries
- theory space:
 - space containing all actions
 - coordinates: coupling constants $\{g_i\}$ (e.g. G_N, Λ, \ldots)

for coupling constants:

Ο

theory \Leftarrow specify a) field content (e.g. graviton) b) symmetries (e.g. coordinate transformations) action = specific combination of interaction monomials \mathcal{O} build from field content compatible with symmetries (e.g. $\mathcal{O} = \int d^4x \sqrt{g}R$) Ο theory space: space containing all actions coordinates: coupling constants $\{g_i\}$ Ο (e.g. G_N, Λ, \ldots) renormalization group flow: \circ connects physics at different scales k

Theory space underlying the Functional Renormalization Group

Fixed points of the RG flow

Central ingredient in Wilsons picture of renormalization

Definition:

• fixed point $\{g_i^*\} \iff \beta$ -functions vanish $(\beta_{g_i}(\{g_i\})|_{g_i=g_i^*} \stackrel{!}{=} 0)$

Fixed points of the RG flow

Central ingredient in Wilsons picture of renormalization

Definition:

• fixed point $\{g_i^*\} \iff \beta$ -functions vanish $(\beta_{g_i}(\{g_i\})|_{g_i=g_i^*} \stackrel{!}{=} 0)$

Properties:

- well-defined continuum limit
 - trajectory captured by FP in UV has no unphysical UV divergences
- 2 classes of RG trajectories:
 - \circ relevant = attracted to FP in UV
 - \circ irrelevant = repelled from FP in UV
- predictivity:
 - number of relevant directions
 - = free parameters (determine experimentally)

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling

- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - non-perturbatively renormalizable field theories

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling
- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - non-perturbatively renormalizable field theories

Gravity

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling
- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - non-perturbatively renormalizable field theories
- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating renormalizable field theory

Gravity

- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: Einstein-Hilbert action
 - \circ perturbation theory in G_N
- isotropic Gaussian Fixed Point (GFP)
 - fundamental theory: higher-derivative gravity
 - perturbation theory in higher-derivative coupling
- non-Gaussian Fixed Point (NGFP)
 - fundamental theory: interacting
 - non-perturbatively renormalizable field theories
- anisotropic Gaussian Fixed Point (aGFP)
 - fundamental theory: Hořava-Lifshitz gravity
 - Lorentz-violating renormalizable field theory

Gravity

Gravity

Asymptotic Safety Program

Asymptotic Safety as viable theory for Quantum Gravity

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences

Asymptotic Safety as viable theory for Quantum Gravity

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - $^{\circ}$ $\,$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$

 \iff experimental determination of relevant parameters

ensures predictivity

Asymptotic Safety as viable theory for Quantum Gravity

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - $^{\circ}$ $\,$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$
 - \iff experimental determination of relevant parameters
 - ensures predictivity
- c) classical limit:
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by General Relativity: (perihelion shift, gravitational lensing, nucleo-synthesis, ...)
Asymptotic Safety as viable theory for Quantum Gravity

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - $^{\circ}$ $\,$ fixing the position of a RG-trajectory in $\mathcal{S}_{\rm UV}$
 - \iff experimental determination of relevant parameters
 - ensures predictivity
- c) classical limit:
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by General Relativity: (perihelion shift, gravitational lensing, nucleo-synthesis, ...)

Quantum Einstein Gravity (QEG)

Effective average action Γ_k for gravity

C. Wetterich, Phys. Lett. **B301** (1993) 90 M. Reuter, Phys. Rev. D **57** (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

Effective average action Γ_k for gravity

C. Wetterich, Phys. Lett. **B301** (1993) 90 M. Reuter, Phys. Rev. D **57** (1998) 971

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[\phi,\bar{\phi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

 $^{\circ}$ $\,$ effective vertices in incorporate quantum-corrections with $p^2>k^2$

The Einstein-Hilbert truncation

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k)\right] + S^{\text{gf}} + S^{\text{gh}}$$

microscopic theory \iff fixed points of the β -functions

 $\beta_g(g^*, \lambda^*) = 0$, $\beta_\lambda(g^*, \lambda^*) = 0$

- Gaussian Fixed Point:
 - \circ at $g^* = 0, \lambda^* = 0 \iff$ free theory
 - \circ saddle point in the *g*- λ -plane
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - \circ at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

The Einstein-Hilbert truncation

Einstein-Hilbert truncation: two running couplings: G(k), $\Lambda(k)$

$$\Gamma_k = \frac{1}{16\pi G(k)} \int d^4x \sqrt{g} \left[-R + 2\Lambda(k)\right] + S^{\text{gf}} + S^{\text{gh}}$$

microscopic theory \iff fixed points of the β -functions

 $\beta_g(g^*, \lambda^*) = 0$, $\beta_\lambda(g^*, \lambda^*) = 0$

Gaussian Fixed Point:

- \circ at $g^* = 0, \lambda^* = 0 \iff$ free theory
- \circ saddle point in the *g*- λ -plane
- non-Gaussian Fixed Point ($\eta_N^* = -2$):
 - \circ at $g^* > 0, \lambda^* > 0 \iff$ "interacting" theory
 - UV attractive in g_k, λ_k

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity

Einstein-Hilbert-truncation: the phase diagram

M. Reuter, F. S., Phys. Rev. D 65 (2002) 065016, hep-th/0110054

The RG trajectory realized in Nature

M. Reuter, H. Weyer, JCAP 0412 (2004) 001, hep-th/0410119

measurement of G_N , Λ in classical regime:

- originates at NGFP (quantum regime: $G(k) = k^{2-d}g_*, \Lambda(k) = k^2\lambda_*$)
- passing extremely close to the GFP
- long classical GR regime (classical regime: $G(k) = \text{const}, \Lambda(k) = \text{const}$)
- $\lambda \lesssim 1/2$: IR fixed point?

Charting the RG-flow of the *R*²-truncation

O. Lauscher, M. Reuter, Phys. Rev. D66 (2002) 025026, hep-th/0205062 S. Rechenberger, F.S., Phys. Rev. D86 (2012) 024018, arXiv:1206.0657

Extending Einstein-Hilbert truncation with higher-derivative couplings

$$\Gamma_k^{\text{grav}}[g] = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} \left(-R + 2\Lambda_k \right) + \frac{1}{b_k} R^2 \right]$$

Charting the theory space spanned by $\Gamma_k^{\text{grav}}[g]$

Charting the theory space spanned by $\Gamma_k^{\text{grav}}[g]$

finite-dimensional truncations polynomial expansions of f(R)-gravity

[A. Codello, R. Percacci, C. Rahmede, '07]
[P. Machado, F. Saueressig, '07]
[A. Codello, R. Percacci, C. Rahmede, '09]
[A. Bonanno, A. Contillo, R. Percacci, '11]
[K. Falls, D. F. Litim, K. Nikolakopoulos, C. Rahmede, '13]

Polynomial expansion of f(R)-gravity

[A. Codello, R. Percacci, C. Rahmede, '07] [P. Machado, F. Saueressig, '07]

Flow equation for f(R)-gravity:

$$\Gamma_k^{
m grav}[g] = \int d^4x \sqrt{g} f_k(R)$$

• complicated partial differential equation governing k-dependence of $f_k(R)$

UV properties of RG flow:

- Polynomial expansion: $f_k(R) = \sum_{n=0}^N \bar{u}_n R^n + \dots$
- expand flow equation $\Longrightarrow \beta$ -functions for $g_n = \bar{u}_n k^{2n-4}$

$$k\partial_k g_n = \beta_{g_n}(g_0, g_1, \ldots), \quad n = 0, \ldots, N$$

• reduces search for NGFP to algebraic problem

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

• NGFP can be traced through extensions of truncation subspace

N	g_0^*	g_1^*	g_2^*	g_3^*	g_4^*	g_5^*	g_6^*
1	0.00523	-0.0202					
2	0.00333	-0.0125	0.00149				
3	0.00518	-0.0196	0.00070	-0.0104			
4	0.00505	-0.0206	0.00026	-0.0120	-0.0101		
5	0.00506	-0.0206	0.00023	-0.0105	-0.0096	-0.00455	
6	0.00504	-0.0208	0.00012	-0.0110	-0.0109	-0.00473	0.00238

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

• NGFP can be traced through extensions of truncation subspace

N	g_0^*	g_1^*	g_2^*	g_3^*	g_4^*	g_5^*	g_6^*
1	0.00523	-0.0202					
2	0.00333	-0.0125	0.00149				
3	0.00518	-0.0196	0.00070	-0.0104			
4	0.00505	-0.0206	0.00026	-0.0120	-0.0101		
5	0.00506	-0.0206	0.00023	-0.0105	-0.0096	-0.00455	
6	0.00504	-0.0208	0.00012	-0.0110	-0.0109	-0.00473	0.00238

NGFP is stable under extension of truncation subspace

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

N	Re $ heta_{0,1}$	$Im \ \theta_{0,1}$	$ heta_2$	$ heta_3$	$ heta_4$	$ heta_5$	$ heta_6$
1	2.38	2.17					
2	1.26	2.44	27.0				
3	2.67	2.26	2.07	-4.42			
4	2.83	2.42	1.54	-4.28	-5.09		
5	2.57	2.67	1.73	-4.40	- 3.97 + 4.57 <i>i</i>	- 3.97 - 4.57 <i>i</i>	
6	2.39	2.38	1.51	-4.16	-4.67 + 6.08 <i>i</i>	-4.67 - 6.08 <i>i</i>	-8.67

• Polynomial expansion: $f_k(R) = \sum_{n=0}^N g_n (R/k^2)^n k^4 + \dots$

$$k\partial_k g_i = \beta_{g_i}(g_0, g_1, \ldots), \quad i = 0, \ldots, N$$

• linearized RG flow at NGFP \implies three UV relevant directions

N	Re $ heta_{0,1}$	$Im \ \theta_{0,1}$	$ heta_2$	$ heta_3$	$ heta_4$	$ heta_5$	$ heta_6$
1	2.38	2.17					
2	1.26	2.44	27.0				
3	2.67	2.26	2.07	-4.42			
4	2.83	2.42	1.54	-4.28	-5.09		
5	2.57	2.67	1.73	-4.40	- 3.97 + 4.57 <i>i</i>	-3.97 - 4.57 <i>i</i>	
6	2.39	2.38	1.51	-4.16	- 4.67 + 6.08 <i>i</i>	-4.67 - 6.08 <i>i</i>	-8.67

NGFP is stable under extension of truncation subspace

good evidence: fundamental theory has finite number of relevant parameters

infinite-dimensional truncations RG flow of f(R)-gravity

[D. Benedetti and F. Caravelli, JHEP 1206 (2012) 017, arXiv:1204.3541]
[M. Demmel, F. Saueressig and O. Zanusso, JHEP 1211 (2012) 131, arXiv:1208.2038]
[J. A. Dietz and T. R. Morris, JHEP 1301 (2013) 108, arXiv:1211.0955]
[D. Benedetti, Europhys. Lett. 102 (2013) 20007, arXiv:1301.4422]
[M. Demmel, F. Saueressig and O. Zanusso, arXiv:1302.1312]
[J. A. Dietz and T. R. Morris, JHEP 1307 (2013) 064, arXiv:1306.1223]
[D. Benedetti and F. Guarnieri, arXiv:1311.1081]
[I. H. Bridle, J. A. Dietz and T. R. Morris, arXiv:1312.2846]
[M. Demmel, F. Saueressig and O. Zanusso, arXiv:1401.5495]

RG flows of f(R)-gravity

toy model: 3-dimensional, conformally reduced gravity

$$\Gamma_k[g] = \int d^3x \sqrt{g} f_k(R)$$

flow equation:

$$\int d^3x \sqrt{g} \ [k\partial_k f_k(R)] = \frac{1}{2} \operatorname{Tr} W[\Box]$$
$$= \frac{1}{2} \int_0^\infty ds \, \tilde{W}(s) \operatorname{Tr} e^{-s\Box}$$

f(R)-ansatz: evaluate trace on maximally symmetric spaces

 S^3

 H^3

Laplacian Δ on S^3

Laplacian has discrete spectrum

$$\lambda_l = l(l+2)\frac{R}{6}$$
, $D_l = (l+1)^2$, $l = 0, 1, \dots$

Laplacian Δ on S^3

Laplacian has discrete spectrum

$$\lambda_l = l(l+2)\frac{R}{6}, \qquad D_l = (l+1)^2, \qquad l = 0, 1, \dots$$

Operator trace can be expressed through the heat-kernel

$$\operatorname{Tr} e^{-s\Delta} = \int d^3x \sqrt{g} K(x,s) \,.$$

local heat-kernel

$$K(x,s) = (4\pi s)^{-3/2} e^{sR/6}$$
$$= (4\pi s)^{-3/2} \left(1 + \frac{1}{6}sR + \ldots\right)$$

Laplacian Δ on S^3

Laplacian has discrete spectrum

$$\lambda_l = l(l+2)\frac{R}{6}$$
, $D_l = (l+1)^2$, $l = 0, 1, \dots$

Operator trace can be expressed through the heat-kernel

$$\operatorname{Tr} e^{-s\Delta} = \int d^3x \sqrt{g} K(x,s) \,.$$

local heat-kernel

$$K(x,s) = (4\pi s)^{-3/2} e^{sR/6}$$
$$= (4\pi s)^{-3/2} \left(1 + \frac{1}{6}sR + \dots\right)$$

non-local contributions (diffusing particle returning multiple times)

$$K(x,s) = (4\pi s)^{-3/2} e^{sR/6} \sum_{n=-\infty}^{\infty} \left(1 - \frac{12\pi^2 n^2}{sR}\right) e^{\frac{-6n^2 \pi^2}{sR}}$$

• crucial for correct asymptotic for $s \to \infty$

Laplacian Δ on H^3

Laplacian has continuous spectrum

$$\rho \in [\lambda_c, \infty], \qquad \lambda_c = -\frac{R}{6} > 0$$

Laplacian Δ on H^3

Laplacian has continuous spectrum

$$\rho \in [\lambda_c, \infty], \qquad \lambda_c = -\frac{R}{6} > 0$$

Operator trace can be expressed through the heat-kernel

$$\operatorname{Tr} e^{-s\Delta} = \int d^3x \sqrt{g} K(x,s) \,.$$

exact heat-kernel:

$$K(x,s) = (4\pi s)^{-3/2} e^{sR/6}$$
$$= (4\pi s)^{-3/2} \left(1 + \frac{1}{6}sR + \ldots\right)$$

• H^3 is non-compact: no winding modes!

Laplacian Δ on H^3

Laplacian has continuous spectrum

$$\rho \in [\lambda_c, \infty], \qquad \lambda_c = -\frac{R}{6} > 0$$

Operator trace can be expressed through the heat-kernel

$$\operatorname{Tr} e^{-s\Delta} = \int d^3x \sqrt{g} K(x,s) \,.$$

exact heat-kernel:

$$K(x,s) = (4\pi s)^{-3/2} e^{sR/6}$$
$$= (4\pi s)^{-3/2} \left(1 + \frac{1}{6}sR + \dots\right)$$

• H^3 is non-compact: no winding modes!

"local heat-kernel" is same for any \bar{g}

background covariance: β -functions independent of \bar{g}

Flow equation on S^3

choose coarse-graining operator

$$\Box = \Delta + \mathbb{E}, \qquad \mathbb{E} = 0, R/6$$

write flow in dimensionless quantities

$$R = k^2 r, \qquad f_k(R) = k^3 \varphi_k(r)$$

obtain partial-differential equation for φ ($\mathbb{E} = 0$):

$$\dot{\varphi}_k + 3\varphi - 2r\varphi' = \sum_{l=0}^{\infty} \left(l+1\right)^2 \theta \left(1 - \frac{1}{6}l(l+2)r\right) \mathcal{N}\left(l, r, \varphi', \varphi'', \varphi'', \dot{\varphi}'', \dot{\varphi}''\right)$$

- first order in $\partial_t \equiv k \partial_k$
- third order in r
- integrates out fluctuations of sphere "mode by mode"

Constructing fixed functionals

fixed functionals are *k*-stationary, global solutions of the PDE

truncation	flow	fixed points
finite-dimensional	ODE	algebraic
infinite-dimensional	PDE	ODE

Constructing fixed functionals

fixed functionals are *k*-stationary, global solutions of the PDE

truncation	flow	fixed points	
finite-dimensional	ODE	algebraic	
infinite-dimensional	PDE	ODE	

non-linear third-order ODE determining φ_* ($\mathbb{E} = R/6$):

$$3\varphi - 2r\varphi' = \begin{cases} \frac{3r^{3/2}}{4\sqrt{6}\pi^2} \sum_{n \ge 1} \theta \left(1 - \frac{r}{6}n^2\right) \frac{\hat{b}_1 n^2 + \hat{b}_2 n^4 + \hat{b}_3 n^6}{27\varphi + 6(6 - 7r)\varphi' + 16(3 - 2r)^2\varphi''}, & r \in [0, 6] \\ \frac{1}{35\pi^2} \frac{252\varphi' + 20(72 - 49r)\varphi'' - 32r(15 - 14r)\varphi'''}{27\varphi + 6(6 - 7r)\varphi' + 16(3 - 2r)^2\varphi''}, & r \in [-\infty, 0]. \end{cases}$$

Constructing fixed functionals

fixed functionals are *k*-stationary, global solutions of the PDE

truncation	flow	fixed points	
finite-dimensional	ODE	algebraic	
infinite-dimensional	PDE	ODE	

non-linear third-order ODE determining φ_* ($\mathbb{E} = R/6$):

$$3\varphi - 2r\varphi' = \begin{cases} \frac{3r^{3/2}}{4\sqrt{6}\pi^2} \sum_{n \ge 1} \theta \left(1 - \frac{r}{6}n^2\right) \frac{\hat{b}_1 n^2 + \hat{b}_2 n^4 + \hat{b}_3 n^6}{27\varphi + 6(6 - 7r)\varphi' + 16(3 - 2r)^2\varphi''}, & r \in [0, 6] \\ \frac{1}{35\pi^2} \frac{252\varphi' + 20(72 - 49r)\varphi'' - 32r(15 - 14r)\varphi'''}{27\varphi + 6(6 - 7r)\varphi' + 16(3 - 2r)^2\varphi''}, & r \in [-\infty, 0]. \end{cases}$$

expect set of discrete solutions, iff

order of ODE - number of singularities = 0

Checking the singularity index

• r < 0 has no fixed singularities

order of ODE - number of singularities $\stackrel{!}{=} 0$

Fixed functionals obtained from shooting method

two global solutions $\varphi_{*,1}$, $\varphi_{*,2}$ with positive λ_*, g_*

key results: Asymptotic Safety

pure gravity:

- evidence for Asymptotic Safety
 - \Rightarrow non-Gaussian fixed point provides UV completion of gravity
- Iow number of relevant parameter:
 - \Rightarrow dimensionality of UV-critical surface \simeq 3
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

key results: Asymptotic Safety

pure gravity:

- evidence for Asymptotic Safety
 - \Rightarrow non-Gaussian fixed point provides UV completion of gravity
- Iow number of relevant parameter:
 - \Rightarrow dimensionality of UV-critical surface \simeq 3
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

gravity coupled to matter:

non-Gaussian fixed point compatible with standard-model matter

[R. Percacci and D. Perini, hep-th/0207033]

[P. Dona, A. Eichhorn and R. Percacci, arXiv:1311.2898]

• prediction of the Higgs mass $m_H \simeq 126 \text{ GeV}$

[M. Shaposhnikov and C. Wetterich, arXiv:0912.0208]

ls

Asymptotic Safety the only possibility for a quantum field theory of gravity?

Hořava-Lifshitz Gravity Asymptotic Safety and its connections

Foliation structure via ADM-decomposition

Preferred "time"-direction via foliation of space-time

• foliation structure $\mathcal{M}^{d+1} = S^1 \times \mathcal{M}^d$ with $y^{\mu} \mapsto (\tau, x^a)$:

$$ds^{2} = N^{2}dt^{2} + \sigma_{ij} \left(dx^{i} + N^{i}dt \right) \left(dx^{j} + N^{j}dt \right)$$

• fundamental fields: $g_{\mu\nu} \mapsto (N, N_i, \sigma_{ij})$

$$g_{\mu\nu} = \begin{pmatrix} N^2 + N_i N^i & N_j \\ N_i & \sigma_{ij} \end{pmatrix}$$

projectable Hořava-Lifshitz gravity in a nutshell

P. Hořava, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: $\{N(t), N_i(t, x), \sigma_{ij}(t, x)\}$

symmetry: $\mathsf{Diff}(\mathcal{M}, \Sigma) \subset \mathsf{Diff}(\mathcal{M})$

• breaks Lorentz-invariance at high energies
projectable Hořava-Lifshitz gravity in a nutshell

P. Hořava, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: $\{N(t), N_i(t, x), \sigma_{ij}(t, x)\}$

symmetry: $\mathsf{Diff}(\mathcal{M}, \Sigma) \subset \mathsf{Diff}(\mathcal{M})$

breaks Lorentz-invariance at high energies

Can construct the effective average action for projective HL-gravity

S. Rechenberger and F.S., JHEP 03 (2013) 010, arXiv:1212.5114

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[\phi,\bar{\phi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

Requirements:

- a) anisotropic Gaussian Fixed Point (aGFP)
 - controls the UV-behavior of the RG-trajectory
 - regulates UV-divergences without introducing ghosts

Requirements:

- a) anisotropic Gaussian Fixed Point (aGFP)
 - controls the UV-behavior of the RG-trajectory
 - regulates UV-divergences without introducing ghosts
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - guaranteed by perturbation theory

Requirements:

- a) anisotropic Gaussian Fixed Point (aGFP)
 - controls the UV-behavior of the RG-trajectory
 - regulates UV-divergences without introducing ghosts
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\rm UV}$
 - guaranteed by perturbation theory
- c) classical limit
 - Lorentz-symmetry is restored in the IR
 - decoupling of extra degree of freedom

Requirements:

- a) anisotropic Gaussian Fixed Point (aGFP)
 - controls the UV-behavior of the RG-trajectory
 - regulates UV-divergences without introducing ghosts
- b) finite-dimensional UV-critical surface $S_{\rm UV}$
 - guaranteed by perturbation theory
- c) classical limit
 - Lorentz-symmetry is restored in the IR
 - decoupling of extra degree of freedom

Hořava-Lifshitz (HL) gravity

RG flows for Hořava-Lifshitz gravity finite temperature type computations

ADM-decomposed Einstein-Hilbert truncation

ADM-decomposed Einstein-Hilbert action:

$$\Gamma_{k}^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_{k}} \int dt d^{3}x N \sqrt{\sigma} \left[\epsilon^{-1} \underbrace{K_{ij}}_{\text{extrinsic curvature}} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - \underbrace{R}_{\text{intrinsic curvature}} + 2\Lambda_{k} \right]$$

- lives on foliation $S_T^1 \times \mathcal{M}^{(3)}$
- running couplings: G_k, Λ_k
- signature parameter ϵ

ADM-decomposed Einstein-Hilbert truncation

ADM-decomposed Einstein-Hilbert action:

$$\Gamma_{k}^{\text{ADM}} = \frac{\sqrt{\epsilon}}{16\pi G_{k}} \int dt d^{3}x N \sqrt{\sigma} \left[\epsilon^{-1} \underbrace{K_{ij}}_{\text{extrinsic curvature}} \left[\sigma^{ik} \sigma^{jl} - \sigma^{ij} \sigma^{kl} \right] K_{kl} - \underbrace{R}_{\text{intrinsic curvature}} + 2\Lambda_{k} \right]$$

- lives on foliation $S_T^1 \times \mathcal{M}^{(3)}$
- running couplings: G_k, Λ_k
- signature parameter ϵ

 β -functions depend parametrically on $m = \frac{2\pi}{Tk}$:

 $k\partial_k g_k = \beta_g(g, \lambda; \mathbf{m}), \qquad k\partial_k \lambda_k = \beta_\lambda(g, \lambda; \mathbf{m})$

• *m*: anisotropy between cutoff in spatial/time direction

result: signature dependence of NGFP

for m finite NGFPs separate:

- $\epsilon = +1$: Euclidean signature (blue)
- $\epsilon = -1$: Lorentzian signature (magenta)

phase diagrams

RG flows for Hořava-Lifshitz gravity including anisotropy

Hořava-Lifshitz gravity: recovering general relativity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG flow of anisotropic Einstein-Hilbert truncation

$$\Gamma_k^{\text{grav}}[N, N_i, \sigma_{ij}] = \frac{1}{16\pi G_k} \int dt d^3x N \sqrt{g} \left[K_{ij} K^{ij} - \lambda_k K^2 - R + 2\Lambda_k \right]$$

Fixed points of the beta functions:

• line of GFPs

$$\tilde{G}_* = 0, \qquad \tilde{\Lambda}_* = 0, \qquad \lambda = \lambda_*$$

one IR attractive, one IR repulsive, one marginal direction

NGFP underlying Asymptotic Safety

$$\tilde{G}_* = 0.49, \qquad \tilde{\Lambda}_* = 0.17, \qquad \lambda_* = 0.44$$

• three UV-attractive eigendirections

anisotropic GFP providing UV-limit of HL-gravity not in truncation

Hořava-Lifshitz gravity: recovering general relativity in the IR

Scale-dependence of dimensionful couplings

GFP governs IR-behavior of HL-gravity

small value of cosmological constant makes λ compatible with experiments

RG flows for projectable HL gravity anisotropic heat-kernels

Zooming into the aGFP in D = 3 + 1

Compute matter-induced gravitational β -functions

$$\Gamma_k = \Gamma_k^{\rm HL} + S^{\rm LM}$$

for two wave-function renormalizations and 8 potential couplings

$$\Gamma_k^{\rm HL} = \frac{1}{16\pi G_k} \int dt d^3x \sqrt{\sigma} \left[\left(K_{ij} K^{ij} - \lambda_k K^2 \right) - g_7 R \Delta_x R - g_8 R_{ij} \Delta_x R^{ij} + \ldots \right]$$
$$S^{\rm LM} = \frac{1}{2} \int dt d^3x \sqrt{\sigma} \left[\phi \left(\Delta_t + (\Delta_x)^z \right) \phi \right]$$

key ingredient: anisotropic Laplace operator

$$D = \Delta_t + (\Delta_x)^z$$

$$\Delta_t = -\sqrt{\sigma}^{-1} \partial_t \sqrt{\sigma} \partial_t , \qquad \Delta_x = -\sigma^{ij}(t,x) D_i D_j$$

Zooming into the aGFP in d = 4

Compute matter-induced gravitational β -functions

$$\Gamma_k = \Gamma_k^{\rm HL} + S^{\rm LM}$$

for two wave-function renormalizations and 8 potential couplings

$$\Gamma_k^{\rm HL} = \frac{1}{16\pi G_k} \int dt d^3x \sqrt{\sigma} \left[\left(K_{ij} K^{ij} - \lambda_k K^2 \right) - g_7 R \Delta_x R - g_8 R_{ij} \Delta_x R^{ij} + \ldots \right]$$
$$S^{\rm LM} = \frac{1}{2} \int dt d^3x \sqrt{\sigma} \left[\phi \left(\Delta_t + (\Delta_x)^z \right) \phi \right]$$

Gravitational propagators in flat space: $\sigma_{ij} = \delta_{ij} + \sqrt{16\pi G_k} h_{ij}$

$$[\mathcal{G}_{s=2}(\omega,\vec{p})] \propto \omega^2 - g_8 \,\vec{p}^6$$

$$[\mathcal{G}_{s=0}(\omega,\vec{p})] \propto \left(\frac{1}{3} - \lambda_k\right) \left(\omega^2 - \left(\frac{1}{3} - \lambda_k\right)^{-1} \left(\frac{8}{9} \,g_7 + \frac{1}{3} g_8\right) \,\vec{p}^6\right)$$

Heat kernel expansion of anisotropic operators

FRGE computations use heat-kernel expansion of Laplacian $\Delta \equiv -g^{\mu\nu}D_{\mu}D_{\nu}$

$$\operatorname{Tre}^{-s\Delta} \simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \sum_{n\geq 0} s^n a_{2n}$$
$$\simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \left[1 + \frac{s}{6}R + \ldots\right]$$

Heat kernel expansion of anisotropic operators

FRGE computations use heat-kernel expansion of Laplacian $\Delta \equiv -g^{\mu\nu}D_{\mu}D_{\nu}$

$$\operatorname{Tre}^{-s\Delta} \simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \sum_{n\geq 0} s^n a_{2n}$$
$$\simeq \frac{1}{(4\pi s)^{d/2}} \int d^d x \sqrt{g} \left[1 + \frac{s}{6}R + \ldots\right]$$

Heat kernel expansion of anisotropic operators

$$D \equiv \Delta_t + (\Delta_x)^z$$

compute from off-diagonal heat-kernel techniques

D. Anselmi, A. Benini, JHEP 07 (2007) 099 D. Benedetti, K. Groh, P. F. Machado, F. Saueressig, JHEP 06 (2011) 079

$$\operatorname{Tre}^{-sD} \simeq \frac{s^{-\frac{1}{2}(1+d/z)}}{(4\pi)^{(d+1)/2}} \int dt d^d x \sqrt{\sigma} \left[\frac{s}{6} \left(\mathbf{e_1} \, K^2 + \mathbf{e_2} \, K_{ij} K^{ij} \right) + \sum_{n \ge 0} \, s^{n/z} \, \mathbf{b_n} \, a_{2n} \right]$$
$$e_1 = \frac{d-z+3}{d+2} \frac{\Gamma(\frac{d}{2z})}{z \, \Gamma(\frac{d}{2})}, \qquad e_2 = -\frac{d+2z}{d+2} \frac{\Gamma(\frac{d}{2z})}{z \, \Gamma(\frac{d}{2})}$$

Heat kernel coefficients for anisotropic operators

	d = 2			d = 3			
	z = 1	z = 2	z = 3	z = 1	z = 2	z = 3	z = 4
b_0	1	$\frac{\sqrt{\pi}}{2}$	$\Gamma(\frac{4}{3})$	1	$\frac{4}{3\sqrt{\pi}}\Gamma(\frac{7}{4})$	$\frac{2}{3}$	$\frac{4}{3\sqrt{\pi}}\Gamma(\frac{11}{8})$
b_1	1	1	1	1	$\frac{2}{\sqrt{\pi}}\Gamma(\frac{5}{4})$	$\frac{2}{\sqrt{\pi}}\Gamma(\frac{7}{6})$	$\frac{2}{\sqrt{\pi}}\Gamma(\frac{9}{8})$
b_2	1	0	0	1	$\frac{1}{\sqrt{\pi}}\Gamma(\frac{3}{4})$	$\frac{1}{\sqrt{\pi}} \Gamma(\frac{5}{6})$	$\frac{1}{\sqrt{\pi}}\Gamma(\frac{7}{8})$
b_3	1	-2	0	1	$-\frac{2}{\sqrt{\pi}}\Gamma(\frac{5}{4})$	$-\frac{1}{2}$	$-rac{1}{2\sqrt{\pi}}\Gamma(rac{5}{8})$
b_4	1	0	6	1	$-\frac{4}{\sqrt{\pi}}\Gamma(\frac{7}{4})$	$\frac{9}{2\sqrt{\pi}}\Gamma(\frac{7}{6})$	$\frac{2}{\sqrt{\pi}}\Gamma(\frac{11}{8})$

- z = 1: reproduces standard heat-kernel
- z = 2, d = 2: reproduces

[M. Baggio, J. de Boer and K. Holsheimer, arXiv:1112.6416]

• *d* even: zero coefficients in heat kernel expansion

matter-induced RG flows in d = z = 3

UV attractive anisotropic GFP $G^* = 0, \quad \lambda^* = 1/3, \quad g_7^* = \frac{5\pi}{84}, \quad g_8^* = \frac{\pi}{42}$

Tracing the anisotropic Gaussian fixed point in z

Asymptotic Safety and Hořava-Lifshitz gravity live in same space

many proposals for quantum gravity within QFT:

- Asymptotic Safety
- Causal Dynamical Triangulations
- Hořava-Lifshitz gravity
- Shape Dynamics

differences:

- field content (metric, vielbein, ADM-variables, ...)
- symmetry group (diffeomorphisms, foliation preserving diff.)

??? Which formulations describe the same Universality Class ???

many proposals for quantum gravity within QFT:

- Asymptotic Safety
- Causal Dynamical Triangulations
- Hořava-Lifshitz gravity
- Shape Dynamics

differences:

- field content (metric, vielbein, ADM-variables, ...)
- symmetry group (diffeomorphisms, foliation preserving diff.)

??? Which formulations describe the same Universality Class ???

RG techniques crucial for solving this question

Asymptotic safety

- strong evidence for NGFP from finite-dimensional truncations
- progress towards controlling infinite-dimensional RG flows

Asymptotic safety

- strong evidence for NGFP from finite-dimensional truncations
- progress towards controlling infinite-dimensional RG flows

Hořava-Lifshitz (HL) gravity

- Quantum Einstein Gravity spans subspace of HL gravity
- GFP capable of providing IR-completion
- aGFP: $\lambda_* = d^{-1}$ acts as UV-attractor

Asymptotic safety

- strong evidence for NGFP from finite-dimensional truncations
- progress towards controlling infinite-dimensional RG flows

Hořava-Lifshitz (HL) gravity

- Quantum Einstein Gravity spans subspace of HL gravity
- GFP capable of providing IR-completion
- aGFP: $\lambda_* = d^{-1}$ acts as UV-attractor

!!! WORK AHEAD !!!

