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Setting the problem

e« Several open questions in modern ﬂstrojoﬁysics ask for new
Taraofi ms.
e No ﬁna( evidence ?( Dark Energy and Dark Matter at”
ﬁmcfamenm[ [evel (LHC, astroyam’cfe yﬁysics, grounc[ based_
experiments, LUX.. ).
*  Such problems could be [ﬁamec{ extznc[ing GR at inﬁarec{ scales

GR does not work at ultraviolet scales (no quantum gravity tﬁeorl‘

Up to Now).
. fé{)- ravity as minimal extension but other mocﬁﬁcau’ons are”
fpossig € (Staroﬁinsﬁy inﬂau’on).
o Several stellar structures cannot be addressed By the standard.
ftﬁeory of stellar evolution (magnemrs, variable stars, etc..)
* Big issue: Is it Joossiﬁfe to revise stellar tﬁeory in view cf extended.
gravity?



ﬂ-[fyc{rostatic equi(iﬁrium cf stellar structures

Conditions for ﬁycﬁ’osmu’c eclui[i’ﬁrium i
“Newtonian dynamics are

| 7 <> p is the pressure,
dl _ d®d > O s the gmvitationa[ Joo‘wn’a’af,

dr dr < p is the density
1 d( ,dod
The Poisson equation — — |\~ | = —47Gp
r= dr dr

Since we are taﬁing into account onfy static and smu’onar%
situations, here we consider on[y time incfejaenc[ent solutions

In genemf, the temperature T appears and the c[ensity o) satisﬁes an
equation of state (f the form

p = p(p, 7)

&Kiﬂoenﬁaﬁn and A. Weigert, Stellar Structures and Evolution (Syringer—\/er(ag, Berlin, 19 90).



ﬂ-[fyc{rostatic equi(iﬁrium cf stellar structures

A ]oofytro]oic relation between P and p exists

p e K ,0 Y
Ks the po(ytrojoic constant that can be obtained Ey a combination of

ﬁmcfamenm[ constants

The constant Y is the Joofytro]oic index ofewrmining the stellar ﬂuiaﬁ

“Note that ® > 0 is in the interior of the model, since we o[eﬁne the-
gravitaﬁona[ Joonmu’a[ as -o

Tnserting the polytropic equation of state, we obtain
g e porytropic eq

dd
T = yKpY 2
| &



For v =1, the above eoluau’on can be inwgmtwﬂ
giw’ng

Y1 — ¢ — H— I:‘y — 1]1/(71)q)1/(y1) - A,,(I)”

"We have chosen the integration constant to give ® =0at smface (p=o0)
o , .
n = P is the Joofymyazc index

Inserting the above relation into the Poisson equation, we obtain a
c[iﬁ(erentia[ equation for the gmvimu’onaf }oownu’a[

/2 2 dob
s + — = —47GA, D"
A2 r dr




ﬁeﬁm’ng now the dimensionless variables:

\/XA,,cI);%l () =2 (p)l/”
== Ixl 2 D, P,

C

‘Iﬁe SMBSC?’?]OI' c 1’@[61’5 to tﬁe center Oj: fﬁe star cmcf tﬁe 1’6[@1’[011 Between p Ol’l/ld;

At the center (r = 0), we havez =0, ® =, p = p. and tﬁerefore w=1

Then we obtain the standard Lané-Emden ecluation cfescriﬁing
the ﬁycfrosmn’c eolui[iﬁm’um @C stellar structures in the Newtonian

ftﬁeory




Solutions of the standard Lané-
Fmden equations

Onfy for three values of n, solutions have ana[ytica[ exyressions

)
R 0,y _ 4 <
n=0-—wg(z) =1 r3
- (1), \ _ Sil‘l:
n=1— wgp(z) = .
_ )y |
n=>35— wiplz) = j
] + e




Solutions of the standard Lané-
Fmden equations

The surface of the polytrope o
index nj(;s cﬁzﬁrnedjﬁ?y %ﬁe {/gafdg z = 20, where
p =oandthusw=o0

Forn=o0andn =1, the smface is reached for a ﬁm’w value of z =z

The case n = 5 gi\/es rise to a model of inﬁnite radius

Tt can be shown that for n<s the radius of J?o[ytro]aic models is ﬁnite; for n>s
f‘tﬁey have inﬁnite radius

One ﬁncfs z(o)ng =4 6, z(l)gR =TI, 2(5)% = oo

A [genem[ property of the solutions is that zW grows monownica,[fy with the-
polytropic index n



Solutions of the standard Laneé-
Fmden equations

gl]?&l?’tﬁOﬂ’l tﬁe tﬁ?’@@ cases Wﬁe're Clﬂ&l[yth
SO[MﬁOHS are QHOWTL, tﬁe Sf&lﬂd’aYC[

Lane “FEmden can be solved numerica[fy, consic[e'ring the neigﬁﬁorﬁooaf of
the stellar center, i.e.

V) = 3l
1=0

at lowest orders, solutions can be cfassiﬁecf By the index n, that is

2
(n) - < L
V=14 Ay
WGr () 6  120°

The case Y=5/3 and n=3/2 is the non-relativistic [imit;
the case Y=4/3 and n = 3 is the relativistic [imit cf a comy[étefy dégenemw gas.



The Newtonian [imit of f(R) - gravity

Let us start with a genem[ class of Extended Theories
of Gravity (E7G) given Ey the action

A — j d*xJ=gLf(R) + XL,

\/aryin the action with respect to the metric we obtain
the ﬁe d equations (standard GR. 1is recovered for

HR)-R )
,

‘f/R,U,Z/ o E(Q,LLV o ]C;,U,Z/ _I_ g,up ‘f/ — XT,LLZ/

300f + f'R — 2f = XT,

S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)
S. Capozziello , M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)




The Newtonian [imit of f(R) - gravity

In order to achieve the Newtonian [imit of the tﬁeor%
~the metric tensor has to be a]a]oroximate as fo((ows:

1 —2®(1, x) + O(4) O(3)
S = ( 0(3) —8;; + 0Q) )

The Ricci scalar forma[fy becomes

R ~ RY(t, x) + O4)
The n-th derivative of ‘Ricci ﬁmcn’on can be cﬁzve[ojoecﬂ

as

f(R) ~ f*(R® + O4)) ~ f*(0) + " HO)R® + O4)
here R." denotes a quantity of order O(n)

S. Cayozzie[fo, A. Stabile, and A. Troisi, CPﬁyS. Rev. D 76, 104019 (2007)




The Newtonian [imit of f(R) - gravity

Field equations at O (2)-order, that is at the

“Newtonian level, are

R(2)
Ry ——-—f"(0) AR® = XT;/

_3f//(0) A R?) — Rp2) = XT(O),
A is the Lajofaciom in the ﬂat space Ry =A @ and, for the
sake of simja[icity, we set f’ (0) =1
W@ reca[f tﬁat tﬁe energy-momentum WHSOTfOT A

ipmfect ﬂm’c[ is

T,,=(e+pu,u, —pg,,

P is the pressure and € is the energy dénsity




The Newtonian [imit of f(R) - gravity

ﬁeing the pressure contribution neg[igiﬁ[é in the Jiefcﬂ

ecluations in the Newtonian ajojoroximation, we have

R(2)

fmoa[i’ﬁea[ ‘Poisson eclua,u’ons AD+ 2

3f//(0) A R(Q) + R(2) — _Xp’

+ £1(0) AR = =X

0 is now the mass dénsity

‘For f”(ﬂ{) = 0 we have the standard Poisson equation
AD = —47Gp

This means that as soon as the second derivative of f (R) is
diﬁ(erent ﬁom zero, deviations from the Newtonian [imit of gﬂ{)

emerge




Stellar hydrostatic equilibrium in f(R) - gravity

From the Bianchi ic[entity we have

op |l
L=t

(') ln(gff
0X -

k

THY. = ()
& 0X

ﬂf the déyemﬁence on the temperature is negﬁ’giﬁ[é, this
Telation can be introduced into ﬁe[&f equations, which.

becomes a system of three equations fot%p, ® and
R(2) and can be solved without the other structure

eclua,tions.

Let us suppose that matter still sau’sﬁes a ]oofytro]oic

ecluan’on

p=Kp’




Stellar hydrostatic equilibrium in f(R)-gravity

We obtain an inwgm-c{iﬁrenﬁa[ equation for the
gravitational potential , that is

A B(x) + —2)?‘” d(x)"

-~

3 m? XA,
6

jcﬁx’@(x, x ) D(x’)"

G(x, x') = —4 e "ML s the Green function

47 |x—x]|

m2 — 1 ~that is an qﬁ(ecu’ve mass related to

B 3£1(0) the form of f (R)




Stellar hydrostatic equilibrium in f(R)-gravity

ézlcfoptmg again the dimensionless variables
x| b

7= w(z) =

50 (I)("

‘= \/ 3 is a characteristic [engtﬁ [inked
2XA, @ 1o stellar radius €

The f(ﬂ{)-gmvity Lané-FEmden equation is

*w(z) 2 dw(z
S ) + - i + w(z)"
dz” 7 dz

méy 1 €/ E o, o
_ 8§() 2 [ LI’Z/Z/[(’”ISL”LA _ ()nzg()|\+~’|]w(2/)n
Z J0




Solutions of the modified Lané-
Fmden equations

For the modiﬁeof Lane ~Emden, we have an_

exact solution for n =0, in fact
0 () = 22 (1 + mg)e ™ sinhm &gz
H‘f(R)(*‘) =] ——=++ — | — |
| 8 dm= &g

méyz

Where the Bouncfary conditions w(o) = 1 and w'(0) = o are sau’sﬁeaf

A comment on the GR [imit (that is f(CR) > R) of above solution s necessary.

n fact, when we Jaerform the [imit m = « we do not recover exactfy w@gg{ (2).

The aﬁ’ﬁ%rence is in the cﬂeﬁniﬁon of quantity €,

InGRitis &) = \/XA 721)"_1



Solutions of the modified Laneé-
Fmden equations

The point z(")fﬂ) is calculated By imposing
"\A/(O)f(q{)(z(o)f(ﬂ)s =0 and By consicﬁm’ng the-
Te ay[or expansion sinhméz
méonz
_ 2./6

\/3+(l+m§)c’_’"‘f

1 2
~ 1+ 6(”1502)“ + O(mé&yz)*

, _(0)
We obtain Z1(R)

Since the stellar radius £ is given Ey cfeﬁniﬂ’on ¢ =C, z(")f@) we obtain

/e 30, 1
27TG‘/1 + 1‘|‘3/H§u€—méf‘

ﬁy sofving numerica[fy the constraint, we ﬁncf the mocﬁﬁecf exyression of the radius
ﬂf m > o we have the standard expression valid for the Newtonian [imit of GR




Solutions of the modified Lané-
Fmden equations

In the f(CR)-gmvity case, for n=o0, the radius is
smaller than in GR

, 2~ , .
In the case n= 1 we obtain W) o j &6
2 V(é) dz
) (

dz 8 )

. o P _ £ e 1 ~
< {C) mélz—7| — e ""§<’|“+“|}W’(ZI),

) ) _ (1) - (1) —mé A (1)
le we Joem/nfﬁ this equations we have W ) (@) ~ Wag(2) + e AW (2).

The coeﬁ%ient e™E < 1 is the yammewr with re.yoect to which we Joerturﬁ

And then

1E0eE [E/E
m 06)’”' £/ - / . /
— 7~/ méplz—z méplztz ~,(1) /
—_— . a'Z e ,.()l | e ,.()l | \,L,G (Z)



Solutions of the modified Lané-
Fmden equations

And the solutions is easi[}/ foum[ to be

\V(l) (,,) . sinz{l 4 }722§% [ o De ME
SR~ — 8(1 + ,7,125(2)) 1 + nzzg(z)

<

X (cos& /&g + mé&g Sinf/fo):l}

- 17'125(2) [ 2 R
8(1 + m?&Z) L1 + m? &3

X (cos&/Eg + m&Epsing /&p)

sinhm &gz

mé&opz

—+ cosz:l-

Also in this case, for m=> oo, we do not recover exact[y w@)ng(z)

The reason is the same of the Jorevious n = 0 case

ana[yu’caf solutions for other values @C n are not available



Solutions of the modified Laneé-
Fmden equations

Gravitational Joowmia[ Joroﬁ[és genemwc[ BL
Syﬁen’caﬁy symmetric sources of umfm’m mass
With radius € can be achieved

3IM

We can imjaose a mass dénsity of the form p = yy— O(& — |x|),

O is the Heaviside ﬁmca’on and ‘M is the mass

ng so[ving ﬁe[&[ ecluan’ons inside the star and consicfem’ng the Eouncfary conditions
W.(0) = 1 and w’(0)=0, we get
3 I e ™1+ mé)7 T 3 I 222 e (1 + mé) sinhméz
Wf(m(z):[ T3 523 ] [ tT—= T o3 -2 23 :
26 m*é m*¢é 26 mé e m-¢ méoz

=« 9D
8

In the [imit m=> e we recover the GR case wgr(z) = | — 38



Solutions of the standard and.
f'rnodi:ﬁed' Lané-FEmden equations

\ L
0.8} \s ) o, ]
i N Ve ]
_ KA \\.\ i+~ Plot of solutions (blue lines) of standard
o6] \ \“\\‘\ 1 Lane ™ Emden: w5 (2) (dotted [ine)
g EXY R and w .z (z) (dashed line). The green
0.4F “I\\\\\\ N [ine correyond& to w@gﬁ(z)
B Y \\ N
R W , ,
0 N N The red [ines are the solutions of”
\\\\ X : fmocﬁ,’ﬁecf Lane -Emden: W(O)f R)(z)
ool N NN | (dotted [ine) and wigq(2) (d(asﬁecf [ine).
77 1 2 3 4 5

The blue dashed-dotted line is th

otential derived from GRw

R(Z) cmaf tﬁe 1’66[ 0[@5666[;

e
dotted (ine is the yow’nu’a[ dém’veag}mm f(CR) gravity for a unifgrm gaﬁerica[fy symmetric

mass distribution

Froma m}oicf inspection o tﬁes;yfots, the aﬁﬁerences between GR and f(‘R) gmvitau’onaﬂ

?OTZHU:CL[:S are C[@Cl?" cmcf e ten ency is tﬁat at [d?"g@?’ mcﬁ’us 4 tﬁey Eecome more ew’cfent



Dust- dominated se (ﬁgmvita’cing systems

The co(?pse of se,[f- ravitational collisionless systems
can be dealt with the introduction of cou]o[ec[ collisionless
Boltzmann and Poisson ecluau’ons

WMD) 5oV G, 1) — (VD -V, (G, 1) =

)t | -
‘ \"tﬁ?’ee*

dimensional_
Vectors in the

V(1) = 476 [ 1. 5048, Aot manifold

A seﬁ-gmvimu’ng system at equi[iﬁrium is described by a u’me-inofe}aencfent’
distribution ﬁnction ﬁ, (x,v) and a Jaownu’a[ D, (x) that are solutions of above-
equau’ons

. CBinney and S. Tremaine, ga[actic @ynamics (?rincewn ’Universily ‘Press, Princeton, ﬂ\[ﬂ, 1 994).



Dust- dominated se (ﬁgmvita’cing systems

Consicfering a small yerturﬁau'on to this ecluifiﬁrium:

f(F v, 1) = folF, v) + ef\(F, 0, 1),

D(7, 1) = Dy(F) + €D (7, 1),
* Where € << 1and

Ey suﬁstitun’ng in Boltzmann and Poisson ecluations and Ey
(inearizing, one obtains:

of (F, vt . of(r v, t - . dfy(7r, v
(G50 o BEED gp o 3o D)
ot ar v

> o of(r, v, t
—V(I)O(r)' .fl(_) ): :
ov

V20,7 1) = 47G f G



Dust- dominated se (ﬁgmvita’cing systems

Since the equifiﬁm’um state is assumed to be homogeneous
and time-inc[eyenofent, one can set fo (xvt) = f(vf and so-
called Jeans “swindle” to set ®, = 0

In Fourier components > J1fo

—iwfy + - (ikf)) — (kD)) -

— 2D, = 477G/f1dﬁ.

éy comﬁining these equations, we obtain the d'i.fpersion relation

47TG lz ’ ()f—() N — .
+ — f Wk — wdo=0

i



Dust- dominated se (ﬁgmvita’cing systems

In the case cf stellar s stems, 6‘%/ assuming a Maxwellian
distribution ﬁmcu’on Jym’ f; we have

— Po ,—(v?/20?)
f() (2770_2)(3/2) €
227G py vxe_(”«%/z”z)
1 — 6 j dv, = 0.
ko kv, —
, ,, , (o , 477G
ﬁy setting w = 0, the l[imit for msmﬁzﬁty is obtained: k*(w = 0) = U2p0 = k?,,
Ey which it is }90551’6[6 to cfeﬁne the Jeans mass (‘Mg) as the mass on’gina[@ contained.
Within a syﬁere of diameter Ay o Ao (1 A )3
J 3 Po 7 M
2

* Where A7 = . is the Jeans length

Gpo
7 |1 (7o)
...and then we can write  Ms = o\ oo (T)



Dust- dominated se (ﬁgmvita’cing systems

In order to evaluate the inwgm[ in the d’isyersion relation, we-
have to stucfy the singufarﬁy at w = kv_. To this end, it is
fuseﬁJ to write the cfisyersion relation as

xe~*/2)

R 1 N
déﬁmng W(B) = \/2_7;[ ey dx,

* Wﬂereﬁzk% and x:%

We setalso @ = iw; and Re[W(Z)] = 0 because we are interested.
ko
in the unstable modes

These modes appear when the imaginary part of W is [gream' than zero and in this
case the inwgmf in the cfi.gpersion relation can be resolved J’ust with Jorew’ous
‘jorescr?pu’ons.



Dust- dominated se (ﬁgmvita’cing systems

In order to stucfy unstable mocﬁe[s, we rey[a,ce the-
fo[(owing identities

[F 2y =1 Lapes 1 ety
X = =~/ — =—mBe — erf 3],
0o x>+ 3? 2 2

2 z
erfB(z) = —= [ e "dt

T JO0

into the cﬁyersian relation oﬁmining:

k? = k%{l — @e(‘”’/ﬁk"[l - erf( 1 )]}
' ﬁka' \/sz'

This is the standard cfisyersion relation cfescriﬁing the criterion to coffa}oseJ
for inﬁniw ﬁomogeneous ﬂuic[ and stellar systems




The Newtonian [imit of f(R) - gravity

As discussed above, ﬁe[&[ equations in f(iR)-gmvity give rise
to the mocﬁﬁecf Poisson equations.

~ 1 (2) _ 1 (2)
R = ivzgoo §v28ii
~that can be recast as R2) ~ VZ((I) — )

* Y is the ﬁu’tﬁer gmvimu’ona[ Jaownu’af related to the

metric component g (2)“,

...and then the ﬁefcf equau’ons assume this form
Vb + V2O — 2f”(O)V4(I) + 2f”(O)V4\I’ =2Xp

V2D — V2 + 3F(0)VAD — 37(0)VAW = — Xp.

S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)



Jeans criterion for gravitational instability in f(R)-gravity

L@t us assume tﬁe stomc{arof CO[HSiOH[@SS BO[I'ZWLCWLH equa’a’on:

af(’(; VO (5 -OE D) — (VD -V )G B 1) = 0,
14

Where, according to the Newtonian theory, only the potentia ® is
“present

Consic[e'ring the f(R) Poisson equations, also the jooumu’a[ b 4
has to be considered so we obtain the coujo[ecf ecluations

V(P + W) — 2aVH(D — W) — 167G ff(?, 5, i

V2(P — W) + 3aVHD — W) = —87G [f(?, 5

* We have rqp[acecf f”(o) with the greeﬁ [etter o




Jeans criterion for gravitational instability in f(R)-gravity

As in standard case, we consider small Joerturﬁau’ons to
the equiﬁ’ﬁrium and linearize the eclua,tions. In Fourier
space, tﬁey become

] I
—iwf, +v-(ikf)) — (ik®;) - alio = 0,
Y,

_kz((I)l + \Pl) _261’](4((1)1 T \Irl) — 1677G/f1d5,

kz(q)l — \Pl) — 305/(4((1)1 — \Pl) — 877fo1de




Jeans criterion for gravitational instability in f(R)-gravity

Comﬁining the above equations we obtain a relation between ®,
and V¥,
3 - dark?

W, =
: 1 — 4ak?

®,

And then the c[i’.f}oersion relation is

| — 4ok’ k-
| — 476G —— 2/( . )dzj:o.
Bak* — kK> J\5 k — w

As in standard case, one can write

1

N 2\27Gpy 1 —4ak? I:/‘kvxe_(“-%/zaz)dvx:l _0

o’ 3akt — k? kv, — w

fy eﬁ’minaa’ng the ﬁigﬁer-ordkr terms (imjoosing X =0),
We obtain again the standard di’.fpersion of Newton Joﬁysics




Jeans criterion for gravitational instability in f(R)-gravity

In order to compute the inwgm[ in the di;persion relation , we
consider the same ajoyroacﬁ used in the classical case, and

ﬁna[(y we obtain:

|+ Gzt [1 — e (1 — erf[x])] = 0

Where x = —=L and — 4G7py
:/2/{ (0
(0

To compare the mocﬁfiec[ and classical ofi.gpersion relation we
normalize the equation to the classical Jeans fengtﬁ By ﬁxing
the parameter of f(’R)- gravity, that is

| o
A — = — — T - — .
l\‘j- 477(] p(')

This _parameterization is correct because the dimension (an inverse of
5quarecf [engtﬁ) allows us to parameterize as in standard case




Jeans criterion for gravitational instability in f(R)-gravity

j—"ina[[y we write and }afot this relation

+ K2 (AK? :
¥+ = (St )l - VAxe (1 —ertla])] =0
ik k;

The bold [ine
indicates the jofof
021 of the modiﬁecﬂ
dispersion
Telation.
The thin [ine
indicates the jofof
of the standard.
d'is'persion
ecluation




The Jeans mass [imit

in f(R)-gravity

A numerical estimation cf the f(‘R) insmﬁiﬁ’ty [engtﬁ in terms of the standard.
“Newtonian one can be achieved

ﬁy solving numerically the above equation with the condition w = o, we obtain that the-
collapse occurs for

k2 = 1.263742

However we can estimate also anafyu’ca[fy the [imit for the insmﬁifity

In order to evaluate the Jeans mass [imit in f(R)- gravity, we set W =0

307 ak* — (167Gpya + o?)k* + 47Gpy = 0.

The additional condition a < o discriminates the class of viable f(R) models: in such a case
We obtain stable cosmological solution and positively defined massive states



The Jeans mass [imit

in f(R)-gravity

The condition &<o selects the physically viable models allowing to solve the above equation for
veal values of k.

In Joam’cu[ar, the above numerical solution can be recast as k> = z (3 + v21) WG—Q),

3 Tg-

The relation to the Newtonian value of the Jeans insmﬁiﬁty is k2 — %(3 + 21 )k%

“Now, we can cﬂeﬁne the new Jeans mass as M ;=

Which is }orcyoom’onaf to the standard Newtonian value

%656 %P@C?ﬁC SO[MﬁOHS can 66 COHﬁ’OHUZC[Wﬁ'ﬁ some OBSQWQC{SU’UCI'UTQS.



One can deal with the star formau’on ]oroﬁfem n two ways:

*’ We can take into account the formau’on of individual stars and

*’ We can discuss the formation of the whole star system starting frorm
interstellar clouds

To answer these Joroﬁfems it is very im}oormnt to stuc[y then
interstellar medium (1SM) and its properties

The 1SM Joﬁysica[ conditions in the ga[axies cﬁomge ina very wide
Tange, fmm hot X-ra emitting ]o(a,sma, to cold molecular gas, so it is very
Compﬁcawaf to classify the 1SM Ey its Joroyem’es



* Diffuse hydrogen clouds. The most powerful tool to

[ %4

measure the pro erties qf these clouds is the 21 cm
[ine emission of ‘H1. Tﬁey are cold clouds so the
temperature is in the range 10 + 50 'K, and their
extension 1is up to 50 + 100 @ac ﬁom ga[acu’c center

* ‘.ﬁifﬁise molecular clouds are genemﬁy seg"'-gmvimting,
'U 14 14 14

magneﬂzed: turbulent ﬂmcfs systems, observed in sub-mm.
The most of the molecular gas is H_, and the rest is CO.
Here, the conditions are veEy similar to the H1 clouds but
in this case, the cloud can be more massive. ’J‘ﬁey have,
tyyica[fy, masses in the range 3 + 100 Mo, temperature i
15 + 50 ‘K and Joam’cfe c[ensity in (5 + 50)x 108 m3.




* Giant molecular clouds are very farge comjo(exes of }oam’cfes (dust and gas), M
Which the range @C the masses is Joica[fy 105 + 10°Mg but tﬂey are very cold.
The temperature is ~15 'K, and the number of Joam’cfes is (1 + 3)x 108 m3,
However, there exist also small molecular clouds with masses M< 10+ Mg
fﬂiey are the best sites for star forma’a’on, désyiw the mechanism of forma’a’om
does not recover the star forma,tion rate that would be 250Mg yr!




H19 regions. ‘Tﬁey are 1S'M regions with temperatures in the range 103 +
104 K, emitting Jom’marify in the radio and IR regions. At low ﬁequencies,
observations are associated to ﬁee-ﬁ'ee electron transition (tﬁermaﬂ
ﬁremsstmﬁfung). Their densities range /"rom over a million Joam’cfes per cm3
in the u[tmcomjoact H 71 regions to only a few Joam’c[és per cm3 in the
[argest and most extended regions. This imy[ies total masses between 102
and 105 Mg

Y Bok globules are dark clouds of dense-

cosmﬁfc dust and gas in which star
formau’on sometimes takes Joface. Bok
g[oﬁuﬂes are found within H 17 regions,
and tyjoica Y have a mass of about 2 to
50 ‘Mg, contained within a region of’

aﬁout a [lgﬁf year.




‘Using very genemf conditions, we want to show the di’ﬁference in the Jeans mass
Value between standard and f(CR)- gravity.

: 2
, 2\3
Let us take into account M, = i L(mf ) :

*’ in which p,, is the 1S™M afensity and O is the ve[ocity cfisyersion of }oam’cfes due-

to tﬁe Wm}oemture

rd V4 rd — k T
%656 two quanuues are c{eﬁnec{ as Po — Myhpg K, OITLC[ g- = L
mgy

(3]

Where nyis the number of Joam’c[és measured in m3, is the mean molecular
Meigﬁt, kg is the Boltzmann constant and my,is the _proton mass

ﬁly using these relations, we are able to compute the Jeans mass for interstellar
clouds and to Ja[ot its behavior against the temperature



Any astroyﬁysica( system rejoorwcf in Table is associated to a Joam’cu(ar

(‘Mj — Q')-region.

Subject TX) n(10® m?) u M, (Mg) M, (M)
Diffuse hydrogen clouds 50 5.0 1 795.13  559.68
Diffuse molecular clouds 30 50 2  82.63 58.16
Giant molecular clouds 15 1.0 2 206.58 14541
Bok globules 10 100 2 11.24 791

Cﬁil%rences between the two theories for any Seﬁ-gmvimu’ng system
are clear



Dashed-line indicates the Newtonian TJeans mass behavior with respect to

the temperature.
Continue-line indicates the same for f(’R)-gmvity ‘Jeans mass.
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ng referring to the catalog of”
molecular clouds in Roman_-
Duval et al., ?lstro}oﬁys. -
723, 492 (2010), we have
calculated the Jeans mass in

~the Newtonian and f(R)

cases.

In all cases we note a_
substantial
difference between the-

classical and f(‘R) value.

Subject T K n M; (Mg) M; (My)
(105 m—3)
GRSMC G 053.59 + 00.04 5.97 1.48 18.25 12.85
GRSMC G 049.49 — 00.41 6.48 1.54 21.32 15.00
GRSMC G 018.89 — 00.51 6.61 1.58 22.65 15.94
GRSMC G 030.49 — 00.36  7.05 1.66 22.81 16.06
GRSMC G 035.14 — 00.76  7.11 1.89 28.88 20.33
GRSMC G 034.24 + 00.14 7.15 2.04 29.61 20.84
GRSMC G 019.94 — 00.81 7.17 2.43 29.80 20.98
GRSMC G 038.94 — 00.46 7.35 261 31.27 22.01
GRSMC G 053.14 + 00.04 7.78 2.67 32.06 22.56
GRSMC G 022.44 + 00.34 7.83 2.79 32.78 23.08
GRSMC G 049.39 — 00.26 7.90 2.81 35.64 25.09
GRSMC G 019.39 — 00.01  7.99 2.87 35.84 25.23
GRSMC G 034.74 — 00.66 827 3.04 36.94 26.00
GRSMC G 023.04 — 00.41 828 3.06 38.22 26.90
GRSMC G 018.69 — 00.06 8.30 3.62 40.34 28.40
GRSMC G 023.24 — 00.36  8.57 3.75 41.10 28.93
GRSMC G 019.89 — 00.56 8.64 3.87 41.82 29.44
GRSMC G 022.04 + 00.19 8.69 4.41 47.02 33.10
GRSMC G 018.89 — 00.66 8.79 4.46 47.73 33.60
GRSMC G 023.34 — 00.21 8.87 4.99 48.98 34.48
GRSMC G 034.99 + 00.34 8.90 5.74 50.44 35.50
GRSMC G 029.64 — 00.61  8.90 6.14 55.41 39.00
GRSMC G 018.94 — 00.26 9.16 6.16 55.64 39.16
GRSMC G 024.94 — 00.16 9.17 6.93 56.81 39.99
GRSMC G 025.19 — 00.26  9.72 7.11 58.21 40.97
GRSMC G 019.84 — 00.41 9.97 11.3 58.52 41.19
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We can observe the instability decreases in f(R)- gravity: such decrease is
elated to a larger Jeans length and then to a lower Jeans mass

We have also compared the behavior with the temperature of the Jeans

mass ﬁn’ various types (y‘: interstellar molecular clouds

In our model the [imit (in unit of mass) to start the collapse of an.
interstellar cloud is lower than the classical one ad'vanmging the structure-
j%rmation.

Real solutions for the Jean mass can be achieved onfy for o < 0 and.

this result is in agreement with cosmotbgy

In particular, the condition <o is essentials to set a well formulated

and well-posed Cauchy problem in f(R)- gravity

It is worth nou’c:’y that the Newtonian value is an upper [imit fbr the-
Jean mass coinciding with f(R.) = R

Stellar structure ca:five a FUNDAMENTAL tool against Dark Side!
See S. Capozziello and M. De Laurentis Ann. Der. Phys. 524 (2012) 545






