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Setting the problem	


•  Several open questions in modern  Astrophysics ask for new 
paradigms.	


•   No final evidence of Dark Energy and Dark Matter at 
fundamental level (LHC, astroparticle physics, ground based 
experiments, LUX…).	


•  Such problems could be framed extending GR at infrared scales	

•  GR does not work at ultraviolet scales (no quantum gravity theory 
up to now).	


•  f(R)-gravity as minimal extension but other modifications are 
possible (Starobinsky inflation).	


•  Several stellar structures cannot be addressed by the standard 
theory of stellar evolution (magnetars, variable stars, etc..)	


•  Big issue: Is it possible to revise stellar theory in view of extended 
gravity?	




Hydrostatic equilibrium of stellar structures	


Conditions for hydrostatic equilibrium in 
Newtonian dynamics are	


²    p is the pressure,	

²     Φ is the gravitational potential,	

²     ρ is the density	


The Poisson equation	


Since we are taking into account only static and stationary 
situations, here we consider only time independent solutions	

In general, the temperature  τ appears and the density ρ satisfies an	

equation of state of the form  	


R. Kippenhahn and A. Weigert, Stellar Structures and Evolution  (Springer-Verlag, Berlin, 1990).	




Hydrostatic equilibrium of stellar structures	


A polytropic relation between p and ρ exists	


K is the polytropic  constant that can be obtained by a combination of 
fundamental  constants	

The constant ϒ  is the polytropic index determining the stellar fluid.	


Inserting the polytropic equation of state, we obtain	


Note that  Φ > 0 is in the  interior of the model, since we define the 
gravitational  potential as -Φ	




Hydrostatic equilibrium of stellar structures	


For  γ≠ 1, the above equation can be integrated 
giving	


we have chosen the integration constant to give Φ = 0 at surface ( ρ = 0)	  

is the polytropic index	


Inserting the above relation into the Poisson equation, we obtain a 
differential equation for the gravitational potential	




Hydrostatic equilibrium of stellar structures	


Defining now the dimensionless variables:	


The subscript c refers to the center of the star and the relation between ρ  and  
Φ	


Then we obtain the standard Lané-Emden equation describing	

 the hydrostatic equilibrium of stellar structures in the Newtonian 	

 theory	


At the center (r = 0), we have z = 0,  Φ = Φc, ,  ρ = ρc  and therefore w = 1	




Solutions of the standard  Lanè-
Emden equations	


Only for three values of n,  solutions have analytical expressions	




Solutions of the standard  Lanè-
Emden equations	


The surface of the polytrope of	

index n is defined by the value z = z(n). where   
ρ = 0 and thus w = 0	


For n = 0 and n = 1, the surface is reached for a finite value of z = z(n)	


The case n = 5 gives rise to a model of infinite radius	


It can be shown that for n<5 the radius of polytropic models is finite; for n>5 
they have infinite radius	


One finds z(0)GR = √ 6 , z(1)GR = π, z(5)GR = ∞   	


A general property of the solutions is that z(n)  grows monotonically with the 
polytropic index n	




Solutions of the standard Lanè-
Emden equations	


Apart from the three cases where analytic 	

solutions are known, the standard	

Lane´-Emden  can be solved numerically, considering    the neighborhood of 
the stellar center, i.e.	


at lowest orders, solutions can be classified by the index n, that is 	


The case  ϒ=5/3 and n= 3/2 is the non-relativistic limit; 	

the case  γ=4/3 and  n = 3 is the relativistic limit of a completely degenerate gas.	




The Newtonian limit of  f(R) - gravity	


Let us start with a general class of Extended Theories 
of Gravity (ETG) given by the action	


varying the action  with respect to the metric we obtain 
the field equations (standard GR  is recovered for 	

f(R)=R )	


S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)	

S. Capozziello , M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2007)	




The Newtonian limit of  f(R) - gravity	


In order to achieve the Newtonian limit of the theory 
the metric tensor  has to be approximated as follows:	


The Ricci scalar formally becomes	


The n-th derivative of Ricci function can be developed 
as	


here R.n denotes a quantity of order O(n)	


S. Capozziello, A. Stabile, and A. Troisi, Phys. Rev. D 76, 104019 (2007)	




The Newtonian limit of  f(R) - gravity	


Field equations  at O (2)-order, that is at the 
Newtonian level, are	


  Δ is the Laplacian in the flat space Rtt = Δ Φ and,  for the 
sake of simplicity, we set f’ (0) = 1 	


We recall that the energy-momentum tensor for a 
perfect fluid is	


	  p is the pressure and  ε is the energy density	




The Newtonian limit of  f(R) - gravity	


Being the pressure contribution negligible in the field 
equations in the Newtonian approximation, we have	


  ρ is now the mass density	


 For f’’(R) = 0 we have the standard Poisson equation	


This means that as soon as the second derivative of f (R) is 
different from zero, deviations from the Newtonian limit of GR 
emerge	


modified Poisson equations	




Stellar hydrostatic equilibrium in f(R) - gravity	


From the Bianchi identity we have	


If the dependence on the temperature  is negligible,  this 
relation can be introduced into field equations, which 
becomes a system of three equations for p,  Φ and	

R.(2) and can be solved without the other structure	

equations.	


Let us suppose that matter still satisfies a polytropic 
equation	




Stellar hydrostatic equilibrium in f(R)-gravity	


we obtain an integro-differential equation for the 
gravitational potential , that is	


is the Green function	


that is an effective mass related to	

 the form of f (R) 	




Stellar hydrostatic equilibrium in f(R)-gravity	


Adopting again the dimensionless variables	


is a characteristic length linked 	

to stellar radius ξ	


The f(R)-gravity  Lanè-Emden equation  is 	




Solutions of the modified Lanè-
Emden equations	


For the modified Lane´-Emden, we have an 
exact solution for n = 0, in fact	


where the boundary conditions w(0) = 1 and w’(0) = 0 are satisfied	


A comment on the GR limit (that is f(R.) à R) of above solution  is necessary.	


In fact, when we perform the limit m à ∞ we do not recover exactly w(0)GR (z).	

The difference is in the definition of quantity ξ0	


In GR it is	




Solutions of the  modified Lanè-
Emden equations	


The point z(0)f(R)  is calculated by imposing	

w(0)f(R)(z(0)f(R) ) =0 and by considering the 
Taylor expansion	


we obtain	


Since the stellar radius ξ is given by definition ξ =ξ0  z(0)f(R) we obtain	


By solving numerically the constraint, we find the modified expression of the radius	

If m à ∞ we have the standard expression valid for the Newtonian limit of GR	




Solutions of the modified Lanè-
Emden equations	


In the f(R)-gravity case, for n=0, the radius is 
smaller than in GR	

In the case n= 1 we obtain	


If we perturb this equations we  have	


The coefficient e-mξ < 1 is the parameter with respect to which we perturb	


And then	




Solutions of the modified Lanè-
Emden equations	


And the solutions is easily found to be	


Also in this case, for mà∞, we do not recover exactly w(1)GR(z)	


The reason is the same of the previous n = 0 case	


Analytical solutions for other values of n are not available	




Solutions of the  modified Lanè-
Emden equations	


Gravitational potential profiles generated by  
spherically symmetric sources of uniform mass 
with radius ξ can be achieved	


We can impose a mass density of the form	


	  	  Θ is the Heaviside function and M is the mass	


By solving field equations inside the star and considering the boundary conditions 
w.(o) = 1 and w’(0)=0, we get	


In the limit mà∞ we recover the GR case	




Solutions of the standard and 
modified Lanè-Emden equations	


Plot of solutions (blue lines) of standard	

Lane´-Emden: w(0)GR(z) (dotted line) 
and w(1)GR(z) (dashed line). The green 
line corresponds to w(5)GR(z)	


The red lines are the solutions of 
modified Lane´-Emden: w(0)f(R)(z) 
(dotted line) and w(1)f(R)(z) (dashed line).	


The blue dashed-dotted line is the potential derived from GR wGR(z) and the red dashed 
dotted line is the potential derived from f(R) gravity for a uniform spherically symmetric 
mass distribution	

From a rapid inspection of these plots, the differences between GR and f(R) gravitational 
potentials are clear and the tendency is that at larger radius z they become more evident.	




Dust- dominated self-gravitating systems	


The collapse of self-gravitational collisionless systems 	

can be dealt with the introduction of coupled collisionless 
Boltzmann and Poisson equations	


J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, NJ, 1994).	


three-
dimensional 
vectors in the 
spatial manifold	


A self-gravitating system at equilibrium is described by a time-independent 
distribution function f0 (x, v) and a  potential  Φ0 (x) that are solutions of above 
equations	




Dust- dominated self-gravitating systems	


Considering a small perturbation to this equilibrium:	


by substituting in Boltzmann and Poisson equations  and by	

linearizing, one obtains:	


where  ε<< 1 and	




Dust- dominated self-gravitating systems	


Since the equilibrium state is assumed to be homogeneous	

and time-independent, one can set f0 (x,v,t ) = f(v), and so-
called Jeans “swindle” to set Φ0 = 0 	


In Fourier components	


By combining these equations, we obtain the dispersion relation	




Dust- dominated self-gravitating systems	


In the case of stellar systems, by assuming a Maxwellian 
distribution function for f0 we have	


By setting ω = 0, the limit for instability is obtained:	


by which it is possible to define the Jeans mass (MJ) as the mass originally contained 
within a sphere of diameter λJ:	


where	
 is the Jeans length	


….and then we can write	




Dust- dominated self-gravitating systems	


In order to evaluate the integral in the dispersion relation, we 
have to study the singularity at ω = k vx. To this end, it is 
useful to write the dispersion relation as	


defining	


Where                     and 	


We set also                     and                              because we are interested 
in the unstable  modes 	


These modes appear when the imaginary part of ω is greater than zero and in this 
case the integral in the dispersion relation can be resolved just with previous	

prescriptions.	




Dust- dominated self-gravitating systems	


In order to study unstable models, we replace the 
following identities	


into the dispersion relation obtaining:	


This is the standard dispersion relation describing the criterion to collapse 
for infinite homogeneous fluid and stellar systems	




The Newtonian limit of  f(R) - gravity	


As discussed above, field equations in f(R)-gravity give rise 
to the modified Poisson equations.  	


 that can be recast as 	


S. Capozziello, M. De Laurentis Phys. Rep. 509, 167-321 (2011)	


…and then the field equations assume this form	


  Ψ is the further gravitational potential related to the	

metric component g (2)ii 	


S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)	  



Jeans criterion for gravitational instability in f(R)-gravity	


Let us assume the standard collisionless Boltzmann equation:	


where, according to the Newtonian theory, only the potentia Φ is 
present	


Considering the f(R) Poisson equations, also the potential  Ψ 
has to be considered so we obtain the coupled equations	


we have replaced f’’(0) with the greek letter α	




Jeans criterion for gravitational instability in f(R)-gravity	


As in standard case, we consider small perturbations to 
the equilibrium and linearize the equations. In Fourier 
space, they become	




Jeans criterion for gravitational instability in f(R)-gravity	


Combining the above equations we obtain a relation between Φ1  
and Ψ1	


And then the dispersion relation is	


	  As in standard case,  one can write	


By eliminating the higher-order terms (imposing  α = 0),	

we obtain again the standard dispersion of Newton  physics	




Jeans criterion for gravitational instability in f(R)-gravity	


In order to compute the integral in the dispersion relation , we	

consider the same approach used in the classical case, and	

finally we obtain:	


Where                       and 	


To compare the modified and classical dispersion relation we 	

normalize the equation to the classical Jeans length by fixing	

the parameter of f(R)- gravity, that is	


This parameterization is correct because the dimension  (an inverse of 
squared length) allows us to parameterize as in standard case	




Jeans criterion for gravitational instability in f(R)-gravity	


Finally we write and plot this relation	


The bold line 
indicates the plot 
of the modified 
dispersion	

relation.	

The thin line 
indicates the plot 
of the standard 
dispersion	

equation	




The Jeans mass limit 	

 in   f(R)-gravity	


A numerical estimation of the f(R) instability length in terms of the standard 
Newtonian one can be achieved	


By solving numerically the above equation with the condition ω = 0, we obtain that the 
collapse occurs for	


However we can estimate also analytically the limit for the instability	

In order to evaluate the Jeans mass limit in f(R)- gravity, we set ω = 0	


 The additional condition α < 0 discriminates the class of viable f(R) models: in such a case 
we obtain stable cosmological solution and positively defined massive states	




The Jeans mass limit 	

 in   f(R)-gravity	


The condition α<0  selects the physically viable models allowing to solve the above equation for 
real values of k. 	


In particular, the above numerical solution can be recast as	


The relation to the Newtonian value of the Jeans instability is	


Now, we can define the new Jeans mass as	


which is proportional to the standard Newtonian value	


These specific solutions  can be confronted with some observed structures.	




The MJ – T relation	


One can deal with the star formation problem in two ways:	


we can take into account the formation of individual stars and	


we can discuss the formation of the whole star system starting from 
interstellar clouds	


To answer these problems it is very important to study then 	

      interstellar medium (ISM) and its properties	


The ISM physical conditions in the galaxies change in a very wide	

range, from hot X-ray emitting plasma to cold molecular gas, so it is very 
complicated to classify the ISM by its properties	




The MJ – T relation	


However, we can distinguish, in the first approximation, between	


Diffuse hydrogen clouds. The most powerful tool to	

measure the properties of these clouds is the 21 cm	

line emission of HI. They are cold clouds so the	

temperature is in the range 10 ÷ 50 K, and their	

extension is up to 50 ÷ 100 kpc from galactic center	


Diffuse molecular clouds are generally self-gravitating,	

magnetized, turbulent fluids systems, observed in sub-mm. 
The most of the molecular gas is H2, and the rest is CO. 
Here, the conditions are very similar to the HI clouds but 
in this case, the cloud can be more massive. They have, 
typically, masses in the range 3 ÷ 100 M¤, temperature in 
15 ÷ 50 K and particle density in (5 ÷ 50)×	
108 m-3.	




The MJ – T relation	


Giant molecular clouds are very large complexes of particles (dust and gas), in 
which the range of the masses is typically 105 ÷ 106M¤ but they are very cold.  
The temperature is ≈15 K, and the number of particles is (1 ÷ 3)× 108 m-3. 
However, there exist also small molecular clouds with masses M< 104 M¤ .  
They are the best sites for star formation, despite the mechanism of formation 
does not recover the star formation rate that would be 250M¤ yr-1 	




The MJ – T relation	


Bok globules are dark clouds of dense 
cosmic dust and gas in which star 
formation sometimes takes place. Bok 
globules are found within H II regions, 
and typically have a mass of about 2 to 
50 M¤ contained within a region of 
about a light year.	


HII regions. They are ISM regions with temperatures in the range 103 ÷  
104 K, emitting primarily in the radio and IR regions. At low frequencies, 
observations are associated to free-free electron transition (thermal 
Bremsstrahlung). Their densities range from over a million particles per cm3	


in the ultracompact H II regions to only a few particles per cm3 in the 
largest and most extended regions. This implies total masses between 102 
and 105 M¤	




The MJ – T relation	


Using very general conditions, we want to show the difference in the Jeans mass 
value between standard and f(R)- gravity.	


Let us take into account	


     in which ρ0 is the ISM density and σ is the velocity dispersion of particles due 
to the temperature	

These two quantities are defined as                               and 	


where nH is the number of particles measured in m-3,  is the mean molecular 
weight, kB is the Boltzmann constant and mH is the proton mass	


By using these relations, we are able to compute the Jeans mass for interstellar 
clouds and to plot its behavior against the temperature	




The MJ – T relation	


Any astrophysical system reported in Table  is associated to a particular	

(MJ – T)-region.	


Differences between the two theories for any self-gravitating system 	

are clear	  



The MJ – T relation	


Dashed-line indicates the Newtonian Jeans mass behavior with respect to 
the temperature.	

Continue-line indicates the same for f(R)-gravity Jeans mass.	




The MJ – T relation	


By referring to the catalog of 
molecular clouds in Roman-
Duval et al., Astrophys. J. 
723, 492 (2010), we have	

calculated the Jeans mass in 
the Newtonian and f(R) 
cases.	


In all cases we note a 
substantial	

difference between the 
classical and f(R) value.	




   Discussion and  Conclusions	


The hydrostatic equilibrium of a stellar structure in the framework of f (R) 
gravity has been considered.	


Adopting a polytropic equation of state relating the mass density to the 
pressure, we derive the modified Lane´-Emden equation and its solutions for 
n = 0,1 which can be compared to the analogous solutions coming from the 
Newtonian limit of GR	


When we consider the limit f(R)àR, we obtain the standard hydrostatic 
equilibrium theory coming from GR	


A peculiarity of f(R) gravity is the non-viability of the Gauss theorem, and 
then the modified Lane´-Emden equation is an integro-differential equation 
where the mass distribution plays a crucial role	

The correlation between two points in the star is given by a Yukawa-like 
term of the corresponding Green function	




Discussion and Conclusions	


We have analyzed the Jeans instability mechanism, adopted for star 
formation, considering the Newtonian approximation of f(R) gravity	


The related Boltzmann-Vlasov system leads to modified Poisson equations 
depending on the f(R) model	


In particular,  it is possible to get a new dispersion relation where 
instability criterion results modified	


The leading parameter is  α, i.e. the second derivative of the specific f(R) 
model. Standard Newtonian Jeans instability is immediately recovered 
for  α=0 corresponding to the Hilbert-Einstein Lagrangian of GR.	


A new condition for the gravitational instability is derived, showing 
unstable modes with faster growth rates.	




Discussion and Conclusions	

We  can observe the instability decreases in f(R)- gravity: such decrease is 
related to a larger Jeans length and then to a lower Jeans mass	

We have also compared the behavior with the temperature of the Jeans	

mass for various types of interstellar molecular clouds	

In our model the limit (in unit of mass) to start the collapse of an 
interstellar cloud is lower than the classical one advantaging the structure 
formation.	

Real solutions for the Jean mass can be achieved only for α < 0 and 
this result is in agreement with cosmology	

In particular, the condition α<0 is essentials to set a well formulated	

and well-posed Cauchy problem in f(R)- gravity	

It is worth noticing that the Newtonian value is an upper limit for the 
Jean mass coinciding with f(R.) = R	

Stellar structure  can give a FUNDAMENTAL tool against Dark Side!	

See S. Capozziello and M. De Laurentis Ann. Der. Phys. 524 (2012) 545	

	




    Next Steps	


A next step is to derive self-consistent numerical solutions of the modified 
Lane´-Emden equation and build up realistic star models where further 
values of the polytropic index n and other physical parameters, e.g.	

temperature, opacity, transport of energy, are considered.	


These models are a challenging task, since, up to now, there is no self-consistent, 
final explanation for compact objects (e.g. neutron stars) with masses larger 
than Volkoff mass, while observational evidence widely indicates these objects.	

(e.g.- magnetars, variable stars, etc..)	


From an observational point of view, reliable constraints can be achieved by a 
careful analysis of the proto-stellar phase taking into account magnetic fields, 
turbulence and collisions.	


Final step: the f( R)-Hertzsprung-Russell diagram !	



