The functional RG and the C -function

Carlo Pagani

SISSA, Trieste
arxiv: 1312.7097

with Alessandro Codello and Giulio d'Odorico.

First FLAG meeting "The Quantum and Gravity" 28-30 May, Bologna.

Recent growing interest in general theorems for RG flows. In 4-d the "atheorem" has been proved and the "c-theorem" recovered.

Komargodski and Schwimmer JHEP 1112 (2011) 099; Komargodski JHEP 1207
(2012) 069; Luty, Polchinski and Rattazzi JHEP 1301 (2013) 152.

It is difficult to find an explicit form for these functions. We will focus on 2-d problem.

It generally requires non-perturbative tools. Typically one considers the relation between the entanglement entropy and the c-anomaly.

Our main goal: explore the c-function by means of the Functional Renormalization Group.

Brief review of Effective Average Action (EAA) and Exact Renormalization Group Equation (ERGE)

Introduce the modified generating functional of connected Green's functions:

$$
e^{W_{k}[J]}=\int \mathcal{D} \chi e^{-S[\chi]-\Delta_{k} S[\chi]+\int d x \chi J}
$$

cutoff action which suppresses

$$
\Delta_{k} S[\chi]=\frac{1}{2} \int \chi R_{k}\left[-\nabla^{2}\right] \chi \quad \text { modes } p^{2}<k^{2}
$$

Brief review of Effective Average Action (EAA) and Exact Renormalization Group Equation (ERGE)

Introduce the modified generating functional of connected Green's functions:

$$
e^{W_{k}[J]}=\int \mathcal{D} \chi e^{-S[\chi]-\Delta_{k} S[\chi]+\int d x \chi J}
$$

cutoff action which suppresses

$$
\Delta_{k} S[\chi]=\frac{1}{2} \int \chi R_{k}\left[-\nabla^{2}\right] \chi \quad \text { modes } p^{2}<k^{2}
$$

Let $\tilde{\Gamma}_{k}[\phi]$ be the Legendre transform of $W_{k}[J(\phi)]$. The Effective Average Action is defined:

$$
\Gamma_{k}[\phi] \equiv \tilde{\Gamma}_{k}[\phi]-\Delta_{k} S[\phi] \quad \phi=\langle\chi\rangle
$$

The scale dependence of Γ_{k} is given by the ERGE:

$$
k \frac{\partial}{\partial k} \Gamma_{k}=\frac{1}{2} \operatorname{Tr}\left[\frac{k \partial_{k} R_{k}}{\Gamma_{k}^{(2)}+R_{k}}\right]=\frac{1}{2}
$$

It is an exact equation which can be seen as a renormalization group improvement of its 1-loop analogue.

It smoothly interpolates between the microscopic action

$\Gamma_{k=0}$ and the Effective Action.

Let us consider the Wess-Zumino action:

(P.O. Mazur and E. Mottola, Phys. Rev. D 64 (2001) 104022)
$\Gamma_{U V}\left(e^{2 \sigma} g_{\mu \nu}, e^{w \sigma} \phi\right)-\Gamma_{U V}\left(g_{\mu \nu}, \phi\right)=-\frac{c_{U V}}{24 \pi} \int \sqrt{g}[\sigma \Delta \sigma+\sigma R]$
$\Gamma_{I R}\left(e^{2 \sigma} g_{\mu \nu}, e^{w \sigma} \phi\right)-\Gamma_{I R}\left(g_{\mu \nu}, \phi\right)=-\frac{c_{I R}}{24 \pi} \int \sqrt{g}[\sigma \Delta \sigma+\sigma R]$

Let us consider the Wess-Zumino action:

(P.O. Mazur and E. Mottola, Phys. Rev. D 64 (2001) 104022)

$$
\Gamma_{U V}\left(e^{2 \sigma} g_{\mu \nu}, e^{w \sigma} \phi\right)-\Gamma_{U V}\left(g_{\mu \nu}, \phi\right)=-\frac{c_{U V}}{24 \pi} \int \sqrt{g}[\sigma \Delta \sigma+\sigma R]
$$

$$
\Gamma_{k}\left(e^{2 \sigma} g_{\mu \nu}, e^{w \sigma} \phi\right)-\Gamma_{k}\left(g_{\mu \nu}, \phi\right)=-\frac{c_{k}}{24 \pi} \int \sqrt{g}[\sigma \Delta \sigma+\sigma R]-\int \sqrt{g} \sigma k^{d_{i}} \tilde{\beta}_{i} \mathcal{O}_{i}
$$

EAA and the 3 clues

1. Derivative expansion.
2. The scale anomaly.
3. The conformal anomaly.

1. Derivative expansion.

Expand the EAA in a basis of operators compatible with the symmetries of the system:

$$
\Gamma_{k}=\sum_{i} \int d^{2} x \sqrt{g} g_{i} \mathcal{O}_{i}
$$

Good approximation to describe critical properties!
Clue 1:

$$
\begin{aligned}
& \Gamma_{k}=\int d^{2} x \sqrt{g} {\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\underset{\uparrow}{\left.V_{k}(\phi)\right]}\right.} \\
& \text { Local Potential Approximation (LPA) }
\end{aligned}
$$

2. Scale anomaly

Scale symmetry is broken at the quantum level (flat space).

$$
\begin{aligned}
S_{0} & =\int d^{4} x \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{g}{4!} \phi^{4}\right] \\
\delta_{\sigma} S_{0} & =0, \quad g_{\mu \nu} \rightarrow \Omega^{2} g_{\mu \nu}, \phi \rightarrow \Omega^{-1} \phi
\end{aligned}
$$

but

$$
\begin{aligned}
\delta_{\sigma}\left(S_{0}+\Gamma_{1 l}\right) & =\delta_{\sigma}\left(-\frac{1}{2} \int_{\frac{\varepsilon}{\mu^{2}}}^{\infty} \frac{d s}{s} \operatorname{Tr}\left[e^{-s(\Delta+U)}\right]\right)=-\int_{\frac{\varepsilon}{\mu^{2}}}^{\infty} d s \sigma \operatorname{Tr}\left[(\Delta+U) e^{-s(\Delta+U)}\right] \\
& =\int_{\frac{\varepsilon}{\mu^{2}}}^{\infty} d s \sigma \frac{d}{d s} \operatorname{Tr} e^{-s(\Delta+U)}=-\operatorname{Tr}\left[\sigma e^{-s(\Delta+U)}\right] \\
& \rightarrow-\frac{1}{16 \pi^{2}} \int \sqrt{g} b_{4}(\Delta+U)=-\frac{1}{4!}\left(\frac{3 g^{2}}{16 \pi^{2}}\right) \phi^{4}=-\frac{1}{4!} \beta_{g} \phi^{4}
\end{aligned}
$$

3. Conformal anomaly

Massless scalar field:

$$
\begin{aligned}
& S_{0}=\int d^{2} x \sqrt{g} \frac{1}{2} \phi \Delta \phi \\
& \delta \Gamma=-\frac{1}{(4 \pi)} \int \sqrt{g} b_{2}=-\frac{1}{(24 \pi)} \int \sqrt{g} R
\end{aligned}
$$

The Effective Action reads:

$$
\Gamma=\int \sqrt{g} \frac{1}{2} \phi \Delta \phi-\frac{c}{96 \pi} \int \sqrt{g} R \frac{1}{\Delta} R
$$

can be found using ERGE plus nonlocal Heat Kernel (A. codello Ann. Phys. 325 (2010)

An ansatz satisfying the requirments

Suitable extension of the LPA

$$
\Gamma_{k}=\int \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V_{k}(\phi)\right]+\cdots
$$

Using:

\[

\]

Functional equation for the c-function

Structure of the EAA:

$$
\begin{aligned}
\Gamma_{k} & =\int d^{2} x \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V_{k}(\phi)\right. \\
& \left.-\partial_{t} V_{k}(\phi) \frac{1}{2 \Delta} R-\frac{c_{k}}{96 \pi} R \frac{1}{\Delta} R\right]
\end{aligned}
$$

Choose a convenient background

$$
\begin{array}{cc}
e^{w \tau} \phi, \quad e^{2 \tau} \delta_{\mu \nu} \\
-\int \tau k^{d_{i}} \tilde{\beta}_{i} \mathcal{O}_{i}, \quad & -\frac{c_{k}}{96 \pi}(2 \Delta \tau) \frac{1}{\Delta}(2 \Delta \tau)=-\frac{c_{k}}{24 \pi} \tau \Delta \tau
\end{array}
$$

Functional equation for the c-function

Structure of the EAA:

$$
\begin{aligned}
\Gamma_{k} & =\int d^{2} x \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V_{k}(\phi)\right. \\
& \left.-\partial_{t} V_{k}(\phi) \frac{1}{2 \Delta} R-\frac{c_{k}}{96 \pi} R \frac{1}{\Delta} R\right]
\end{aligned}
$$

Flow equation for the c-function:

$$
\partial_{t} c_{k}=\partial_{t}\left[-12 \pi \frac{d}{d p^{2}}\left(\frac{\delta \Gamma_{k}\left(e^{w \tau} \phi, e^{2 \tau} \delta_{\mu \nu}\right)}{\delta \tau(p) \delta \tau(-p)}\right)\right]_{\phi=0}
$$

Exact checks: massive scalar field

Add a mass term to the Gaussian fixed-point action:

$$
\begin{gathered}
S_{*}=\int d^{2} x \sqrt{g} \frac{1}{2} \phi \Delta \phi \longrightarrow S=\int d^{2} x \sqrt{g}\left[\frac{1}{2} \phi \Delta \phi+\frac{1}{2} m^{2} \phi^{2}\right] \\
c_{U V}=1 \longrightarrow c_{I R}=0
\end{gathered}
$$

Improve using the general structure of the ansatz:

$$
\begin{aligned}
\Gamma_{k} & =\int d^{2} x \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+V_{k}(\phi)\right. \\
& \left.-\partial_{t} V_{k}(\phi) \frac{1}{2 \Delta} R-\frac{c_{k}}{96 \pi} R \frac{1}{\Delta} R\right]
\end{aligned}
$$

Rescaling both the field and the metric we can compute $\left.\langle\tau \tau\rangle\right|_{p^{2}}$ in flat space:

$$
\begin{aligned}
\Gamma_{k} & =\int d^{2} x \sqrt{g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}-\frac{c_{k}}{96 \pi} R \frac{1}{\Delta} R\right] \\
& =\int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} e^{2 \tau} m^{2} \phi^{2}-\frac{c_{k}}{24 \pi} \tau \Delta \tau\right]
\end{aligned}
$$

Using the ERGE for the functional derivatives of the EAA:

$$
\left.\partial_{t}\left(\frac{\delta^{2} \Gamma_{k}}{\delta \tau(p) \delta \tau(-p)}\right)\right|_{p^{2}}=\sim m \sim \sim \sim
$$

We solve the equation with the boundary condition $c_{\infty}=1$

$$
\partial_{t} c_{k}=\frac{4 a k^{2} m^{2}}{\left(a k^{2}+m^{2}\right)^{3}} \quad c_{k}=1-\frac{m^{4}}{\left(a k^{2}+m^{2}\right)^{2}}
$$

The Sine-Gordon model

Perturb the Gaussian fixed-point action:

$$
\begin{aligned}
& S=\int \sqrt{g}\left[\frac{1}{2} \phi \Delta \phi-\frac{m}{\beta^{2}}(\cos (\beta \phi)-1)\right] \\
& \Delta c=1
\end{aligned}
$$

The beta functions are:

$$
\begin{aligned}
& \partial_{t} \tilde{m}=\frac{\tilde{m}}{4 \pi}\left(\frac{\beta^{2}-8 \pi(1+\tilde{m})}{1+\tilde{m}}\right) \\
& \partial_{t} \beta=-\frac{3 \tilde{m} \beta^{3}}{8 \pi(1+\tilde{m})^{3}}
\end{aligned}
$$

Using the extended ansatz we find:

$$
\partial_{t} c_{k}=\frac{\tilde{m}^{2}\left(\beta^{2}-8 \pi(1+\tilde{m})\right)^{2}}{16 \pi^{2}(1+\tilde{m})^{5}}
$$

Numerical integration gives satisfactory agreement:

Loop expansion and the \mathbf{C}-function

Up to now we limited ourselves to 1 loop results:

For instance:

$$
V_{k}(\phi)=\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4}+\cdots \quad \Rightarrow \quad \text { vertex } \sim \tilde{\beta}_{m^{2}}
$$

What about the others beta functions?

$$
\partial_{t} c_{k}=G_{i j} \tilde{\beta}_{i} \tilde{\beta}_{j}
$$

Loop expansion from the EAA

It is possible to recover the loop expansion of the EA from the EAA.
(See: D. F. Limit and J. M. Pawlowski, PRD 66, 025030 (2002), hep-th/0202188 and A. Codello, M. Demmel and O. Zanusso arXiv: 1310.7625).

$$
\frac{1}{2} \operatorname{Tr} \log \left(\Delta+V^{\prime \prime}\right) \longleftrightarrow
$$

This expansion is generalized to a loop expansion of the EAA.

The calculation has to be repeated for all the relevant diagrams to build an estimate for the Zamolodchikov's metric.

Non unitary theories: Yang-Lee model

$$
V(\phi)=i h \phi+i g \phi^{3}
$$

change in the sign of the entries.

Conclusions

We investigated a general form of the EAA which takes into account scale and conformal anomalies.

We set up a non perturbative functional equation for the c-function.

From this generalized ansatz we can find non-trivial flow for the c-function. Both from 2-point function and loop expansion.

Strategy may be generalized to 4 dimensions.

Conclusions

We investigated a general form of the EAA which takes into account scale and conformal anomalies.

We set up a non perturbative functional equation for the c-function.

From this generalized ansatz we can find non-trivial flow for the c-function. Both from 2-point function and loop expansion.

Strategy may be generalized to 4 dimensions.

Thank you!!

