"When Higgs met Einstein"

Massimiliano Rinaldi Dipartimento di Fisica & TIFPA-INFN Università di Trento

> Ist Flag Meeting "The Quantum and Gravity" Bologna 28-30 May, 2014

Outline

- Higgs-Hilbert-Einstein Lagrangian
- Spherically Symmetric Solutions: the "Higgs Monopole"
- Dark Energy and Dark Matter
- Conclusions

SU(2) Higgs-Hilbert-Einstein Lagrangian

$$\frac{\mathcal{L}_J}{\sqrt{g}} = \frac{1}{2} (m^2 + 2\xi \mathcal{H}^{\dagger} \mathcal{H}) R - (D_{\mu} \mathcal{H})^{\dagger} (D^{\mu} \mathcal{H}) - \frac{F^2}{4} - V + \dots$$

$$V = \lambda \left(\mathcal{H}^{\dagger} \mathcal{H} - \frac{v^2}{2} \right)^2 \qquad \qquad \mathcal{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi_1 + i\chi_2 \\ \phi + i\chi_3 \end{pmatrix}$$

We assume that Higgs and gauge fields share the **symmetries of spacetime** (i.e. they are <u>background</u> fields).

Our goal is to study:

- Spherically symmetric and static solutions
- Cosmological solutions

The "Higgs Monopole"

- A. Füzfa, M. Rinaldi, and S. Schlögel, PRL 111, 121103 (2013).
- S. Schlogel, M. Rinaldi, F. Staelens and A. Fuzfa, arXiv:1405.5476 [gr-qc].

$$\mathcal{L} = \sqrt{g} \left[\frac{F(H)}{2\kappa} R - \left(\frac{1}{2}(\partial H)^2 - V(H)\right) + \mathcal{L}_M [g_{\mu\nu}, \Psi_m] \right] \text{ perfect fluid}$$

$$V(H) = \frac{\lambda_{sm}}{4} (H^2 - v^2)^2 \quad \textbf{U-gauge}$$

$$F(H) = 1 + \frac{\xi}{m_p^2} H^2$$
we look for solutions that are
$$- \text{ unitary gauge}$$

$$- \text{ spherically symmetric}$$

$$- \text{ asymptotically flat}$$

$$- \text{ nonsingular} \quad \textbf{radius of the "star"} \quad \textbf{r}$$

UNIVERSITÀ DEGLI STUD DI TRENTO

Equations of motion

$$\mathcal{L} = \sqrt{g} \left[(m^2 + \xi H^2) R - \frac{1}{2} (\partial H)^2 - \frac{\lambda}{4} (H^2 - v^2)^2 \right] + \mathcal{L}_m$$

$$\Box H + \frac{\xi HR}{8\pi} = \frac{dV}{dH}$$

$$*$$
Without matter :

*With matter :

$$\left(1 + \frac{\xi}{m_p^2} H^2\right) G_{\mu\nu} = \kappa \left[T_{\mu\nu}^{(H)} + T_{\mu\nu}^{(\xi)} + T_{\mu\nu}^{(mat)}\right]$$

no-hair theorem, Schwarzschild

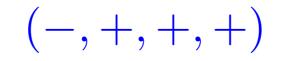
$$H(r) = 0 \ \forall \ r \ \Rightarrow \text{GR} \text{ - de Sitter}$$
$$H(r) = v \ \forall \ r, \ \xi = 0 \ \Rightarrow \text{Asympt. Flat}$$
$$H(r) \neq 0, v, \ \xi \neq 0 \ \Rightarrow \ \text{GR} \text{ - Flat } ??$$

Effective potential (-,+,+,+)

 $\frac{d^2 H}{dr^2} \simeq$ $-\frac{dV_{\text{eff}}}{dH}$

 $V_{\rm eff}$

 $H_{\rm c} < H_{\rm eq}$



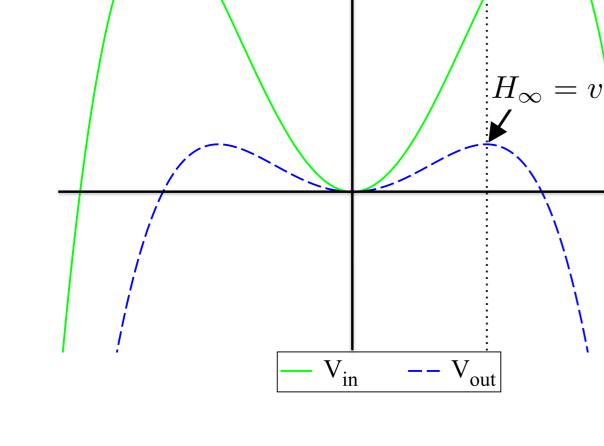
 $H_{\rm eq}$

 $H_{\rm c} > H_{\rm eq}$

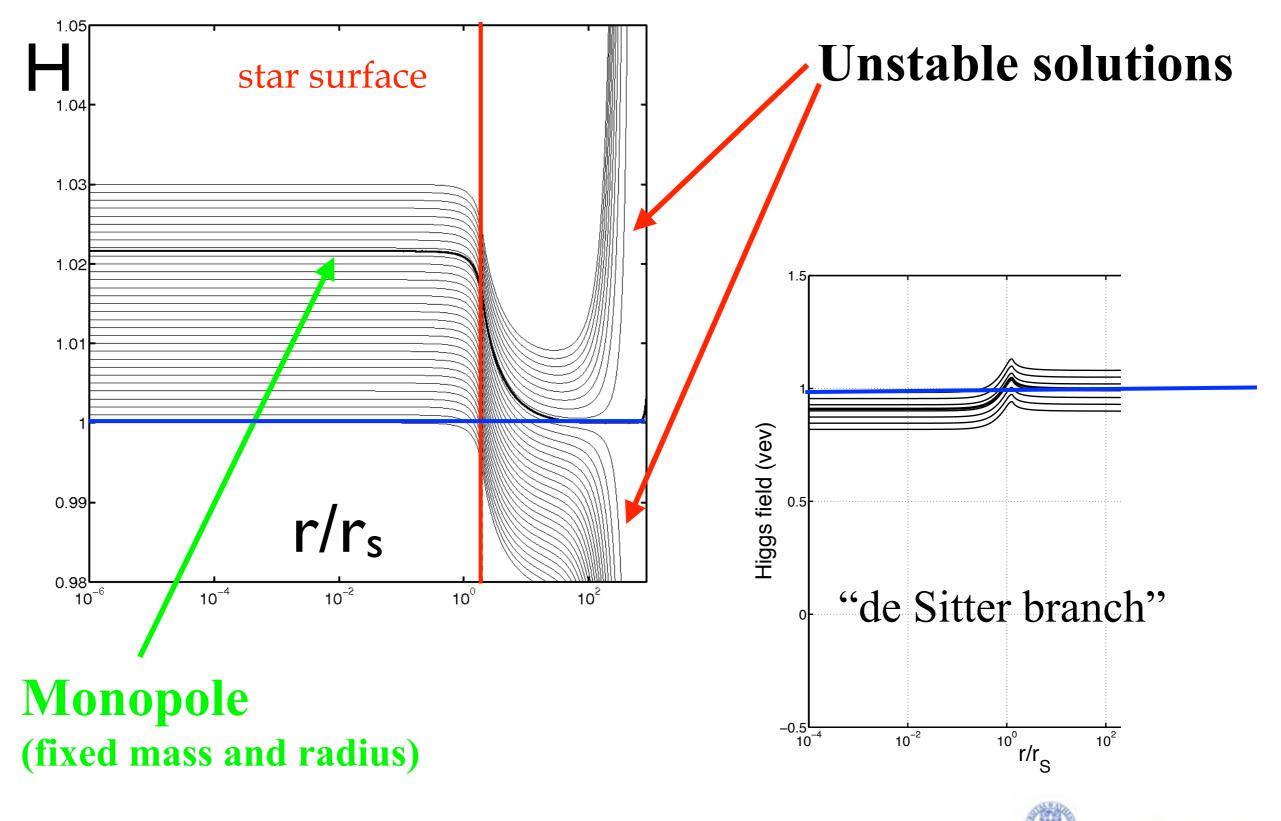
$$V_{\rm eff} \simeq -\frac{\lambda}{4} (H^2 - v^2)^2 + \frac{\xi R H^2}{16\pi}$$

Vanishes (almost) outside or for minimal coupling

 $H_c = \text{central value}$ $H_{\rm eq} =$ equilibrium points The monopole smoothly interpolates between H_{eq} and H_{∞} with binding energy: $E_{\text{bin}} = E_{\text{bar}} - E_{\text{ADM}} > 0$

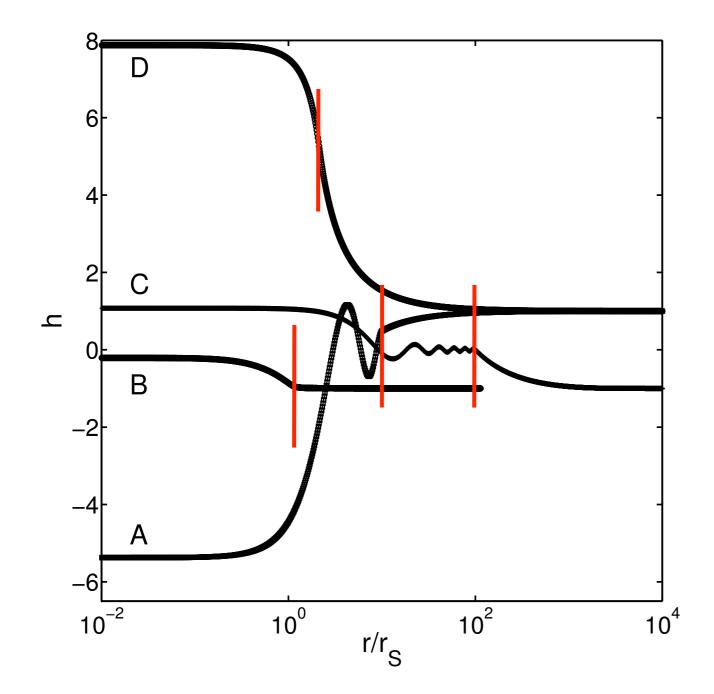


Numerical analysis: shooting method



DEGLI STUD

Monopole family

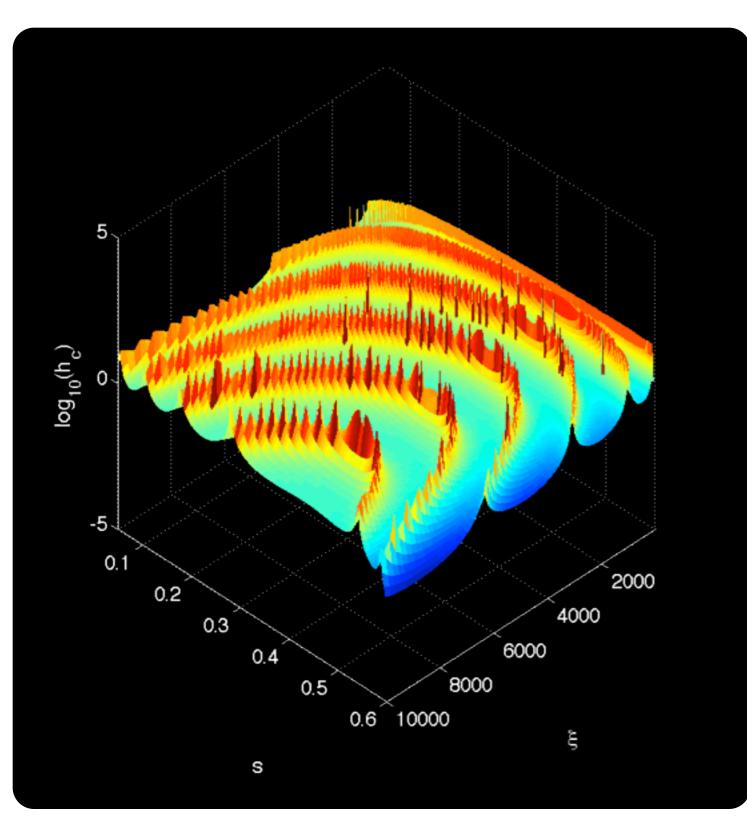


Physical parameters:

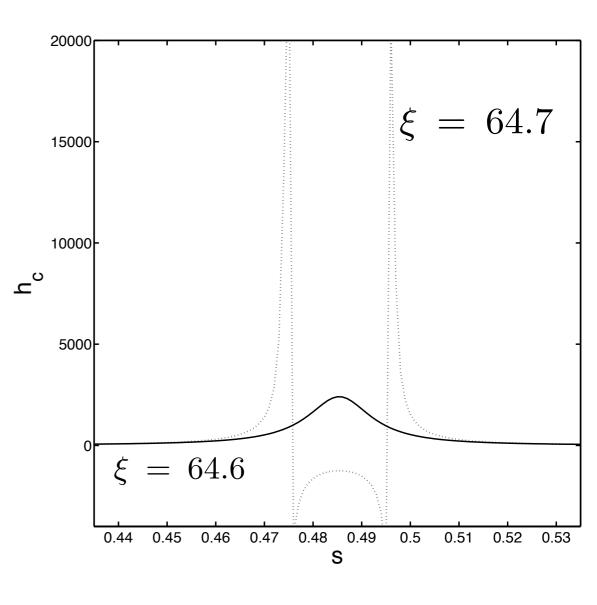
- m = baryonic mass
- s = compactness
- ξ = non-minimal coupling
- hc = central Higgs field value

	h_c	ξ	m		S
F	0.91	10	10^{6}	kg	0.75
A	- 5.37	10^{4}	10^{3}	kg	0.1
B	- 0.21	10	10^{6}	kg	0.88
C	1.077	10^{6}	10^{6}	kg	0.01
D	7.88	60	10^{4}	kg	0.47

Higgs amplification mechanism



For large nonminimal coupling and for some combination of mass and radius **the Higgs field diverges**!



Higgs amplification mechanism

Analytic approximation and modeling of the amplification mechanism:

- Inner solution given by pure GR (excellent approx for small compactness R/rs)
- Exterior solution governed by Higgs field only
- Continuity of H and H' at the boundary

$$\begin{pmatrix} H_c + \frac{B}{A} \end{pmatrix} \left[\sqrt{\frac{\alpha}{|A|}} \sin\left(\frac{\sqrt{|A|}}{s}\right) + \cos\left(\frac{\sqrt{|A|}}{s}\right) \right] = \left(1 + \frac{B}{A}\right) \left(1 + \frac{\sqrt{\alpha}}{s}\right)$$

$$A = \frac{\alpha}{2} \left(3H_c^2 - 1\right) - \frac{\langle R \rangle \xi}{8\pi}$$

$$B(H_c) = -\alpha H_c^3$$

$$\alpha = 2\lambda_{\rm sm} r_s^2 m_{pl}^2 \tilde{v}^2$$

$$H_c = \left| \cos\sqrt{\frac{\xi \langle R \rangle}{8\pi s^2}} \right|^{-1}$$

M. Rinaldi

$$H_{\rm ext} \sim \frac{Q}{r} e^{-r/L}$$

Yukawa form

Higgs amplification mech

- Note that the amplification mechan scalarization: it depends only on t works)
- **Spontaneous scalarization** is grea
- The analytic approximation is very accurate for small compactness

$$\left(1 + \frac{\xi}{m_p^2} H^2\right) G_{\mu\nu} = \kappa \left[T_{\mu\nu}^{(H)} + T_{\mu\nu}^{(\xi)} + T_{\mu\nu}^{(mat)}\right]$$

(H)

r/r

 $T(\xi)$

10⁻⁴

 10^{0}

10⁻⁵

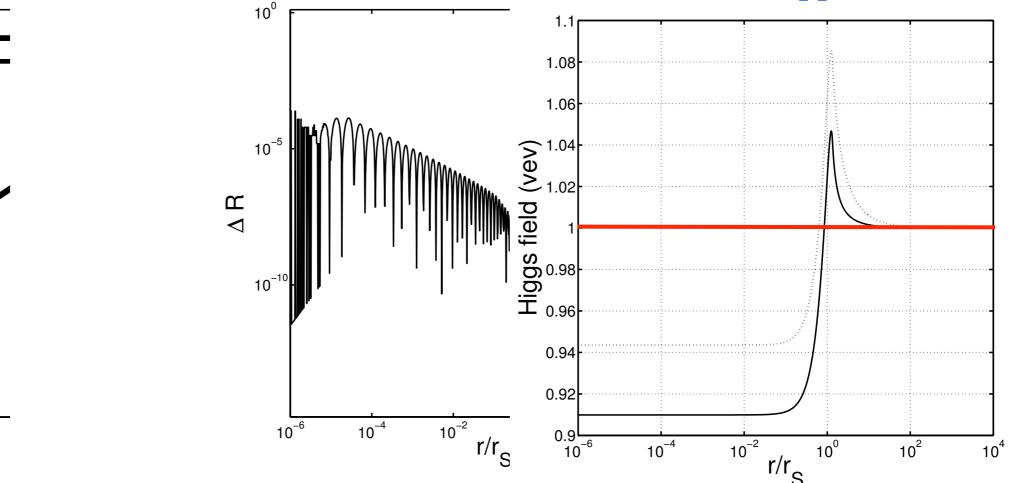
10⁻¹⁰

10

 10^{-6}

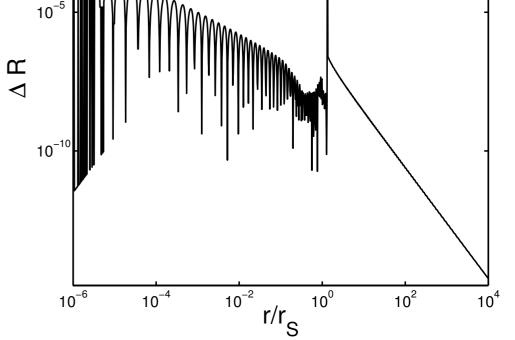
3

2



Single contributions inside the body

Full numerical vs approximation



Other effects

- **PPN analysis** reveal negligible deviations
- **TOV equation**: solve the equations near the center with the approximation

$$H(r) \simeq H_0 + H_2 r^2$$

• We find that the baryonic energy density must satisfy:

$$V(H_c) < \rho_{\rm bar} < \rho_{\rm max}$$

• Recall that in GR:

$$0 < \rho_{\rm bar} < \rho_{\rm max}$$

• Is this preventing initial collapse?

Higgs Monopoles: summary

- Higgs gravity yields new particle-like, non singular, spherically symmetric, and stable solutions
- Spontaneous scalarization greatly reduced (sort of screening mechanism)
- New general amplification mechanism of the central value of the Higgs field
 Open issues
- Effects of SU(2) structure of the theory
- Effects on the equation of state of a varying Higgs effective vacuum
- Formation mechanism and stability of these objects: dark matter?
- Interaction with other particles and stability wrt to small fluctuations

The dark aftermath of Higgs inflation

It does not matter how slowly you go as long as you do not stop (Confucius)

MR, arXiv: 1309.7332 - EPJ Plus 129 56 MR, arXiv: 1404.0532

Higgs-Einstein-Hilbert SU(2) Lagrangian (J-frame)

$$\frac{\mathcal{L}_J}{\sqrt{g}} = \frac{1}{2} (m^2 + 2\xi \mathcal{H}^{\dagger} \mathcal{H}) R - (D_{\mu} \mathcal{H})^{\dagger} (D^{\mu} \mathcal{H}) - \frac{F^2}{4} - \lambda \left(\mathcal{H}^{\dagger} \mathcal{H} - \frac{v^2}{2} \right)^2$$

Low energy SU(2) Lagrangian (J-frame=E-frame)

$$\frac{\mathcal{L}}{\sqrt{g}} = \frac{M_p^2}{2} R - (D_\mu \mathcal{H})^\dagger (D^\mu \mathcal{H}) - \frac{F^2}{4} - \lambda \left(\mathcal{H}^\dagger \mathcal{H} - \frac{v^2}{2}\right)^2$$

FLRW metric

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

Can we impose the unitary gauge? *M. Rinaldi*

The unitary gauge is NOT compatible with FLRW:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = T^{(H)}_{\mu\nu} + T^{(A)}_{\mu\nu} + \dots$$

The stress tensor of **massive gauge fields is not diagonal**. For example U(1) gauge field we must impose

$$T_{12}^{(A)} = T_{13}^{(A)} = T_{23}^{(A)} = 0$$

Unbroken symmetry:1+4=5DOFBroken + U-gauge:1+3+1-3=2DOF

All <u>background</u> fields are physical, including the Goldstone bosons!

E.g. multifield Higgs inflation, see Kaiser et. al.

We can choose a "diagonal" gauge:

$$A^{b}_{\ 0} = 0, \quad A^{b}_{\ i} = \delta^{b}_{\ i} f(t)$$

Galtsov and Volkov PLB 256,17 1991

Equations of motion:

$$\begin{split} & f^4 + 2a^2 \dot{f}^2 = K_f \quad \text{gauge contribution, radiation like} \\ & \dot{H} = -\frac{1}{2M_p^2} \begin{bmatrix} \dot{\mathcal{H}}^\dagger \dot{\mathcal{H}} + \frac{K_f}{a^4} + \rho(1+\omega) \end{bmatrix} \\ & \quad \text{Friedmann} \\ & H^2 = \frac{1}{3M_p^2} \begin{bmatrix} \frac{1}{2} \dot{\mathcal{H}}^\dagger \dot{\mathcal{H}} + V + \frac{3K_f}{4a^4} + \rho \end{bmatrix} \quad \text{Friedmann} \\ & \quad \text{equations} \end{split}$$

$$\mathcal{H}^{\dagger}\dot{\mathcal{H}} - \dot{\mathcal{H}}^{\dagger}\mathcal{H} = \frac{Q}{a^3}$$

SU(2) current conservation; it gives cosmic acceleration.

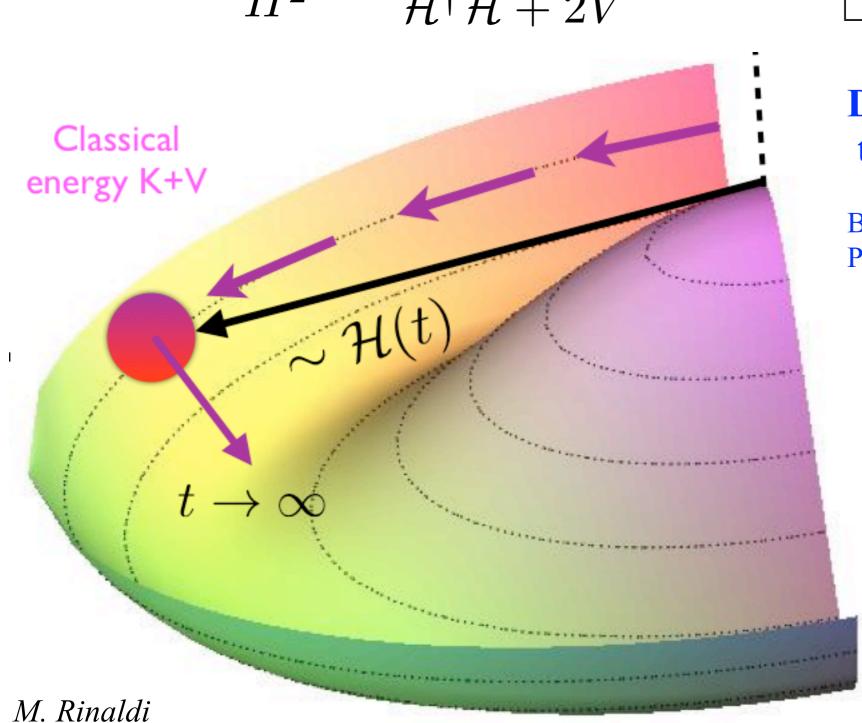
Dark energy - deceleration parameter:

$$q = -1 - \frac{\dot{H}}{H^2} \simeq \frac{2\dot{\mathcal{H}}^{\dagger}\dot{\mathcal{H}} - 2V}{\dot{\mathcal{H}}^{\dagger}\dot{\mathcal{H}} + 2V}$$

$$\mathcal{H}^{\dagger}\dot{\mathcal{H}} - \dot{\mathcal{H}}^{\dagger}\mathcal{H} = \frac{Q}{a^3}$$

Dynamics very similar to "Spintessence"

Boyle, Caldwell, Kamionkowski, Phys. Lett. B 545 (2002) 17.



Abelian U(1) case

 $H(t) = \chi(t) e^{i\theta(t)}$

Cosmological equations

where: $N = \ln a$, $x = \kappa \dot{\chi}/(\sqrt{6}H)$, $y = \kappa \sqrt{V}/(\sqrt{3}H)$, $z = \kappa Q/(\sqrt{6}\chi a^3 H)$, $w = \kappa \chi/\sqrt{6}$, $L = -(1/\kappa)(d \ln V/d\chi)$ $P = (1 - \omega_m)(x^2 + z^2) + (1 + \omega_m)(1 - y^2)$

$$\omega_{\chi} = \frac{x^2 + z^2 - y^2}{x^2 + z^2 + y^2} \qquad \qquad q = -1 + \frac{3}{2}(x^2 + y^2)(1 - \omega_m) - \frac{3}{2}(1 + \omega_m)y^2$$

DE equation of state

deceleration parameter

Dynamical system

Cosmological equations

Dynamical system

$$\begin{aligned} H^{2} &= \frac{\kappa^{2}}{3} \left(\frac{\dot{\chi}^{2}}{2} + \frac{\mathcal{Q}^{2}}{2\chi^{2}a^{6}} + V + \rho_{m} \right), \\ \dot{H} &= -\frac{\kappa^{2}}{2} \left[\dot{\chi}^{2} + \frac{\mathcal{Q}^{2}}{\chi^{2}a^{6}} + \rho_{m}(1 + \omega_{m}) \right], \\ \ddot{\chi} + 3H\dot{\chi} - \frac{\mathcal{Q}^{2}}{\chi^{3}a^{6}} + \frac{dV}{d\chi} &= 0, \\ \dot{\rho}_{m} + 3H\rho_{m}(\omega_{m} + 1) &= 0, \end{aligned}$$

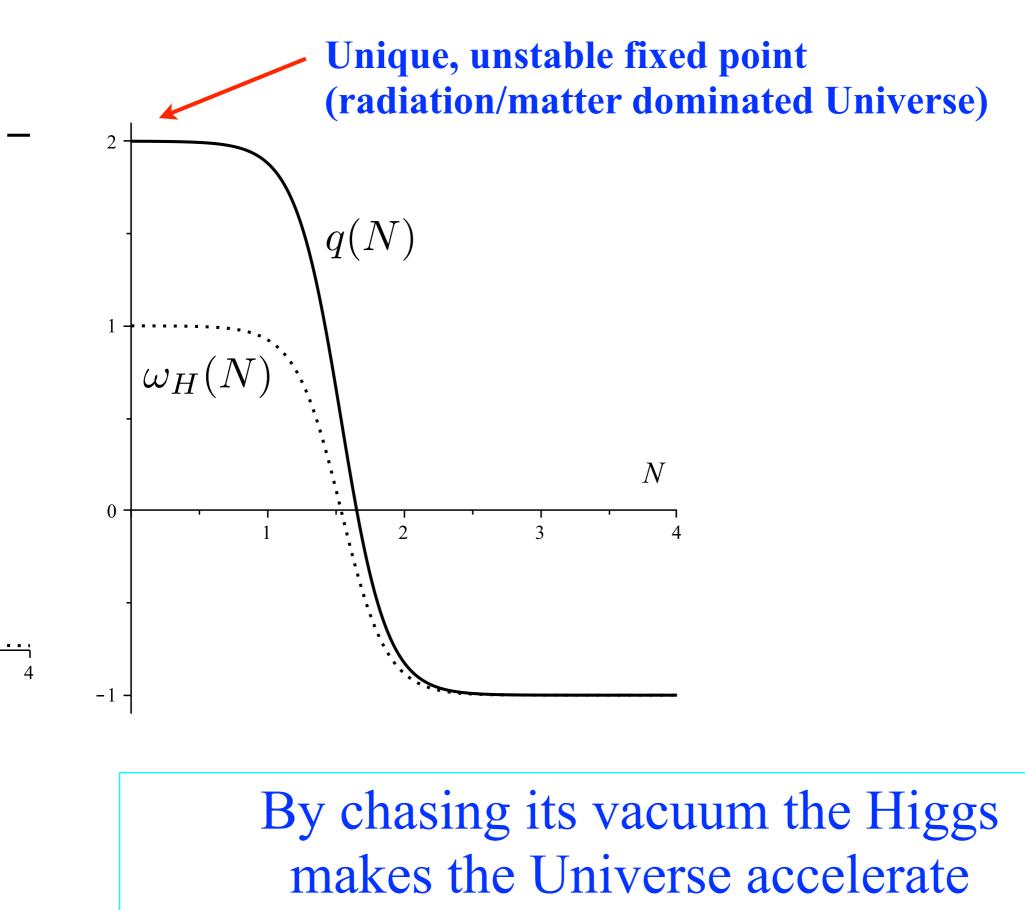
$$\overset{\circ}{} \text{"charge"} \quad \dot{\theta} &= \frac{\mathcal{Q}}{\chi^{2}a^{3}}. \end{aligned}$$

where: $N = \ln a$, $x = \kappa \dot{\chi}/(\sqrt{6}H)$, $y = \kappa \sqrt{V}/(\sqrt{3}H)$, $z = \kappa \mathcal{Q}/(\sqrt{6}\chi a^3 H)$, $w = \kappa \chi/\sqrt{6}$, $L = -(1/\kappa)(d \ln V/d\chi)$ $P = (1 - \omega_m)(x^2 + z^2) + (1 + \omega_m)(1 - y^2)$

$$\omega_{\chi} = \frac{x^2 + z^2 - y^2}{x^2 + z^2 + y^2} \qquad \qquad q = -1 + \frac{3}{2}(x^2 + y^2)(1 - \omega_m) - \frac{3}{2}(1 + \omega_m)y^2$$

DE equation of state

deceleration parameter



SU(2) case Work in progress, stay tuned.

Higgs dark energy: summary

- The Goldstone components of the **background Higgs** play a dynamical role
- During inflation they are negligible (see Kaiser et al)
- At late times the effects become important
- In the simplified U(1) case there is a **dominant dark energy** era in the future

Open issues

- As in quintessence, there are instabilities that maybe lead to Q-balls nucleation: **dark matter**?
- We expect SU(2) to behave as U(1). Dynamical analysis in progress.
- Fitting the data should constrain the model.

Thank you.

Extra material

Gravitational collapse into Q-balls

A theory of two scalar field with global SO(2) symmetry can develop stable, non-topological solitonic solution, provided $\min[V(\phi)/\phi^2]$ is at point $\phi_0 \neq 0$.

S. R. Coleman, Nucl. Phys. B 262 (1985) 263

The same happens in gauged U(1) theories, provided the charge and the coupling are not too large (superconducting Q-balls).

K. -M. Lee, J.A. Stein-Schabes, R. Watkins L. M. Widrow, Phys. Rev. D 39 (1989) 1665 Broken U(I) False vacuum (E /Q) < m

 $\phi(r)$

Unbroken U(I) True vacuum Free particles with mass m

R

 $Q = \omega \phi_0^2 V(\phi_0)$

These solutions are valid in flat space but can form also in curved space!

Metric and field perturbations

$$\begin{cases} ds^2 = -(1+2\Phi)dt^2 + (1-2\Phi)a^2\delta_{ij}dx^i dx^j \\ \chi(t) \to \chi(t) + \delta\chi(t,\vec{x}) \\ \theta(t) \to \theta(t) + \delta\theta(t,\vec{x}) \end{cases}$$

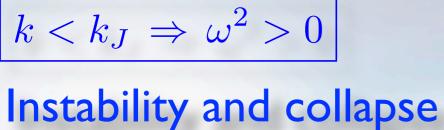
Perturbed system

$$\begin{split} \ddot{\delta\chi} + 3H\dot{\delta\chi} + \left(V'' - \dot{\theta}^2 - a^{-2}\nabla^2\right)\delta\chi &= \\ 4\dot{\chi}\dot{\Phi} - 2\Phi V' + 2\chi\dot{\theta}\dot{\delta\theta}, \\ \ddot{\delta\theta} + 3H\dot{\delta\theta} - a^{-2}\nabla^2\delta\theta &= \\ 4\dot{\theta}\dot{\Phi} - 2\frac{\dot{\delta\chi}}{\chi}\dot{\theta} + 2\frac{\dot{\chi}}{\chi}\left(\frac{\delta\chi}{\chi}\dot{\theta} - \dot{\delta\theta}\right), \\ a^{-2}\nabla^2\Phi - 3H\dot{\Phi} - 3H^2\Phi &= \\ \frac{\kappa^2}{2}\left[\dot{\chi}\dot{\delta\chi} + V'\delta\chi + \chi^2\dot{\theta}\dot{\delta\theta} + \chi\dot{\theta}^2\delta\chi - \Phi(\dot{\chi}^2 + \chi^2\dot{\theta}^2)\right] \end{split}$$

Ansatz

$$\begin{cases} \delta \chi = \delta \chi_0 \exp(\omega t + i\vec{k} \cdot \vec{x}) \\ \delta \theta = \delta \theta_0 \exp(\omega t + i\vec{k} \cdot \vec{x}) \end{cases}$$

Jeans critical value $k_J^2 \simeq 8\lambda v^2 \kappa^2 (\chi^2 - v^2) + O((\chi^2 - v^2)^2)$



 $\frac{\chi(\chi)}{\chi^2} \quad \begin{array}{l} \text{has a minimum at } \chi \neq 0 \\ \Rightarrow \text{ necessary condition} \\ \text{for Q-balls} \end{array}$

UNIVERSITÀ DEGLI STUDI DI TRENTO