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SU(2)  Higgs-Hilbert-Einstein Lagrangian

We assume that Higgs and gauge fields share the symmetries of 
spacetime (i.e. they are background fields).

Our goal is to study:

- Spherically symmetric and static solutions

- Cosmological solutions 
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The “Higgs Monopole”
• A. Füzfa, M. Rinaldi, and S. Schlögel, 

PRL 111, 121103 (2013).
• S. Schlogel, M. Rinaldi, F. Staelens and 

A. Fuzfa, arXiv:1405.5476 [gr-qc].
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II. THE MODEL

In this section we lay down the fundamental equations of
the model. Let us begin with the Lagrangian of the Higgs
inflationary model, where the Higgs bosons is nonmini-
mally coupled to gravity. In the Jordan frame, it reads
[29]

L =
√
g

�
F (H)

2κ
R− 1

2
(∂H)2 − V (H)

�
+ (1)

+ LM [gµν ,Ψm] ,

where H is the Higgs scalar field in the unitary gauge,
with dimension [GeV], R is the curvature scalar (di-
mension

�
GeV2

�
), Ψm denotes generic matter fields, and

κ = 8π/m2
p
, mp being the Planck mass. The potential

V , with dimension
�
GeV4

�
, has the usual mexican-hat

profile

V (H) =
λsm

4
(H2 − v

2)2, (2)

where λsm ∼ 0.1 [30] and v = 246 GeV is the vacuum
expectation value (vev) of the Higgs field. The nonmin-
imal coupling function between the Ricci scalar and the
scalar field is chosen as

F (H) = 1 +
ξ

m2
p

H
2 (3)

and it is crucial for a successful inflation provided ξ is
large, of the order 104. The form of this coupling func-
tion is further justified by invoking the (semiclassical)
renormalization of the energy momentum tensor associ-
ated to the scalar field on a curved background, which
needs terms like H

2
R in the Lagrangian [20]. We will

consider only positive values of ξ to avoid the possibility
that the effective reduced Planck constant (that can be
identified with (m2

p
+ ξH2)1/2) becomes imaginary.

A similar Lagrangian for compact objects was already
considered in [19], where, however, the potential was
neglected. As we will see below, this is an important
difference as the presence of the potential prevent the
solution to converge continuously to general relativity.
In other words, the solution H = 0 does not yield the
Schwarzschild solution but, rather, a de Sitter black hole
with infinite energy.

It should also be kept in mind that the Higgs field is
in general a complex doublet and, here, it is reduced to a
single real component by fixing the gauge (unitary gauge)
[9]. However, the complex part of the field can have
physical effects. In cosmology these were investigated by
one of us in [21], while in the context of compact object,
some results can be found in [22] although the potential
is not of the Higgs type. This kind of solutions will be
addresses in a forthcoming paper.

following paragraph not clear Only constraints (I
know...) is that it would be positive defined as well as the
extrema of the coupling function have to be different from

these of the Higgs potential. Indeed, let’s take a look at
the extrema of the potential V and the coupling function
F . F possesses a local minimum for H = 0 whilst V for
H = ±v. This model has already been studied in the case
of V = 0 [19] and authors assumed that the potential has
no great impact. However, we will highlight it is not the
case. In fact, the characteristics of the minima for F and
V is relevant to understanding (?) what is coming on as
we will highlight in the next section.
The general equations of motion can be found by ap-

plying the variational principle to the Lagrangian (2)
with respect to the metric, and they read [19]

�
1 +

ξ

m2
p

H
2

�
Gµν = κ

�
T

(H)
µν + T

(ξ)
µν + T

(mat)
µν

�
, (4)

where Gµν is the Einstein tensor,

T
(H)
µν = ∂µH∂νH − 1

2
gµν

�
(∂H)2 − V (H)

�
(5)

is the part of the stress-energy tensor associated to the
Higgs field, and

T
(ξ)
µν = − ξ

4π

�
gµν∇λ (H∇λH)−∇µ (H∇νH)

�
(6)

is the stress-energy tensor induced by the nonminimal
coupling ξ. Finally,

T
(mat)
µν =

2√
−g

δLM

δgµν
, (7)

is the stress-energy tensor of the baryonic matter fields
that we assume to have the form of a perfect fluid, so
that

T
(mat)
µν = (ρ+ p)uµuν + gµνp, (8)

where uµ is the four-velocity, ρ is the density and p the
pressure.
Finally, we find the Klein-Gordon equation by varying

the Lagrangian (2) with respect to H. It reads

�H +
ξHR

8π
=

dV

dH
, (9)

and from its expression we can understand in a qualita-
tive way the dynamics of the full model, as we will see in
the next section.

III. EFFECTIVE DYNAMICS

Our first goal is to assess whether spherically symmet-
ric and asymptotically flat solutions to the equations of
motion can exist. The two interesting quantities in the
Klein-Gordon equation (9) are the nonminimal coupling ξ
and the scalar curvature R, which can be written in terms
of the Higgs field and the baryonic matter by taking the
trace of Eq. (4). Even in the absence of baryonic matter,
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U-gauge

we look for solutions that are

- unitary gauge
- spherically symmetric 
- asymptotically flat
- nonsingular
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Equations of motion
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single real component by fixing the gauge (unitary gauge)
[9]. However, the complex part of the field can have
physical effects. In cosmology these were investigated by
one of us in [21], while in the context of compact object,
some results can be found in [22] although the potential
is not of the Higgs type. This kind of solutions will be
addresses in a forthcoming paper.

following paragraph not clear Only constraints (I
know...) is that it would be positive defined as well as the
extrema of the coupling function have to be different from

these of the Higgs potential. Indeed, let’s take a look at
the extrema of the potential V and the coupling function
F . F possesses a local minimum for H = 0 whilst V for
H = ±v. This model has already been studied in the case
of V = 0 [19] and authors assumed that the potential has
no great impact. However, we will highlight it is not the
case. In fact, the characteristics of the minima for F and
V is relevant to understanding (?) what is coming on as
we will highlight in the next section.
The general equations of motion can be found by ap-

plying the variational principle to the Lagrangian (2)
with respect to the metric, and they read [19]

�
1 +

ξ

m2
p

H
2

�
Gµν = κ

�
T

(H)
µν + T

(ξ)
µν + T

(mat)
µν

�
, (4)

where Gµν is the Einstein tensor,

T
(H)
µν = ∂µH∂νH − 1

2
gµν

�
(∂H)2 − V (H)

�
(5)

is the part of the stress-energy tensor associated to the
Higgs field, and

T
(ξ)
µν = − ξ

4π

�
gµν∇λ (H∇λH)−∇µ (H∇νH)

�
(6)

is the stress-energy tensor induced by the nonminimal
coupling ξ. Finally,

T
(mat)
µν =

2√
−g

δLM

δgµν
, (7)

is the stress-energy tensor of the baryonic matter fields
that we assume to have the form of a perfect fluid, so
that

T
(mat)
µν = (ρ+ p)uµuν + gµνp, (8)

where uµ is the four-velocity, ρ is the density and p the
pressure.
Finally, we find the Klein-Gordon equation by varying

the Lagrangian (2) with respect to H. It reads

�H +
ξHR

8π
=

dV

dH
, (9)

and from its expression we can understand in a qualita-
tive way the dynamics of the full model, as we will see in
the next section.

III. EFFECTIVE DYNAMICS

Our first goal is to assess whether spherically symmet-
ric and asymptotically flat solutions to the equations of
motion can exist. The two interesting quantities in the
Klein-Gordon equation (9) are the nonminimal coupling ξ
and the scalar curvature R, which can be written in terms
of the Higgs field and the baryonic matter by taking the
trace of Eq. (4). Even in the absence of baryonic matter,

✴Without matter :         no-hair theorem, Schwarzschild

H(r) = 0 ∀ r ⇒✴With matter  : GR - de Sitter

GR - Flat ??
 Asympt. FlatH(r) = v ∀ r, ξ = 0 ⇒

H(r) �= 0, v, ξ �= 0 ⇒

L =
√
g

�
(m2 + ξH

2)R− 1

2
(∂H)2 − λ

4

�
H

2 − v
2
�2
�
+ Lm
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Therefore, all the derivatives in the trace of the energy-
momentum tensor vanish and the only non-vanishing
contribution to R comes from the potential, as one eas-
ily sees from the trace of Eq. (4). If the Higgs field is
not too much displaced from its vev inside the body, the
greatest contribution to the curvature then comes from
the baryonic matter, provided the density is sufficiently
high. Outside the body, the Higgs field drops very rapidly
to its vev therefore the only contribution to R is of the
Schwarzschild type. For practical purposes, this means
that we can approximate R, inside the body, as there was
no Higgs field but just matter. To show this property a
bit more rigorously, it is sufficient to calculate the trace
of the Einstein equation and recall that, at the center of
the body, we must have dH/dr = 0 according to stan-
dard symmetry arguments. Therefore, near the center of
the body the approximation
�
1 +

ξH2

m2
p

�
R � −κ

�
2V + T

(mat) − 3ξ

4π
H�H

�
, (18)

is always valid. We can eliminate the term �H by using
the Klein-Gordon equation. In addition, if we consider
energies far below the Planck scale, H ≪ mp, all the
terms like ξH2

/m
2
p can be safely neglected, even when

ξ ∼ 104. As a result, Eq. (18) can be accurately approx-
imated by

1

v2

�
R+ T

(mat)
�
= − κ

v2

�
2V − 3ξH

4π

dV

dH

�
=

= −4πλv2

m2
p

�
H

2

v2
− 1

��
H

2

v2

�
1− 3ξ

2π

�
− 1

�
. (19)

Now, since (v/mp)2 ∼ 10−34, we need a very large ratio
H/v to yield a non-negligible right hand side, even for ξ
of the order of 104. Therefore, unless we consider planck-
ian energies for the Higgs field, the left hand side of the
above equation is negligibly small, at least near the cen-
ter of the body. This means that, inside the body, the
Einstein equation is undistinguishable from the standard
GR equation R = −κT (mat). In the section dedicated to
numerical results, we will show that this approximation
is accurate and can be used to investigate the monopoles
for a very large range of parameters.

Let us know study the equilibrium points of Veff . Out-
side the body, where T

(mat) = 0, we can approximate
R � 0. Therefore, dVeff/dH vanishes at

H
out
eq

v
= 0,±1. (20)

Inside the body, where R � −κT (mat), we find instead

H
in
eq

v
= 0,±

�
1 +

Rξ

8πλsmv2
, (21)

and the crucial role of a nonvanishing ξ becomes evident.
The solutions that we are looking for must interpolate
the value of the Higgs field at the centre of the body

FIG. 2: one possible figure for Veff

Hc with the solution at the spatial infinity H = ±v.
Furthermore, standard boundary conditions impose that
H

� vanishes at the origin so that H starts to rolls down
into the effective potential at rest. Suppose that |Hc|
is greater than the non zero value of |Hin

eq |. Then, the
Higgs field will roll outwards increasing boundlessly its
value without any possibility of reaching an equilibrium
outside the body. On the contrary, if |Hc| is smaller than
the non zero value of |Hin

eq |, the Higgs field rolls down
inward, towards the equilibrium at H∞ = v, see Fig. 2
(note that our approximation R � const also requires
R > 0 as it is proportional to V , which is positive defi-
nite). For a given energy density and radius of the body,
there is only one initial valueHc such thatH(r) smoothly
rolls towards H∞ = v. All the other trajectories leads to
a solution with infinite ADM energy. These particular
solutions with finite energy and asymptotically flat ge-
ometry are dubbed Higgs monopoles and will be found
numerically with a specifically design shooting method
in the following sections.

IV. ANALYTIC PROPERTIES

It is worth investigating the analytical properties of the
equations of motion that can give some precious informa-
tion able to target more efficiently the numerical analysis.
We found more convenient, for this section, to write the
Lagrangian in the standard Brans-Dicke form

LBD =

√
g

2κ

�
φR− ω

φ
(∂φ)2 − V̄ (φ)

�
+ Lm. (22)

where

φ = 1 +
ξH2

m2
p

, ω(φ) =
2πφ

ξ(φ− 1)
, (23)

and

V̄ (φ) =
κλsm

2

�
8π

ξκ
(φ− 1)− v

2

�2
. (24)

Heq

Hc > HeqHc < Heq

Veff

H∞ = v

H∞Heq



8

10 4 10 2 100 102 1040.5

0

0.5

1

1.5

r/rS

H
ig

gs
 fi

el
d 

(v
ev

)

FIG. 2: Numerical solutions of Eq. (44) with varying initial

conditions hc = h(r/rs = 0) for ξ = 10, m = 10
6
kg, and

s = 0.75. The thicker line represents the unique solution that

converges to h = 1 at large r/rs.

GeV units, we can express it as

h
in
eq = 0,±

�
1 +

Rξ

8πλsmṽ
2
= 0,±

�

1 +
Rξ

8πm2
H

, (48)

where mH is the mass of the Higgs field. Since R de-

pends on the radial coordinate (see Eq. (47)) so does the

effective potential. In order to show that we may have

|hc| < 1, we approximate R in Eq. (48) by its spatial

average

�R� =
�
R(u)

√
gd

3
x� √

gd3x
=

� 1/s
0 R(u)ue

λ
du

� 1/s
0 ueλdu

. (49)

In Fig. 4 we plot the value of �R� in function of the

compactness. We see that, for s � 0.72, �R� becomes

negative so that h
in
eq < 1, which implies |hc| < 1. This

happens, for instance, for the monopole represented by

the curve B in Fig. 3. In this plot we also notice that, for

large ξ, oscillations are present only inside the compact

body (see monopoles A and C), confirming the analytical

results found in Sec. IV.

Finally, we point out that the central value of the Higgs

field can be significantly larger than the vev (see e.g. the

monopole D). We will see below that there is a novel am-

plification mechanism that explains these large values.

The numerical relation between the mass of the monopole

and the value of hc is depicted in Fig. 5 for a fixed com-

pactness s = 0.2 and a nonminimal coupling parameter
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FIG. 3: Plots of the Higgs field with the parameters listed in

Table I. The vertical dashed lines mark the radius of the body

for each monopole.

ξ = 60. The plot shows an interpolation between two

asymptotic values at small and large masses. For large

masses, the value of hc is bounded from above by h
in
eq in

Eq. (48) which converges to h
in
eq = 1 form ≈ 10

9
kg (with

s = 0.2 and ξ = 60). At small masses, the central value

hc is independent of the mass because the Higgs potential

contributes very little to the effective potential inside the
matter distribution (see also Fig. 7). In Fig. 6 we show

that this behavior is present also for large compactness

(s = 0.73), which yields |hc| < 1, as seen above. In Fig. 7

we represent the derivative of the effective potential Veff

given in Eq. (12) inside the matter distribution as a func-

tion of the mass of the monopole for fixed ξ and s. Local

maxima and minima, where dVeff/dh = 0, are marked by

the peaks appearing on the plot. We see that h = 0 is al-

ways a minimum while there are two maxima at h
in
eq (see

Eq.(48)), whose value converges to one for large masses.

From the expression of the effective potential (12) (with

averaged Ricci scalar)

Veff = −V +
ξH2�R�
16π

, (50)

and the behaviour of �R� (see fig. 4) we deduce that the

term ξH2�R�/(16π) is dominant for small masses and

becomes negligible compared to the Higgs potential for

large masses. Thus, for small masses, the field behaves

inside the matter distribution as if there was no poten-

tial, in a way similar to that in spontaneous scalarization

[17]. This is not the case, however, outside the body be-

cause here the Higgs potential can no longer be neglected

compared to the nonminimal coupling term.
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FIG. 2: Numerical solutions of Eq. (44) with varying initial

conditions hc = h(r/rs = 0) for ξ = 10, m = 10
6
kg, and

s = 0.75. The thicker line represents the unique solution that

converges to h = 1 at large r/rs.

GeV units, we can express it as
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1 +
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8πλsmṽ
2
= 0,±
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1 +
Rξ

8πm2
H

, (48)

where mH is the mass of the Higgs field. Since R de-

pends on the radial coordinate (see Eq. (47)) so does the

effective potential. In order to show that we may have

|hc| < 1, we approximate R in Eq. (48) by its spatial

average

�R� =
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R(u)

√
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3
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=

� 1/s
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� 1/s
0 ueλdu

. (49)

In Fig. 4 we plot the value of �R� in function of the

compactness. We see that, for s � 0.72, �R� becomes

negative so that h
in
eq < 1, which implies |hc| < 1. This

happens, for instance, for the monopole represented by

the curve B in Fig. 3. In this plot we also notice that, for

large ξ, oscillations are present only inside the compact

body (see monopoles A and C), confirming the analytical

results found in Sec. IV.

Finally, we point out that the central value of the Higgs

field can be significantly larger than the vev (see e.g. the

monopole D). We will see below that there is a novel am-

plification mechanism that explains these large values.

The numerical relation between the mass of the monopole

and the value of hc is depicted in Fig. 5 for a fixed com-

pactness s = 0.2 and a nonminimal coupling parameter
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ξ = 60. The plot shows an interpolation between two

asymptotic values at small and large masses. For large

masses, the value of hc is bounded from above by h
in
eq in

Eq. (48) which converges to h
in
eq = 1 form ≈ 10

9
kg (with

s = 0.2 and ξ = 60). At small masses, the central value

hc is independent of the mass because the Higgs potential

contributes very little to the effective potential inside the
matter distribution (see also Fig. 7). In Fig. 6 we show

that this behavior is present also for large compactness

(s = 0.73), which yields |hc| < 1, as seen above. In Fig. 7

we represent the derivative of the effective potential Veff

given in Eq. (12) inside the matter distribution as a func-

tion of the mass of the monopole for fixed ξ and s. Local

maxima and minima, where dVeff/dh = 0, are marked by

the peaks appearing on the plot. We see that h = 0 is al-

ways a minimum while there are two maxima at h
in
eq (see

Eq.(48)), whose value converges to one for large masses.

From the expression of the effective potential (12) (with

averaged Ricci scalar)

Veff = −V +
ξH2�R�
16π

, (50)

and the behaviour of �R� (see fig. 4) we deduce that the

term ξH2�R�/(16π) is dominant for small masses and

becomes negligible compared to the Higgs potential for

large masses. Thus, for small masses, the field behaves

inside the matter distribution as if there was no poten-

tial, in a way similar to that in spontaneous scalarization

[17]. This is not the case, however, outside the body be-

cause here the Higgs potential can no longer be neglected

compared to the nonminimal coupling term.
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C. PPN analysis

The Brans-Dicke formalism used in this section leads

straightforwardly to the PPN analysis, which tells us the

amount of deviations from GR outside a body of the size

of the Sun. According to the PPN prescriptions, we as-

sume that far outside the Sun, the Higgs field is close to

its vacuum value so that V � 0 and the Newton con-

stant coincides with its bare value. The PPN parameters

follow immediately and read

γ =
ω + 1

ω + 2
, β − 1 =

1

(2ω + 3)2(2ω + 4)

dω

dφ
. (43)

When φ → φv it is not difficult to see that β − 1 =

γ − 1 = 0 with a precision far larger that actual ob-

servational constraints, as ω(φ = φv) � 1.5 × 10
26

and

(dω/dφ)(φ = φv) � −2.2× 10
−20

. Therefore, the theory

is undistinguishable from GR at the level of Solar Sys-

tem experiments, even for large values of ξ. This result

is consistent with the fact that, for a mass of the size and

compactness of the Sun, the spontaneous scalarization is

extremely small, as we will show in the next section. An

alternative weak-field analysis is discussed in appendix

A.

V. NUMERICAL RESULTS

After discussing the dynamics of the model and some

generic analytical results, we now study numerically the

properties of the solutions. We report the reader to Ap-

pendix B for the complete set of equations of motion,

the system of units and the numerical methods that we

used. In the previous sections, we have shown that the

metric components inside the compact object are almost

the same as in GR when we choose the standard model

values for the parameters of the potential. Therefore,

we follow a simplified procedure, which consists in using

the GR solution (with the top-hat matter distribution

(16)) for the metric components and focus solely on the

non-trivial dynamics of the Higgs field. We provide for a

proof of this approximation in Appendix B through the

comparison between this approach and the numerical in-

tegration of the unaltered system of equations of motion.

With these assumptions, the problem essentially reduces

to solving the Klein-Gordon equation

huu + hu

�
νu − λu +

2

u

�

= e
2λ

�
−Rξh

8π
+

r
2
s

m
2
plṽ

2

dV

dh

�
, (44)

where h = H/(mplṽ), ṽ = v/mpl being the dimensionless

vev, and a subscript u denotes a derivative with respect to

u = r/rs. Here, rs = 8πρ0/(3m2
Pl)R3

is nothing but the

standard Schwarzschild radius [33]. The metric fields and

the scalar curvature are approximated by the standard

Schwarzschild solution and read, respectively

e
2ν
(u) =






3
2

√
1− s− 1

2

√
1− s3u2, 0 < u < s

−1
,

1− u
−1

, u ≥ s
−1

,

(45)

e
−2λ

(u) =






1− s
3
u
2
, 0 < u < s

−1
,

1− u
−1

, u ≥ s
−1

,

(46)

R(u) =






− 6s3

r2s

�
2
√
1−s3u2−3

√
1−s

3
√
1−s−

√
1−s3u2

�
, 0 < u < s

−1
,

0, u ≥ s
−1

,

(47)

where s = rs/R is the compactness. Regularity at the

origin requires that hu|u=0 = 0 leaving hc = h(u = 0) as

the only initial condition for Eq. (44).

In Fig. 2 we plot the numerical solutions of Eq. (44)

for different values of the initial condition hc = h(u = 0).

We see that, for fixed mass and compactness, there ex-

ists only one value for the initial condition hc = h0 that

yields a solution that tends to h = 1 at spatial infinity

(marked by a thicker line). This solution corresponds to

the non-trivial, asymptotically flat, and spherically sym-

metric distribution of the Higgs field, which was named

“Higgs monopole” in [1]. For slightly different initial con-
ditions hc �= h0, the field either diverges (if hc > h0) or

tends to zero after some damped oscillations (if hc < h0).

This result confirms the analytic treatment of Sec. III.

For each choice of mass, compactness, and coupling

strength ξ, there exists only one solution of the kind de-

picted in Fig. 2. Its form varies a lot in function of the

parameters, as we show in Fig. 3 where we plotted several

solutions, corresponding to the parametrization listed in

Table (I). We notice that the value of the Higgs field

at the center of the monopole can be lower than the vev

for typically large compactness s. For small or moder-

ate compactness, the central value of the Higgs field is

generically larger that the vev.

hc ξ m s

F 0.91 10 10
6
kg 0.75

A - 5.37 10
4
10

3
kg 0.1

B - 0.21 10 10
6
kg 0.88

C 1.077 10
6
10

6
kg 0.01

D 7.88 60 10
4
kg 0.47

TABLE I: Properties of the Higgs monopoles plotted in Fig.

2 (curve F) and Fig. 3 (curves A,B,C,D).

Such behavior can be easily understood by considering

the upper bound for |hc| introduced in section III. This

upper limit corresponds to the maxima of the effective
potential inside the matter distribution. If we work in

Physical parameters:

m  =  baryonic mass
s    =  compactness
ξ    =  non-minimal coupling
hc  =  central Higgs field value
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FIG. 9: Plot of hc in function of s and ξ as given by the
implicit relation (65) for a fixed mass m = 103kg. We see
that the peak sharpens for increasing ξ.

for the position of the resonance, although there is some
overestimation of its amplitude.

In the rest of this section, we will use the analytical
model to explore the parameter space of the monopole,
given by mass, compactness, and nonminimal coupling.
Once these are fixed, the central value of the Higgs field
is uniquely determined by the implicit equation (65).

In Fig. 9 we show how the resonance in hc evolves as
a function of the compactness and of the nonminimal
coupling. As ξ increases, the peak grows and sharpens.
The question is then how large the resonance can be. It
seems that there exists a critical value of ξ = ξcr above
which hc diverges. This is illustrated in Fig. 10 where we
plotted hc for both ξ < ξcr and ξ = ξcr. The two vertical
asymptotes in hc appear when the nonminimal coupling
becomes larger than ξ = ξcr and they correspond to a
phase transition, in which hc switches sign. We recall in
fact that there are two branches corresponding to v =
±246 GeV. Even though we chose v to be the positive
root, there is still the possibility that h(r) jumps to the
negative branch, which is a perfectly valid mathematical
solution of the Klein-Gordon equation [36].

This also implies that, when the nonminimal coupling
is larger than ξcr, there can be forbidden values for the
compactness (or, equivalently, for the size) in the pa-
rameter space. As an example, we plot in Fig. 11 hc in
function of the compactness for m = 102 kg and ξ = 104,
which corresponds to the value predicted by Higgs infla-
tion [10]. We see that there are multiple divergences, also

0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53

0

5000

10000

15000

20000

s

h c

FIG. 10: Plot of hc given by the implicit Eq. (65) in function
of the compactness for ξ = 64.6 (solid line) and ξ = 64.7
(dashed line). The monopole mass is fixed at m = 103kg.

for relatively small values of s. However, this does not
prevent the nonminimal coupling parameter to be arbi-
trarily large since ξcr basically depends on the mass of
the monopole.
Let us look at Fig. 12, where we plot hc in function of

the monopole mass and compactness for three values of
ξ. We see that hc generically settles to its vev, hc = 1 for
small compactness and large mass. The peaks appear for
small masses (see the right panel of fig. 12) and sharpen
as ξ increases, until hc eventually diverge at some ξcr. In
the small mass regime the Higgs potential is much smaller
than the coupling term, which is proportional to ξ, see
Eq. (50). In the large mass regime, however, the upper
bound imposed by Eq. (48) becomes closer and closer to
one. These two competing effects explain qualitatively
the presence of the peaks in the small mass region rather
than in the large mass one, provided the compactness s
is not too small, otherwise �R� is too small and always
smaller than the Higgs potential. In such a case, scalar
amplification is negligible, no matter the monopole mass.
In summary, for large values of the nonminimal coupling,
monopoles with small masses cannot exist for certain val-
ues of the compactness for which the Higgs field at the
center of the body diverges. On the opposite, large mass
monopoles always exist but the scalar amplification is
much smaller.

M. Rinaldi
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for the position of the resonance, although there is some
overestimation of its amplitude.

In the rest of this section, we will use the analytical
model to explore the parameter space of the monopole,
given by mass, compactness, and nonminimal coupling.
Once these are fixed, the central value of the Higgs field
is uniquely determined by the implicit equation (65).

In Fig. 9 we show how the resonance in hc evolves as
a function of the compactness and of the nonminimal
coupling. As ξ increases, the peak grows and sharpens.
The question is then how large the resonance can be. It
seems that there exists a critical value of ξ = ξcr above
which hc diverges. This is illustrated in Fig. 10 where we
plotted hc for both ξ < ξcr and ξ = ξcr. The two vertical
asymptotes in hc appear when the nonminimal coupling
becomes larger than ξ = ξcr and they correspond to a
phase transition, in which hc switches sign. We recall in
fact that there are two branches corresponding to v =
±246 GeV. Even though we chose v to be the positive
root, there is still the possibility that h(r) jumps to the
negative branch, which is a perfectly valid mathematical
solution of the Klein-Gordon equation [36].

This also implies that, when the nonminimal coupling
is larger than ξcr, there can be forbidden values for the
compactness (or, equivalently, for the size) in the pa-
rameter space. As an example, we plot in Fig. 11 hc in
function of the compactness for m = 102 kg and ξ = 104,
which corresponds to the value predicted by Higgs infla-
tion [10]. We see that there are multiple divergences, also
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FIG. 10: Plot of hc given by the implicit Eq. (65) in function
of the compactness for ξ = 64.6 (solid line) and ξ = 64.7
(dashed line). The monopole mass is fixed at m = 103kg.

for relatively small values of s. However, this does not
prevent the nonminimal coupling parameter to be arbi-
trarily large since ξcr basically depends on the mass of
the monopole.
Let us look at Fig. 12, where we plot hc in function of

the monopole mass and compactness for three values of
ξ. We see that hc generically settles to its vev, hc = 1 for
small compactness and large mass. The peaks appear for
small masses (see the right panel of fig. 12) and sharpen
as ξ increases, until hc eventually diverge at some ξcr. In
the small mass regime the Higgs potential is much smaller
than the coupling term, which is proportional to ξ, see
Eq. (50). In the large mass regime, however, the upper
bound imposed by Eq. (48) becomes closer and closer to
one. These two competing effects explain qualitatively
the presence of the peaks in the small mass region rather
than in the large mass one, provided the compactness s
is not too small, otherwise �R� is too small and always
smaller than the Higgs potential. In such a case, scalar
amplification is negligible, no matter the monopole mass.
In summary, for large values of the nonminimal coupling,
monopoles with small masses cannot exist for certain val-
ues of the compactness for which the Higgs field at the
center of the body diverges. On the opposite, large mass
monopoles always exist but the scalar amplification is
much smaller.
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asymptotes in hc appear when the nonminimal coupling
becomes larger than ξ = ξcr and they correspond to a
phase transition, in which hc switches sign. We recall in
fact that there are two branches corresponding to v =
±246 GeV. Even though we chose v to be the positive
root, there is still the possibility that h(r) jumps to the
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solution of the Klein-Gordon equation [36].
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for relatively small values of s. However, this does not
prevent the nonminimal coupling parameter to be arbi-
trarily large since ξcr basically depends on the mass of
the monopole.
Let us look at Fig. 12, where we plot hc in function of

the monopole mass and compactness for three values of
ξ. We see that hc generically settles to its vev, hc = 1 for
small compactness and large mass. The peaks appear for
small masses (see the right panel of fig. 12) and sharpen
as ξ increases, until hc eventually diverge at some ξcr. In
the small mass regime the Higgs potential is much smaller
than the coupling term, which is proportional to ξ, see
Eq. (50). In the large mass regime, however, the upper
bound imposed by Eq. (48) becomes closer and closer to
one. These two competing effects explain qualitatively
the presence of the peaks in the small mass region rather
than in the large mass one, provided the compactness s
is not too small, otherwise �R� is too small and always
smaller than the Higgs potential. In such a case, scalar
amplification is negligible, no matter the monopole mass.
In summary, for large values of the nonminimal coupling,
monopoles with small masses cannot exist for certain val-
ues of the compactness for which the Higgs field at the
center of the body diverges. On the opposite, large mass
monopoles always exist but the scalar amplification is
much smaller.
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Higgs amplification mechanism
Analytic approximation and modeling of the amplification mechanism:
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s = 0.75

ξ = 10

m = 106 kg
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• Note that the amplification mechanism is different from spontaneous 
scalarization: it depends only on the scalar potential (absent in previous 
works) 

• Spontaneous scalarization is greatly reduced because of the potential 
• The analytic approximation is very accurate for small compactness 

Higgs amplification mechanism

2

monopole”, namely the static, spherically symmetric,
non-singular, and asymptotically flat particlelike solution
that can be found when the Higgs field is nonminimally
coupled to gravity and minimally coupled to ordinary
baryonic matter. This solution was first described in
[1], where the numerical evidence of nontrivial spherically
symmetric solutions with a large spontaneous scalariza-
tion for certain values of the compactness and of the mass
of the baryonic matter was presented. In the present pa-
per, we would like to explore more properties of these
new objects, with a comprehensive numerical and ana-
lytical study of the equations of motion. We begin in
Sec. II by presenting the model and the equations of mo-
tion. We proceed in Sec. III by showing the mechanism
that allows for the existence of the Higgs monopoles. In
Sec. IV, we analyze in detail some analytical properties
of the equations of motion to prepare the ground to the
full numerical analysis. We also show an approximate so-
lution to the Tolman-Oppenheimer-Volkoff (TOV) equa-
tion and we perform the post-netwonian analysis (PPN).
We present the numerical study of the Higgs monopoles
in Sec. V and we analyze the dependence on the mass,
compactness and nonminimal coupling parameter. In
particular, we show numerically that there exists a reso-
nant amplification of the Higgs field magnitude inside the
matter distribution for specific values of its radius. This
effect is explained also analytically in Sec. VI and used
to prove that there exists forbidden values for the radius
of the compact object in the case of strong nonminimal
coupling. We finally comment our results and draw some
conclusions in Sec. VII. In appendix A we present an ad-
ditional weak field analysis while in appendix B we report
the technical details of our numerical analysis.

II. THE MODEL

In this section we lay down the fundamental equations
of the model. Let us begin with the Lagrangian of the
Higgs field nonminimally coupled to gravity. In the Jor-
dan frame, it reads [29]

L =
√
g

�
F (H)

2κ
R− 1

2
(∂H)2 − V (H)

�
(1)

+ Lm [gµν ;Ψm] ,

where H is the Higgs scalar field in the unitary gauge, R
is the Ricci scalar, Ψm denotes generic baryonic matter
fields, and κ = 8π/m2

p
, mp being the Planck mass. The

potential V has the usual mexican hat profile

V (H) =
λsm

4
(H2 − v

2)2, (2)

where λsm ∼ 0.1 [30] and v = 246 GeV is the vacuum
expectation value (vev) of the Higgs field. The nonmin-
imal coupling function between the Ricci scalar and the
scalar field is chosen to be the same as Higgs inflation,

namely

F (H) = 1 +
ξH2

m2
p

, (3)

It is known that this model yields a successful inflation
provided ξ is large, of the order 104 [10]. The form of
this coupling function is further justified by invoking the
(semiclassical) renormalization of the energy momentum
tensor associated to the scalar field on a curved back-
ground, which needs terms like H

2
R in the Lagrangian

[18]. We will consider only positive values of ξ to avoid
the possibility that the effective reduced Planck mass
(that can be identified with (m2

p
+ ξH2)1/2) becomes

imaginary.
A similar Lagrangian for compact objects was already

considered in [17], where, however, the potential was ne-
glected. As we will see below, this is an important differ-
ence as the presence of the Higgs potential prevents the
solution to smoothly converge to GR. In other words, the
solution H = 0 does not yield the Schwarzschild solution
but, rather, a de Sitter black hole with a cosmological
constant proportional to v

4.
It should also be kept in mind that the Higgs field is

in general a complex doublet and, here, it is reduced to a
single real component by choosing the unitary gauge [10].
However, the other components, also known as Goldstone
bosons, can have physical effects, especially at high en-
ergy, when renormalizability imposes a different gauge
choice (e.g. the so-called Rξ-gauges, see for example [12]).
In cosmology, the effects of the Goldstone boson in a toy
U(1) model was investigated by one of us in [15]. In the
context of compact object, some results can be found in
[20] although the potential is not of the Higgs type.
The equations of motion obtained from the Lagrangian

(2) by variation with respect to the metric read
�
1 +

ξ

m2
p

H
2

�
Gµν = κ

�
T

(H)
µν + T

(ξ)
µν + T

(mat)
µν

�
, (4)

where Gµν is the Einstein tensor,

T
(H)
µν = ∂µH∂νH − 1

2
gµν

�
(∂H)2 − V (H)

�
, (5)

is the part of the stress-energy tensor associated to the
Higgs field, and

T
(ξ)
µν = − ξ

4π

�
gµν∇λ (H∇λH)−∇µ (H∇νH)

�
, (6)

is the stress-energy tensor induced by the nonminimal
coupling ξ. Finally,

T
(mat)
µν =

2√
−g

δLm

δgµν
, (7)

is the stress-energy tensor of the baryonic matter fields
that we assume to have the form of a perfect fluid, so
that

T
(mat)
µν = (ρ+ p)uµuν + gµνp, (8)
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We observe in Fig. 14 that the geometric part is clearly

dominant while the contribution coming from the energy-

momentum components of the scalar field is negligible.

This result is confirmed by the comparison of the Ricci

scalar given by Eq. (47) and the expression Eq. (B5) eval-

uated numerically. In Fig. 15 we plotted the absolute

value of the difference between the two expressions in

function of the radial distance for the same parameters

as in Fig. 14. The difference is clearly negligible while

the peak at the boundary of the body is caused only by

the top-hat approximation for the energy density.

As a further check, we plot the Higgs field profiles ob-

tained with the two numerical methods in Fig. 16 for

ξ = 10, mb = 10
6
kg, and s = 0.75. The discrepancy in-

side the body appears only because the scalar field con-

tribution is neglected in the simplified model. In order

to get a quantitative result, we plot on Fig. 17 the rel-

ative errors between the Higgs field solutions obtained

with the full numerical method and the simplified one

for various monopole solutions. In general, we see that

there is a very good agreement between numerical and

approximate solutions only for small compactness.
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numerical algorithm for mb = 106kg, s = 0.75, and ξ = 10.
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Other effects

• PPN analysis reveal negligible deviations

• TOV equation: solve the equations near the center with the approximation

• We find that the baryonic energy density must satisfy:

• Recall that in GR:

• Is this preventing initial collapse?

V (Hc) < ρbar < ρmax

0 < ρbar < ρmax

H(r) � H0 +H2r
2
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Higgs Monopoles: summary

• Higgs gravity yields new particle-like, non singular, spherically symmetric, and 
stable solutions

• Spontaneous scalarization greatly reduced (sort of screening mechanism)

• New general amplification mechanism of the central value of the Higgs field

Open issues

• Effects of SU(2) structure of the theory

• Effects on the equation of state of a varying Higgs effective vacuum

• Formation mechanism and stability of these objects: dark matter? 

• Interaction with other particles and stability wrt to small fluctuations



.

It does not matter how slowly you go 
as long as you do not stop
 (Confucius)

The dark aftermath of Higgs inflation

MR, arXiv: 1309.7332 - EPJ Plus 129 56
MR, arXiv: 1404.0532  
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Higgs-Einstein-Hilbert SU(2) Lagrangian (J-frame)

Low energy SU(2) Lagrangian (J-frame=E-frame)

FLRW metric

Can we impose the unitary gauge?

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

L
√
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=
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The unitary gauge is NOT compatible with FLRW:

The stress tensor of massive gauge fields is not diagonal. 
For example U(1) gauge field we must impose

Unbroken symmetry:                    1+4 = 5    DOF
Broken + U-gauge:             1+3+1 - 3 = 2     DOF

All background fields are physical, including the Goldstone 
bosons!   
E.g. multifield Higgs inflation, see Kaiser et. al.

Rµν − 1

2
Rgµν = T (H)

µν
+ T (A)

µν
+ . . .

T (A)
12 = T (A)

13 = T (A)
23 = 0
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We can choose a “diagonal” gauge:

Equations of motion: 

Ab
0 = 0, Ab

i = δbi f(t)
Galtsov and Volkov 

PLB 256,17 1991

SU(2) current conservation;
it gives cosmic acceleration.

gauge contribution, radiation like

Friedmann 
equations
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Dark energy - deceleration parameter:

Dynamics very similar
 to “Spintessence”

Boyle, Caldwell, Kamionkowski,
Phys. Lett. B  545 (2002) 17.
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Abelian U(1) case

H(t) = χ(t) eiθ(t)
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By chasing its vacuum the Higgs 
makes the Universe accelerate

Massimiliano Rinaldi,: The dark aftermath of Higgs inflation 5

Fig. 2. On the left: plot of x(N) (dotted line) and of y(N) (dashed line) for ωm = 0. On the right: plot of ωχ(N) (dotted line)
and q(N) (solid line). The initial conditions are: x(0) = 0.9999, y(0) = 0.0099, z(0) = 0.0001, and w(0) = 11κv/

√
6.

considered as dark matter rather than dark energy because the equation of state parameter vanishes. Whether or not

this happens depends upon the magnitude of the angular velocity θ̇ and on the shape of the potential. Let us consider

the perturbed cosmological metric ds
2
= −(1+ 2Φ)dt2 + (1− 2Φ)a2δijdxi

dx
j
, where Φ = Φ(t,x), and replace the field

χ and θ by respectively χ(t) + δχ(t,x) and θ(t) + δθ(t,x) in the Lagrangian (8), which takes the form L0
E + L2

E . The

second term is quadratic in the fields δχ, δθ and Φ and its variation with respect to these yields, respectively, the

equations of motion

δ̈χ+ 3H ˙δχ+

�
V

�� − θ̇2 − a
−2∇2

�
δχ = (19)

4χ̇Φ̇− 2ΦV �
+ 2χθ̇δ̇θ,

δ̈θ + 3H δ̇θ − a
−2∇2δθ = (20)

4θ̇Φ̇− 2
δ̇χ

χ
θ̇ + 2

χ̇

χ

�
δχ

χ
θ̇ − δ̇θ

�
,

a
−2∇2Φ− 3HΦ̇− 3H

2Φ = (21)

κ2

2

�
χ̇ ˙δχ+ V

�δχ+ χ2θ̇δ̇θ + χθ̇2δχ− Φ(χ̇2
+ χ2θ̇2)

�
.

To study the stability we set δχ = δχ0 exp(ωt+ ik · x) δθ = δθ0 exp(ωt+ ik · x) and Φ = Φ0 exp(ωt+ ik · x) and find

the critical Jeans value kJ such that ω = 0. We find that, for χ � v,

k
2
J � 8λv2κ2

(χ2 − v
2
) +O((χ2 − v

2
)
2
), (22)

and that for k < kJ , ω2
> 0, i.e. the fluctuations grow exponentially. From the discussion above we know that χ

cannot coincide with v even in the present Universe, therefore there always exist an instability band in the fluctuation

spectrum. It is interesting to see how the critical wavelength associated to kJ is deeply related to the parameters of

the standard model v and λ. In conclusion, the formation of Q-balls is possible for sufficiently large wavelength and

this leaves also the possibility that the same field is responsible for both dark matter and dark energy, according to the

wave number of its fluctuations
4
. In the case of larger symmetry groups it may happen that some Goldstone bosons

are responsible for dark matter and the remaining ones for dark energy.

4 Conclusions

A detailed analysis of the cosmological evolution requires a numerical study of the equations that goes beyond the scope

of this letter and will be presented elsewhere. The main point is however clear: a nonminimally coupled Higgs field

4 In principle, Q-balls with a local gauge symmetry are unstable [31]. However, if the gauge coupling and the U(1) charge are
not too large, stability can be achieved, see [32].

ωH(N)

q(N)

Unique, unstable fixed point
(radiation/matter dominated Universe)
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 SU(2) case
Work in progress, stay tuned.
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Higgs dark energy: summary

• The Goldstone components of the background Higgs play a dynamical role

• During inflation they are negligible (see Kaiser et al)

• At late times the effects become important

• In the simplified U(1) case there is a dominant dark energy era in the future

Open issues

• As in quintessence, there are instabilities that maybe lead to Q-balls 
nucleation: dark matter?

• We expect SU(2) to behave as U(1). Dynamical analysis in progress.

• Fitting the data should constrain the model. 
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Thank you.
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Extra material



Gravitational collapse into Q-balls

S. R. Coleman, Nucl. Phys. B 262 (1985) 263

A theory of two scalar field with global SO(2)
symmetry  can develop stable, non-topological 
solitonic solution, provided                             
is at point             .

min[V (φ)/φ2]
φ0 �= 0

K. -M. Lee, J. A. Stein-Schabes, R. Watkins 
L. M. Widrow, Phys. Rev. D 39 (1989) 1665

The same happens in gauged U(1) theories, 
provided the charge and the coupling are 
not too large (superconducting Q-balls).

Broken U(1)
False vacuum
(E /Q) < m

Unbroken U(1)
True vacuum
Free particles 
with mass m

φ(r)

r
R

E = Q

�
2V (φ0)

φ2
0

< m

Q = ωφ2
0V (φ0)These solutions are valid in flat space

but can form also in curved space!



.

Metric and field perturbations
the potential. Let us consider the perturbed cosmological
metric ds

2 = −(1+ 2Φ)dt2 + (1− 2Φ)a2δijdxi
dx

j , where
Φ(t, �x), and replace the field χ and θ by respec-χ(t) → χ(t) + δχ(t, �x)

θ(t) → θ(t) + δθ(t, �x)

�

4

of motion

δ̈χ+ 3H ˙δχ+

�
V

�� − θ̇2 − a
−2∇2

�
δχ = (19)

4χ̇Φ̇− 2ΦV �
+ 2χθ̇δ̇θ,

δ̈θ + 3H δ̇θ − a
−2∇2δθ = (20)

4θ̇Φ̇− 2
δ̇χ

χ
θ̇ + 2

χ̇

χ

�
δχ

χ
θ̇ − δ̇θ

�
,

a
−2∇2Φ− 3HΦ̇− 3H

2Φ = (21)

κ2

2

�
χ̇ ˙δχ+ V

�δχ+ χ2θ̇δ̇θ + χθ̇2δχ− Φ(χ̇2
+ χ2θ̇2)

�
.

To study the stability we set δχ = δχ0 exp(ωt + i�k · �x)
δθ = δθ0 exp(ωt+ i�k · �x) and Φ = Φ0 exp(ωt+ i�k · �x) and
find the critical Jeans value kJ such that ω = 0. We find

that, for χ � v,

k
2
J � 8λv2κ2

(χ2 − v
2
) +O((χ2 − v

2
)
2
), (22)

and that for k < kJ , ω2
> 0, i.e. the fluctuations grow

exponentially. From the discussion above we know that

χ cannot coincide with v even in the present Universe,

therefore there always exist an instability band in the

fluctuation spectrum. It is interesting to see how the

critical wavelength associated to kJ is deeply related to

the parameters of the standard model v and λ. In conclu-

sion, the formation of Q-balls is possible for sufficiently

large wavelength and this leaves also the possibility that

the same field is responsible for both dark matter and

dark energy, according to the wave number of its fluctu-

ations [27]. In the case of larger symmetry groups it may

happen that some Goldstone bosons are responsible for

dark matter and the remaining ones for dark energy.

A detailed analysis of the cosmological evolution re-

quires a numerical study of the equations that goes be-

yond the scope of this letter and will be presented else-

where. The main point is however clear: the nonmini-

mally coupled Higgs field that drives inflation can gener-

ate dark energy and/or dark matter, provided one keeps

track of the dynamical evolution of the associated Gold-

stone bosons. In this letter we considered the simplest

symmetry U(1) and only one nonvanishig Goldstone bo-

son but the generalization to larger symmetry groups and

to multiple bosons should be straightforward [22].

We finally remark that our findings are independent

of the value of the nonminimal coupling parameter ξ.
In fact, what we found is a low-energy effect that takes

place whenever we couple gravity to a complex scalar

field (which is necessary for renormalization) governed

by the potential (2). In other words, Higgs inflation is

not strictly required as any nonminimally coupled mul-

tifield inflationary model would lead to similar effects.
However, as parsimony and simplicity are guiding prin-

ciples of physical sciences, we strongly believe that the

Higgs field may be responsible for both inflation and dark

ages.
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