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One of the outstanding problems of classical celestial mechanics was the restricted three-body problem,
in which a planetoid of small mass is subject to the Newtonian attraction of two celestial bodies of large
mass, as it occurs, for example, in the Sun-Earth-Moon system. On the other hand, over the last decades, a
systematic investigation of quantum corrections to the Newtonian potential has been carried out in the
literature on quantum gravity. The present paper studies the effect of these tiny quantum corrections on the
evaluation of equilibrium points. It is shown that, despite the extreme smallness of the corrections, there
exists no choice of sign of these corrections for which all qualitative features of the restricted three-body
problem in Newtonian theory remain unaffected. Moreover, first-order stability of equilibrium points is
characterized by solving a pair of algebraic equations of fifth degree, where some coefficients depend on
the Planck length. The coordinates of stable equilibrium points are slightly changed with respect to
Newtonian theory, because the planetoid is no longer at equal distance from the two bodies of large mass.
The effect is conceptually interesting but too small to be observed, at least for the restricted three-body
problems available in the solar system.
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I. INTRODUCTION

It is frequently the case, in physics, that a hybrid scheme,
logically incomplete, turns out to be quite useful because
the full theory is unknown or leads to equations that cannot
be solved. Among the many conceivable examples of this
feature, we mention the following, since they are relevant
for motivating the research problem we are going to study.

(i) The nonrelativistic particle in curved spacetime [1],
where the Schrodinger equation is studied, which is
part of nonrelativistic quantum theory, but the
potential in such equation receives a contribution
from spacetime curvature, which is instead defined
and studied in general relativity.

(ii) Quantum field theory in curved spacetime, where the
right-hand side of the Einstein equations is replaced by
the expectation value of the regularized and renor-
malized energy-momentum tensor hTμνi evaluated in
a classical spacetime geometry. Only at a subsequent
stage does one try to consider the backreaction on the
Einstein tensor, which, being coupled to a nonclassical
object like hTμνi, cannot remain undisturbed.

(iii) The application of the effective field theory point
of view to the quantization of Einstein’s general

relativity. Within this framework, starting from the
Lagrangian density

L≡ ffiffiffiffiffiffi
−g

p �
c4

16πG
Rþ Lmatter

�
; (1.1)

one includes all possible higher derivative couplings
of the fields in the gravitational Lagrangian. By doing
so, any field singularities generated by loop diagrams
can be associated with some component of the action
and can be absorbed through a redefinition of the
coupling constants of the theory. By treating all
coupling coefficients as experimentally determined
in this way, the effective field theory is finite and
singularity free at any finite order of the loop
expansion [2], even though it remains true that
Einstein’s gravity is not perturbatively renormaliz-
able [1] and not even 2-loop on-shell finite [3].

(iv) Among the many outstanding problems of classical
physics and, in particular, classical celestial mechan-
ics, the three-body problem played a major role, and
the genius of Poincaré himself [4] was not enough to
arrive at a complete solution. Nevertheless, one finds
it often of interest, for example in the analysis of the
Sun-Earth-Moon system, to consider the so-called
restricted three-body problem [5]. In this case a body
A of mass α and a body B of mass β < αmove under
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their mutual attraction. The center of mass C of the
two bodies moves uniformly in a straight line, and
one can suppose it to be at rest without loss of
generality. The initial conditions tell us that the orbit
of B relative to A is a circle, hence the orbit of each
body relative to C is a circle as well. Moreover, a
third body, the planetoid P, moves in the plane of
motion of A and B. By hypothesis, P is subject to the
Newtonian attraction of A and B, but its massm is so
small that it cannot affect the motion of A and B. The
problem consists therefore in evaluating the motion
of P.

Nowwhen general relativity is viewed as an effective field
theory, it becomes of interest to derive (at least) the leading
classical and quantum corrections to the Newtonian poten-
tial of two large nonrelativistic masses. Hence we have been
led to ask ourselves whether, despite the extremely small
numbers involved, a quantum perspective on the restricted
three-body problem can be obtained. The question is not
merely of academic interest. Indeed, on the one hand, we
know already that very small quantities may produce non-
trivial effects in physics. An example, among the many, is
provided by the Stark effect: no matter how small is the
external electric field, the Stark-effect Hamiltonian has
absolutely continuous spectrum on the whole real line [6],
whereas the unperturbed Hamiltonian for a hydrogen atom
has discrete spectrum on the negative half-line. Yet another
relevant example is provided by singular perturbations in
quantum mechanics: if a one-dimensional harmonic oscil-
lator is perturbed by a term proportional to negative powers
of the position operator, then nomatter how small theweight
coefficient is, one cannot recover the original Hamiltonian if
the perturbation is switched off. The unperturbed
Hamiltonian has in fact both even and odd eigenfunctions,
whereas the singular perturbation enforces the stationary
states to vanish at the origin, and the latter condition survives
if the perturbation gets switched off [7], so that one
eventually recovers a sort of “halved” harmonic oscillator,
with only half of the original eigenfunctions.
On the other hand, by virtue of the improved technology

with respect to the golden age of Poincaré, it becomes
conceivable to send off satellites in the solar system that,
within our lifetime, might become part of suitable three-
body systems with the advantage, with respect to natural
planetoids such as the moon, that the satellite can be
“instructed” to approach and even nearly miss the large
masses of A and B. Hence the putative quantum corrected
Newtonian potential can be tested at very small distances,
in circumstances which were inconceivable a century ago.
Section II builds the quantum-corrected Lagrangian of

our model. Section III writes down the equilibrium con-
ditions and the partial derivatives of our full potential up to
the second order. Section IV is devoted to the equilibrium
points on the line joining A to B, while Sec. V studies
equilibrium points not lying on the line that joins A to B.

Section VI identifies the unstable and stable equilibrium
points. Concluding remarks and open problems are pre-
sented in Sec. VII.

II. QUANTUM CORRECTED LAGRANGIAN
OF THE MODEL

Following Ref. [5] we take rotating axes with center of
mass C as origin, and CB as axis of x (see Fig. 1). The
length AB is denoted by l, and the angular velocity by ω,
so that

ω2 ¼ Gðαþ βÞ
l3

: (2.1)

By doing so, we choose to neglect any correction, either
classical or quantum, to the Newtonian potential between
the bodies having large mass. Thus, A is permanently at
rest, relative to the rotating axes, at the point of coordinates
ð−a; 0Þ, and B is permanently at rest at the point ðb; 0Þ,
where [5]

a ¼ β

ðαþ βÞ l; b ¼ α

ðαþ βÞ l: (2.2)

The motion of the planetoid at Pðx; yÞ is the same as it
would be if A and B were constrained to move as they do,
hence the kinetic energy reads as

T ¼ m
2
½ð_x − yωÞ2 þ ð_yþ xωÞ2�: (2.3)

Furthermore, on denoting by r the distance AP and by s the
distance BP, i.e.

r2 ¼ ðxþ aÞ2 þ y2; s2 ¼ ðx − bÞ2 þ y2; (2.4)

the interaction potential is here taken to be

P

y

x

A

a

C

b

Br

s

FIG. 1. Two bodies of large mass, A and B, the center of mass
C, and the planetoid at P.
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V ¼ −
Gmα

r

�
1þ k1

r
þ k2

r2

�
−
Gmβ

s

�
1þ k3

s
þ k4

s2

�
;

(2.5)

where, on denoting by κ1; κ2; κ3 three dimensionless
constants, one has

k1 ¼ κ1
Gðmþ αÞ

c2
; (2.6)

k2 ¼ k4 ¼ κ2
Gℏ
c3

¼ κ2l2P; (2.7)

k3 ¼ κ3
Gðmþ βÞ

c2
: (2.8)

In these formulas, k1 and k3 describe a classical (post-
Newtonian) contribution, whereas k2 ¼ k4 describes a truly
quantum correction. One arrives at these formulas through
a rather involved Feynman-diagram analysis, and the
κ1; κ2; κ3 values obtained in Refs. [2,8] differ both for
the sign and their magnitude, because such references find

κ1 ¼ 3 or − 1; (2.9)

κ2 ¼
41

10π
or −

127

30π2
; (2.10)

respectively. In Ref. [8], the author evaluated all corrections
resulting from vertex and vacuum polarization, whereas in
Ref. [2] the authors considered all diagrams for a scattering
process. However, if one needs to iterate the lowest order
potential in some way, one should probably not include at
least the box diagram. Thus, the result in Ref. [2] is closer
to the full answer, but it depends on some of the details of
how one is going to use it. We are grateful to the author of
Ref. [8] for making all this clear to us.
Our quantum corrected Lagrangian is therefore assumed

to take the form

L
m

¼ 1

2
ð_x2 þ _y2Þ þ ωðx_y − y_xÞ þ 1

2
ω2ðx2 þ y2Þ

þGα
r

�
1þ k1

r
þ k2

r2

�
þ Gβ

s

�
1þ k3

s
þ k2

s2

�

¼ T − V ¼ T2 þ T1 þ T0 − V; (2.11)

having denoted by Tn the part of T containing nth order
derivatives of x or y. Such a Lagrangian does not depend on
t explicitly, and the Jacobi integral [5] for it exists and is
given by

J ¼ T2 þ V − T0; (2.12)

where, by virtue of (2.1) and (2.5),

T0 − V ¼ GU; (2.13)

having set

U ≡ 1

2

ðαþ βÞ
l3

ðx2 þ y2Þ þ α

r

�
1þ k1

r
þ k2

r2

�

þ β

s

�
1þ k3

s
þ k2

s2

�
: (2.14)

The resulting Lagrange equations of motion read as

ẍ − 2ω_y ¼ G
∂U
∂x ; (2.15)

ÿþ 2ω_x ¼ G
∂U
∂y : (2.16)

Since, from (2.12) and (2.13), J ¼ T2 −GU, one has the
simple but nontrivial restriction according to which the
motion of P is only possible where

GU þ J ¼ T2 > 0 ⇒ U > −
J
G
: (2.17)

III. EQUILIBRIUM CONDITIONS AND
DERIVATIVES OF THE FULL

POTENTIAL

The equilibrium points, either stable or unstable, are
points at which the full potential (2.14) is stationary,
and hence one has to study its first and second partial
derivatives. To begin, one finds

∂U
∂x ¼ ðαþ βÞ x

l3
−
αðxþ aÞ

r3

�
1þ 2

k1
r
þ 3

k2
r2

�

−
βðx − bÞ

s3

�
1þ 2

k3
s
þ 3

k2
s2

�
: (3.1)

Thus, on using (2.2) and defining (cf. the classical formulas
in Ref. [5])

λ≡ ðαþ βÞ
l3

−
α

r3

�
1þ 2

k1
r
þ 3

k2
r2

�

−
β

s3

�
1þ 2

k3
s
þ 3

k2
s2

�
; (3.2)

one can reexpress ∂U
∂x in the form (see Fig. 2)

∂U
∂x ¼ λxþ αβl

ðαþ βÞ
�
1

s3

�
1þ 2

k3
s
þ 3

k2
s2

�

−
1

r3

�
1þ 2

k1
r
þ 3

k2
r2

��
; (3.3)

while, with the same notation, the other first derivative
reads as
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∂U
∂y ¼ λy: (3.4)

For this to vanish, it is enough that either y or λ vanishes, in
complete formal analogy with the classical case [5]. When
y ¼ 0, the equilibrium points lie on the line joining A to B,
while the condition λ ¼ 0 yields the equilibrium points not
lying on the line joining A to B. Second derivatives of U
and their sign are important to understanding the nature of
equilibrium points. For this purpose, we need the first
derivatives of the function λ, which are found to be

∂λ
∂x ¼ ðxþ aÞ

r5
α

�
3þ 8

k1
r
þ 15

k2
r2

�

þ ðx − bÞ
s5

β

�
3þ 8

k3
s
þ 15

k2
s2

�
; (3.5)

∂λ
∂y ¼ y

�
α

r5

�
3þ 8

k1
r
þ 15

k2
r2

�
þ β

s5

�
3þ 8

k3
s
þ 15

k2
s2

��
;

(3.6)

by virtue of the identities [see (2.4)]

∂r
∂x ¼ ðxþ aÞ

r
;

∂r
∂y ¼ y

r
;

∂s
∂x ¼ ðx − bÞ

s
;

∂s
∂y ¼ y

s
: (3.7)

The second derivatives ofU are hence given by (see Figs. 3,
4, and 5)

∂2U
∂x2 ¼ λþ ðxþ aÞ2 α

r5

�
3þ 8

k1
r
þ 15

k2
r2

�

þ ðx − bÞ2 β

s5

�
3þ 8

k3
s
þ 15

k2
s2

�
; (3.8)

∂2U
∂x∂y ¼ y

�ðxþ aÞ
r5

α

�
3þ 8

k1
r
þ 15

k2
r2

�

þ ðx − bÞ
s5

β

�
3þ 8

k3
s
þ 15

k2
s2

��
; (3.9)

FIG. 2 (color online). Plot of the partial derivative with respect
to thex coordinateof thepotentialUðx; yÞobtainedbysettingλ ¼ 0.
The graph has been obtained with the choice of negative signs
in (2.9) and (2.10) and for the system consisting of Jupiter and
two of its satellites, i.e. Adrastea and Ganymede. For this system
one has the following parameters: α ¼ mJupiter ¼ 1.90 × 1027 Kg,
β¼mGanymede¼1.48×1023Kg, m ¼ mAdrastea ¼ 7.5 × 1015 Kg,
l ¼ 1.07 × 109 m, a ¼ 8.33 × 105 m, b ¼ 1.07 × 109 m.

FIG. 3 (color online). Plot of the partial derivativeU;xx obtained
by setting λ ¼ 0. The graph has been obtained with the choice of
positive signs in (2.9) and (2.10) and for the system consisting of
Sun, Earth and Moon. For this system one has the following
parameters: α¼mSun¼1.99×1030Kg, β¼mEarth¼5.97×1024Kg,
m ¼ mMoon ¼ 7.35 × 1022 Kg, l ¼ 1.50 × 1011 m, a ¼ 4.49×
105 m, b ¼ 1.49 × 1011 m.

FIG. 4 (color online). Plot of the partial derivativeU;xy obtained
by setting λ ¼ 0. The graph has been obtained with the choice of
positive signs in (2.9) and (2.10) and for the system consisting of
Jupiter and its satellites Adrastea and Ganymede.
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∂2U
∂y2 ¼ λþ y2

�
α

r5

�
3þ 8

k1
r
þ 15

k2
r2

�

þ β

s5

�
3þ 8

k3
s
þ 15

k2
s2

��
: (3.10)

IV. EQUILIBRIUM POINTS ON THE LINE
JOINING A TO B

The line joining A to B is an axis having equation y ¼ 0,
and it can be divided into 3 regions (see Figs. 6, 7, and 8):

R1∶x ∈� −∞;−a½;
R2∶x ∈� − a; b½;
R3∶x ∈�b;∞½:

From Eq. (2.4) and y ¼ 0 one has r ¼ jxþ aj, s ¼ jx − bj,
and hence Eqs. (3.2) and (3.8) yield

∂2U
∂x2

����
y¼0

¼
�ðαþ βÞ

l3
þ 2

α

r3
þ 2

β

s3

�
þ 2

α

r4

�
3k1 þ 6

k2
r

�

þ 2
β

s4

�
3k3 þ 6

k2
s

�
: (4.1)

In Newtonian theory, since all terms in square brackets in
(4.1) are positive, one concludes thatU;xx is always positive
on y ¼ 0. However, by virtue of (2.5)–(2.10), this may no
longer be true in our case, if one adopts the negative signs
on the right-hand side of (2.9) and (2.10) and if one lets
either r or s or both approach 0. Thus, the sufficient
condition for preservation of the sign in Newtonian theory
reads as

�
3k1 þ 6

k2
r

�
þ β

α

�
r
s

�
4
�
3k3 þ 6

k2
s

�
> 0; (4.2)

which is however violated with the choice of negative signs
in (2.9) and (2.10).
Note that the function Uðx; 0Þ has, from (2.14), the

limiting behavior

FIG. 5 (color online). Plot of the partial derivativeU;yy obtained
by setting λ ¼ 0. The graph has been obtained with the choice of
negative signs in (2.9) and (2.10) and for the system consisting of
Sun, Earth and Moon.

880 000 860 000 840 000 820 000

1 1039

2 1039

3 1039

4 1039

FIG. 6 (color online). Plot of the potential Uðx; 0Þ in the region
R1. The graph has been obtained with the choice of positive signs
in (2.9) and (2.10) and for the system consisting of Jupiter and its
satellites Adrastea and Ganymede.
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2.008 1034

2.010 1034

2.012 1034
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FIG. 7 (color online). Plot of the potential Uðx; 0Þ in the region
R2. The graph has been obtained with the choice of positive signs
in (2.9) and (2.10) and for the system consisting of Jupiter and its
satellites Adrastea and Ganymede.
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FIG. 8 (color online). Plot of the potential Uðx; 0Þ in the region
R3. The graph has been obtained with the choice of positive signs
in (2.9) and (2.10) and for the system consisting of Jupiter and its
satellites Adrastea and Ganymede.
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lim
x→−a

Uðx; 0Þ ¼ lim
x→b

Uðx; 0Þ ¼ þ∞; (4.3)

lim
x→−∞

Uðx; 0Þ ¼ lim
x→þ∞

Uðx; 0Þ ¼ þ∞: (4.4)

Moreover, U;x passes just once through 0 in each of the
three regions R1;R2, and R3, which implies that there
exist three equilibrium points on AB, when U has minima
at the points N1ðx ¼ n1Þ; N2ðx ¼ n2Þ, and N3ðx ¼ n3Þ.
To study the location of the equilibrium points, we note,

following Ref. [5], that

r
ðxþ aÞ ¼ ð−1; 1; 1Þ; s

ðx − bÞ ¼ ð−1;−1; 1Þ; (4.5)

the three values on the right-hand side referring to R1;R2,
and R3, respectively, so that in R1 for example [see (3.3)]

∂U
∂x ¼ ðαþ βÞ x

l3
þ α

r2

�
1þ 2

k1
r
þ 3

k2
r2

�

þ β

s2

�
1þ 2

k3
s
þ 3

k2
s2

�
: (4.6)

At the point x ¼ −a − l one has r ¼ l; s ¼ 2l, and from
(2.2) and (4.6) one finds

∂U
∂x

����
x¼−a−l

¼−
7

4

β

l2
þ 1

l3

�
α

�
2k1þ3

k2
l

�
þβ

4

�
k3þ

3

4

k2
l

��
:

(4.7)

In Newtonian theory, the sum in square brackets in (4.7) is
absent and one can say that U;x is negative and hence N1

lies between x ¼ −a − l and x ¼ −a. In our model, for this
to remain true, one should impose the sufficient condition

2k1 þ 3
k2
l
þ β

4α

�
k3 þ

3

4

k2
l

�
< 0; (4.8)

which is however violated with the choice of positive signs
in (2.9) and (2.10).
Similarly, to understand whether the equilibrium point

N2 lies between C and B, one has to evaluate U;x at C,
where r ¼ a, s ¼ b, x ¼ y ¼ 0, which yields, from (3.3),

∂U
∂x

����
C
¼ −ðα3 − β3Þ ðαþ βÞ2

α2β2l2
−
�
α

a3

�
2k1 þ 3

k2
a

�

þ β

b3

�
2k3 þ 3

k2
b

��
: (4.9)

In Newtonian theory, the sum in square brackets in (4.9)
does not occur, and hence ∂U

∂x jC is always negative. For this
to remain true in our model, one has to impose the sufficient
condition

k1 þ
3

2

k2
a
þ β

α

�
a
b

�
3
�
k3 þ

3

2

k2
b

�
> 0; (4.10)

which is instead violated with the choice of negative signs
in (2.9) and (2.10).
At this stage, despite the incompleteness of our analysis,

we have already proved a simple but nontrivial result: not
only can our model be used to discriminate among
competing theories of effective gravity but also there
exists no choice of signs in (2.9) and (2.10) for which
all qualitative features of the restricted three-body problem
in Newtonian theory remain unaffected. As far as we can
see, this means that either we reject effective theories of
gravity or we should expect them to be able to lead to
testable effects in suitable three-body systems, e.g. a
satellite which is programmed to approach very closely
(much closer than the Moon can afford approaching Earth)
two celestial bodies of large mass.
Furthermore, from (3.10) we find

∂2U
∂y2

����
N1

¼ λ ¼ αβl
ðαþ βÞ

1

x

�
1

r3
−

1

s3

�

þ 1

x

�
2

�
k1
r4

−
k3
s4

�
þ 3k2

�
1

r5
−

1

s5

��
: (4.11)

In Newtonian theory, the sum of terms in square brackets in
(4.11) does not occur, and hence one points out that, since
at N1 x is negative and r < s, the second derivative of U at
N1 is negative [5]. In our model, however, the sufficient
condition for this to remain true, i.e.

�
k1
r4

−
k3
s4

�
þ 3

2
k2

�
1

r5
−

1

s5

�
> 0; (4.12)

can be violated, for example, as r → 0 with the negative
choice of sign in (2.10).
We note also that at N2, where r ¼ xþ a and s ¼ x − b,

one has from (3.10)

∂2U
∂y2

����
N2

¼ ðαþ βÞ
l3

−
α

r3
−

β

s3

−
�
2

�
α
k1
r4

þ β
k3
s4

�
þ 3k2

�
α

r5
þ β

s5

��
: (4.13)

In Newtonian theory, the sum of terms in square brackets in
(4.13) does not occur, and one finds that U;yy is negative at
N2, because inR2 both r and s are less than l. In our model,
for this to remain true, the following sufficient condition
should hold:

α
k1
r4

þ β
k3
s4

þ 3

2
k2

�
α

r5
þ β

s5

�
> 0; (4.14)
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which is however violated if the negative signs are chosen
in (2.9) and (2.10).
On reverting now to the graph of Uðx; 0Þ, there are

minima at N1; N2, and N3, and we would like to determine
at which of these three points Uðx; 0Þ has the greatest
value, and at which it has instead the least value.

In Newtonian theory, one finds that Uðn2Þ > Uðn3Þ >
Uðn1Þ. To establish the counterpart in our model, let
Q3ðx ¼ q3Þ be the point of R3 whose distance from B is
equal to the distance of N2 from B, i.e. N2B ¼ BQ3 ¼ j.
Thus, following patiently a number of cancellations,
we find

Uðn2Þ −Uðq3Þ ¼ Uðx ¼ b − j; y ¼ 0; r ¼ l − j; s ¼ jÞ −Uðx ¼ bþ j; y ¼ 0; r ¼ lþ j; s ¼ jÞ

¼ 2αj
�

1

ðl − jÞ2 −
1

l2

�
þ 2αj
ðl − jÞ2ðlþ jÞ2

�
2k1lþ

k2ðj2 þ 3l2Þ
ðl2 − j2Þ

�
: (4.15)

In Newtonian theory, the sum of terms in square brackets
in (4.15) does not occur, and one therefore finds Uðn2Þ−
Uðq3Þ > 0. In our model, for this to remain true, one should
impose the following sufficient condition:

k1 þ
1

2
k2

ðj2 þ 3l2Þ
lðl2 − j2Þ > 0; (4.16)

which is instead violated if the negative signs are chosen in
(2.9) and (2.10).
Lastly, letQ1ðx ¼ q1Þ be the point ofR1 whose distance

from C is equal to the distance of N3 from C, i.e.
Q1C ¼ CN3 ¼ f. Then we find

Uðn3Þ − Uðq1Þ ¼ Uðx ¼ f; y ¼ 0; r ¼ xþ a; s ¼ x − bÞ −Uðx ¼ −f; y ¼ 0; r ¼ x − a; s ¼ −xþ bÞ

¼ 2αβlðb2 − a2Þ
ðαþ βÞðf2 − a2Þðf2 − b2Þ þ

2αβl
ðαþ βÞðf2 − a2Þ2ðf2 − b2Þ2

�
2f½k3ðf2 − a2Þ2 − k1ðf2 − b2Þ2�

þ k2½ðb2 þ 3f2Þðf2 − a2Þ3 − ða2 þ 3f2Þðf2 − b2Þ3�
ðf2 − a2Þðf2 − b2Þ

�
: (4.17)

In Newtonian theory, the sum of terms in curly brackets in
(4.17) does not occur, and one findsUðn3Þ > Uðq1Þ. In our
model, for this to remain true, one should impose the
sufficient condition

2f½k3ðf2−a2Þ2−k1ðf2−b2Þ2�

þk2½ðb2þ3f2Þðf2−a2Þ3− ða2þ3f2Þðf2−b2Þ3�
ðf2−a2Þðf2−b2Þ > 0:

(4.18)

This is more involved than (4.16), and it is not a priori so
obvious whether a choice of signs in (2.9) and (2.10) leads
always to its fulfillment.

V. EQUILIBRIUM POINTS NOT LYING ON
THE LINE THAT JOINS A TO B

When the equilibrium points do not lie on the line joining
A to B, the coordinate y does not vanish and hence the first
derivative (3.4) vanishes because λ ¼ 0. On the other hand,
the first derivative (3.3) should vanish as well, which then
implies, by virtue of λ ¼ 0,

1

r3

�
1þ 2

k1
r
þ 3

k2
r2

�
¼ 1

s3

�
1þ 2

k3
s
þ 3

k2
s2

�
: (5.1)

Unlike Newtonian theory [5], this equation is no longer
solved by r ¼ s. The definition (3.2), jointly with (5.1),
makes it now possible to express the condition λ ¼ 0 in the
form

1

l3
¼ 1

r3
þ 2

k1
r4

þ 3
k2
r5

: (5.2)

This is an algebraic equation of fifth degree in the variable

w≡ 1

r
; (5.3)

and we divide both sides by 3k2 and exploit the definitions
(2.6)–(2.8) to write it in the form

X5
k¼0

ζkwk ¼ 0; (5.4)

where

ζ5 ≡ 1; (5.5)
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ζ4 ≡ 2

3

κ1
κ2

Gðmþ αÞ
c2l2P

; (5.6)

ζ3 ≡ 1

3κ2

1

l2P
; (5.7)

ζ2 ¼ ζ1 ≡ 0; (5.8)

ζ0 ≡ −
1

3κ2

1

l2Pl
3
: (5.9)

Since this equation is of odd degree with real coefficients,
the fundamental theorem of algebra guarantees the exist-
ence of at least a real solution, despite the lack of a general
solution algorithm for all algebraic equations of degree
greater than 4. Moreover, by virtue of the small term G

c2, the
coefficient ζ4 plays a negligible role both in the Sun-Earth-
Moon system, where α ¼ mSun, β ¼ mEarth, m ¼ mMoon,
l ¼ lSun-Earth, and in many other conceivable toy models of
the restricted three-body problem, as is confirmed by
detailed numerical checks. We find only one positive root
wþðlÞ of Eq. (5.4) when the positive signs are chosen in
(2.9) and (2.10), following [2] [whereas two positive
roots are obtained when negative signs are taken in (2.9)
and (2.10)], from which rðlÞ ¼ 1

wþðlÞ. Eventually, one can

evaluate sðlÞ ¼ sðrðlÞÞ from Eq. (5.1), which can be
viewed as an algebraic equation of fifth degree in the
variable

u≡ 1

s
; (5.10)

i.e. [cf. Eq. (5.4)]

X5
k¼0

~ζkuk ¼ 0; (5.11)

where

~ζk ¼ ζk ∀ k ¼ 0; 1; 2; 3; 5; (5.12)

~ζ4 ≡ 2

3

κ3
κ2

Gðmþ βÞ
c2l2P

: (5.13)

Also in the case of Eq. (5.11) we have found only a positive
solution uþðlÞ both for the Sun-Earth-Moon system and for
any conceivable toy model for this restricted three-body
problem.
The Cartesian coordinates ðx; yÞ of the equilibrium

points not lying along AB can be found from the general
formulas (2.4), with the notation

rðlÞ≡ 1

wþðlÞ
; sðlÞ≡ 1

uþðlÞ
; (5.14)

i.e.

r2ðlÞ ¼ x2 þ y2 þ 2axþ a2; (5.15)

s2ðlÞ ¼ x2 þ y2 − 2bxþ b2: (5.16)

Subtraction of Eq. (5.16) from Eq. (5.15) yields

xðlÞ≡ ðr2ðlÞ − s2ðlÞ þ b2 − a2Þ
2ðaþ bÞ ; (5.17)

while yðlÞ can be obtained from (5.15) in the form

y�ðlÞ≡�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðlÞ − x2ðlÞ − 2axðlÞ − a2

q
: (5.18)

Thus, there exist two equilibrium points not lying on the
line joining A to B, hereafter written in the form

N4ðxðlÞ; yþðlÞÞ; N5ðxðlÞ; y−ðlÞÞ: (5.19)

In Newtonian theory, where r ¼ s, the formula (5.19)
reduces to the familiar [5]

N4

�ðα − βÞ
ðαþ βÞ

l
2
;

ffiffiffi
3

p

2
l

�
; N5

�ðα − βÞ
ðαþ βÞ

l
2
;−

ffiffiffi
3

p

2
l

�
;

(5.20)

by virtue of (2.2). The geometric interpretation of these
formulas is simple but it has a nontrivial consequence: at
the points N4 and N5 the planetoid is not at the same
distance from A and B, unlike Newtonian theory. Our
quantum corrected model predicts a very tiny displacement
from the case r ¼ s, but its effect cannot be observed in the
solar system, because in the available implementations of
the restricted three-body problem the differences

δ1ðlÞ≡ xðlÞ − ðα − βÞ
ðαþ βÞ

l
2
;

δ2ðlÞ≡ yþðlÞ −
ffiffiffi
3

p

2
l;

δ3ðlÞ≡ y−ðlÞ þ
ffiffiffi
3

p

2
l (5.21)

are too small to be observed, as is unfortunately the case for
many interesting effects in quantum gravity.

VI. UNSTABLE AND STABLE
EQUILIBRIUM POINTS

A rather important question is whether the positions of
equilibrium are stable. In the affirmative case, the planetoid
would therefore remain permanently near the point of
stable equilibrium. To study this issue, on denoting by
ðx0; y0Þ one of the points N1; N2; N3; N4; N5, one writes in
the equations of motion (2.15) and (2.16)
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x ¼ x0 þ ξ; y ¼ y0 þ η: (6.1)

By expanding the right-hand sides in powers of ξ and η, and
retaining only terms of first order, one obtains the linear
approximation [5]

̈ξ − 2ω_η ¼ GðAξþ BηÞ; (6.2)

η̈þ 2ω_ξ ¼ GðBξþ CηÞ; (6.3)

having defined

A≡ ∂2U
∂x2

����
x0;y0

; B≡ ∂2U
∂x∂y

����
x0;y0

; C≡ ∂2U
∂y2

����
x0;y0

:

(6.4)

Equations (6.2) and (6.3) are a coupled set of ordinary
differential equations with constant coefficients, and hence
one can look for its solution in the form

ξ ¼ ξ0e
t
τ; η ¼ η0e

t
τ: (6.5)

This leads to the linear homogeneous system of algebraic
equations

�
1

τ2
− GA

�
ξ −

�
2
ω

τ
þ GB

�
η ¼ 0; (6.6)

�
2
ω

τ
−GB

�
ξþ

�
1

τ2
−GC

�
η ¼ 0: (6.7)

Nontrivial solutions exist if and only if the determinant of
the matrix of coefficients vanishes. Such a condition is
expressed by the algebraic equation of fourth degree

1

τ4
− ½GðAþ CÞ − 4ω2� 1

τ2
þG2ðAC − B2Þ ¼ 0: (6.8)

The variable is of course the square of 1τ, and for it one finds,
from the standard theory of algebraic equations of second
degree,

1

τ2
¼ 1

2
½GðAþ CÞ − 4ω2�

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGðAþ CÞ − 4ω2Þ2 − 4G2ðAC − B2Þ

q
: (6.9)

A. Conditions for first-order instability of N1;N2;N3

In Newtonian theory, ðAC − B2Þ is negative at
N1; N2; N3, and hence only half of the 1

τ2
values are

negative, which implies that the criterion for first-order
stability [5] is not satisfied. In our model, it remains true,
from (3.9), that our B vanishes at N1; N2; N3, and we

express our A at N1; N2; N3 from (4.1), our C at N1; N3

from (4.11), and our C at N2 from (4.13). Thus, provided
that the sufficient conditions (4.2), (4.12), and (4.14) hold,
which are in turn guaranteed, as we know, from the choice
of positive signs in (2.9) and (2.10), it is always true that
ðAC − B2Þ < 0, and the points N1; N2; N3 remain points of
unstable equilibrium even in the presence of quantum
corrections obtained from an effective-gravity picture [2].

B. Conditions for first-order stability of N4;N5

At the pointsN4 andN5, the vanishing of λ simplifies the
evaluation of A and C from (3.8) and (3.10), and we find
[with the understanding that r ¼ rðlÞ, s ¼ sðlÞ, and y ¼
yðlÞ as in Sec. V]

A ¼ αðr2 − y2Þ
r5

�
3þ 8

k1
r
þ 15

k2
r2

�

þ βðs2 − y2Þ
s5

�
3þ 8

k3
s
þ 15

k2
s2

�
; (6.10)

C ¼ αy2

r5

�
3þ 8

k1
r
þ 15

k2
r2

�
þ βy2

s5

�
3þ 8

k3
s
þ 15

k2
s2

�
;

(6.11)

B2 ¼ α2y2ðr2 − y2Þ
r10

�
3þ 8

k1
r
þ 15

k2
r2

�
2

þ β2y2ðs2 − y2Þ
s10

�
3þ 8

k3
s
þ 15

k2
s2

�
2

þ 2αβy2

r5s5

�
3þ 8

k1
r
þ 15

k2
r2

�

×

�
3þ 8

k3
s
þ 15

k2
s2

�
ðx2 þ ða − bÞx − abÞ: (6.12)

In the evaluation of ðAC − B2Þ we find therefore exact
cancellation of the two pairs of terms involving α2 and β2.
Moreover, on exploiting from (2.4) the identity

r2 þ s2 ¼ 2ðx2 þ y2Þ þ 2ða − bÞxþ a2 þ b2; (6.13)

we obtain, bearing in mind that ðaþ bÞ ¼ l,

ðAC − B2Þ ¼ αβy2l2

r5s5

�
3þ 8

k1
r
þ 15

k2
r2

�

×

�
3þ 8

k3
s
þ 15

k2
s2

�
: (6.14)

This is all we need, because it is clearly positive if the
positive signs are chosen in (2.9) and (2.10), and it ensures
that all values of 1

τ2
from the solution formula (6.9) are

negative (a result further confirmed by numerical analysis
for the Sun-Earth-Moon and Jupiter-Adrastea-Ganymede
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systems), in full agreement with the criterion for first-order
stability [5] of the equilibrium points.

VII. CONCLUDING REMARKS AND
OPEN PROBLEMS

Not only has the (restricted) three-body problem played
an important role in the historical development of celestial
mechanics [4,9] and classical dynamics [5] but it has
also found important applications to modern physics.
For example, in Ref. [10], the authors have discovered,
by analytic and numerical methods, the existence of stable,
although nonstationary, quantum states of electrons moving
on circular orbits that are trapped in an effective potential
well made of the Coulomb potential and the rotating
electric field produced by a strong circularly polarized
electromagnetic wave.
In the theory of gravitation, the undisputable smallness

of classical and quantum corrections to the Newtonian
potential had always discouraged the investigation of their
role in the restricted three-body problem. Our contribution
has been precisely a systematic investigation of the ultimate
consequences of such additional terms. Our sufficient
conditions (4.2), (4.8), (4.10), (4.12), (4.14), (4.16),
and (4.18) are original and imply that some changes of
qualitative features are unavoidable with respect to
Newtonian theory, regardless of the choice of signs made
in (2.9) and (2.10), although 6 out of 7 sufficient conditions
are fulfilled with the choice of positive signs in (2.9) and
(2.10). Section V has shown that the equilibrium points not
lying on the line that joins A to B are found by solving a
pair of algebraic equations of fifth degree, and their

coordinates have been obtained for the first time in the
class of effective theories of gravity studied in Refs. [2,8].
Section VI has studied first-order stability for the five
equilibrium points of the problem. We have proved therein
that, provided the positive signs are chosen in (2.9) and
(2.10), the three points along the line joining A to B are
unstable, while the two points not on AB are stable
equilibrium points to first order.
It now remains to be seen whether the present techniques

in space sciences make it possible to realize a satellite P
that approaches so closely the celestial bodies A and B that
our tiny corrections start making themselves manifest.
Unfortunately, the differences in (5.21) between quantum
corrected and Newtonian values of the coordinates of
stable-equilibrium points N4 and N5 are too small to be
observed, at least in the solar system. However, one cannot
yet rule out that future technological developments will
make it possible to check against observations the current
effective theories of gravity, which would bring quantum
gravity research much closer to the experimental world.
Last, but not least, the whole analysis performed in
Refs. [4,9], if generalized to the extended theories of
gravity inspired by the works in Refs. [2,8], might lead
to the discovery of novel features of orbital motion.
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