Journey to the un-world

Piero Nicolini

Frankfurt Institute for Advanced Studies (FIAS)
\&
Institut für Theoretische Physik, Goethe Universität
1st FLAG Meeting, Bologna, 30 May 2014
Talk based on
A.M. Frassino, P.N. and O. Panella, arXiv:1311.7173 [hep-ph].
P.N. and J. Mureika, in preparation
P.N. and E. Spallucci, Phys. Lett. B 695, 290 (2011)
P.N., Phys. Rev. D 82, 044030 (2010)

FIAS Frankfurt Institute for Advanced Studies

Thanks

Antonia Frassino
(FIAS, Frankfurt)

Euro Spallucci

(Trieste U. \& INFN, Trieste)

Un-world

scale invariance is less common in physics

scale invariance is less common in physics

scale invariance is less common in physics
scale invariance is leas common in physics
sade inverianos is las common in physios

$\overline{\bar{\square}}$

Scale invariance?

What will the LHC find?

- The Higgs Boson: 95\%.
- Supersymmetry: 60\%.
- Something that has never been predicted: 50\%.
- Dark Matter: 15\%.
- Warped Extra Dimensions: 10\%.
- Absolutely Nothing: 3\%.
[S. Carroll, Discover, Aug 4th, 2008]
- Large Extra Dimensions: 1\%.
- Unparticles: 0.5\%.
- Evidence for or against String Theory: 0.5\%.
- Black Holes: 0.1\%.
- Dark Energy: 0.1\%.
- Stable Black Holes that eat up the Earth, destroying all living organisms in the process: $10^{-25} \%$.

Unparticle physics primer
 [H. Georgi, PRL 98 (2007) 221601]

- Scale-invariant high energy particle sector, weakly interacting with standard model:

$$
\mathcal{L}=\frac{1}{\left(M_{\mathcal{U}}\right)^{k}} \mathcal{O}_{\mathrm{SM}} \mathcal{O}_{\mathrm{BZ}} \quad k=d_{S M}+d_{B Z}-4
$$

- Below some scale, undergoes dimensional transmutation $\mathcal{O}_{B Z} \rightarrow C_{\mathcal{U}} \lambda^{d_{B Z}-d_{u}} \mathcal{O}_{U}$ to become an "unparticle" field O_{u} (scalar, vector, tensor, spinor) at energy scale $\Lambda_{\mathcal{\sim}}$:

$$
\begin{aligned}
\mathcal{L}=\frac{\kappa}{M_{\mathcal{U}}^{k_{\mathcal{U}}}} \mathcal{O}_{S M} \mathcal{O}_{\mathcal{U}} \quad, \quad k_{\mathcal{U}} & =d_{S M}+d_{\mathcal{U}}-4 \\
\lambda & =\left(\Lambda_{\mathcal{U}} / M_{\mathcal{U}}\right)^{k}
\end{aligned}
$$

Unparticle physics primer

- Consider the vacuum matrix element

$$
\left.\langle 0| \mathcal{O}_{\mathcal{U}}(x) \mathcal{O}_{\mathcal{U}}^{\dagger}(0)|0\rangle=\int \frac{d^{4} p}{(4 \pi)^{4}} e^{i P x}\left|\langle 0| \mathcal{O}_{\mathcal{U}}(0)\right| P\right\rangle\left.\right|^{2} \rho\left(P^{2}\right)
$$

- Unparticle Phase Space: $\quad x \rightarrow \lambda x \quad O_{U}(\lambda x) \rightarrow \lambda^{-d_{U}} O_{U}(x)$

$$
\begin{array}{r}
A_{d_{\mathcal{U}}} \theta\left(P^{0}\right) \theta\left(P^{2}\right)\left(P^{2}\right)^{d_{\mathcal{U}}-2}
\end{array} d_{\mathcal{U}}>1
$$

- SM Particle Phase Space:

$$
A_{n} \theta\left(P^{0}\right) \theta\left(P^{2}\right)\left(P^{2}\right)^{n-2} \quad n=1,2,3, \ldots
$$

The unparticle interpretation

$$
\begin{aligned}
\mathbf{D}_{\mathcal{U}}\left(x, x^{\prime}\right) & =\frac{A_{d_{\mathcal{U}}}}{2 \pi\left(\Lambda_{\mathcal{U}}^{2}\right)^{d_{\mathcal{U}}-1}} \int_{0}^{\infty} d m^{2}\left(m^{2}\right)^{d_{\mathcal{U}}-2} \mathbf{D}\left(x, x^{\prime} ; m^{2}\right) \\
A_{d_{\mathcal{U}}} & =\frac{16 \pi^{5 / 2}}{(2 \pi)^{2 d_{u}}} \frac{\Gamma\left(d_{\mathcal{U}}+1 / 2\right)}{\Gamma\left(d_{\mathcal{U}}-1\right) \Gamma\left(2 d_{\mathcal{U}}\right)}
\end{aligned}
$$

- It is a linear continuous superposition of Feynman propagators of fixed mass m
- When the conformal dimension $d_{\mathcal{U}} \rightarrow 1$ then the un-particle propagator reduces to that of an ordinary massless field.

Unparticle stuff is a composite particle with a continuous mass spectrum

Netwon's law corrections

- Static limit potential (from QFT amplitudes):

$$
\Phi(r)=\frac{G M}{r}\left[1 \pm \Gamma_{\mathcal{U}}\left(\frac{R_{*}}{r}\right)^{2 d_{\mathcal{U}}-2}\right]
$$

$$
\begin{aligned}
& \text { "Ungravity" } \quad R_{*}=\Lambda_{u}^{-1}\left(\frac{M_{P l}}{\Lambda_{u}}\right)^{\frac{1}{d_{u}-1}}\left(\frac{\Lambda_{u}}{M_{u}}\right)^{\frac{v_{B Z}}{)_{u}-1}} \\
& \text { action scale }
\end{aligned}
$$

- Interactions will depend on mass scales $\mathrm{M}_{\boldsymbol{u}}>\Lambda_{\boldsymbol{u}}$ and mass dimensions $d_{B Z}, d_{u}$.
Goldberg and Nath, PRL 100, 031803 (2008); Das et al., PRD 076001 (2008); Deshpande et al., PLB 659, 888 (2008) Nicolini, PRD 82 (2010) 044030

Exact solutions in GR

 Given a non-local action $S \sim \int d^{4} x \sqrt{-g} G^{\mu \nu} \frac{\mathcal{A}^{-1}(\square)}{\square} R_{\mu \nu}$[Biswas et al. PRL 108, 031101 (2012); Barvinski, PLB710, 12 (2012); Modesto,PRD86:044005 (2012)]

$$
\begin{array}{cl}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G \mathcal{T}_{\mu \nu} & \mathcal{T}_{\mu \nu} \equiv \mathcal{A}^{-2}(\square) T_{\mu \nu} \\
\text { [Modesto, Moffat, PN, PLB695, 397 (2011)] }
\end{array}
$$

$$
\begin{aligned}
R_{v}^{\mu}-\frac{1}{2} \delta_{v}^{\mu} R & =\kappa^{2}\left[1+\frac{A_{d_{U}} \Lambda_{U}^{2-2 d_{U}}}{\left(2 d_{U}-1\right) \sin \left(\pi d_{U}\right)} \frac{\kappa_{*}^{2}}{\kappa^{2}}(-\square)^{d_{U}-1}\right] T^{\mu}{ }_{v} \\
& \equiv \kappa^{2} T^{\mu}{ }_{v}+\kappa_{*}^{2} \frac{A_{d_{U}}}{\sin \left(\pi d_{U}\right)} T_{U}^{\mu} \quad \text { Gaete, Helayel-Neto, Spallucci, PLB693 (2010) } 155
\end{aligned}
$$

Unparticle enhanced Schwarzschild metric

- General solutions
- Scalar and tensor unparticle:

$$
d s^{2}=\left[1-\frac{2 G M}{r}\left(1+\Gamma_{d_{u}}\left(\frac{R_{x}}{r}\right)^{2 d_{d_{u}}-2}\right)\right] d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{r}\left(1+\Gamma_{d_{u}}\left(\frac{R}{r}\right)^{2 d_{u}-2}\right)}+r^{2} d \Omega^{2}
$$

- Vector unparticle:

$$
g_{00}=1-\frac{2 G M_{\mathrm{BH}}}{r}\left(1-\left(\frac{R_{*}}{r}\right)^{2 d_{u}-2}\right) \quad, \quad g_{r r}=-g_{00}^{-1}
$$

- Black hole solutions!

> | Mureika, PLB 660 (2008) 561-566 |
| :--- |
| Gaete, Helayel-Neto, Spallucci, PLB693 (2010) 155 |
| Mureika and Spallucci, PLB693 (2010) 129 |

Continuous extradimensions

Mureika, PLB 660 (2008) 561-566

- Metric:

Gaete, Helayel-Neto, Spallucci, PLB693 (2010) 155

$$
d s^{2}=\left[1-\frac{2 G M}{r}\left(1+\Gamma_{d_{u}}\left(\frac{R_{*}}{r}\right)^{2 d_{k}-2}\right)\right] d t^{2}+\frac{d r^{2}}{1-\frac{2 G M}{r}\left(1+\Gamma_{d_{u}}\left(\frac{R_{*}}{r}\right)^{2 d d_{u}-2}\right)}+r^{2} d \Omega^{2}
$$

- When $r \ll R_{U}$:

$$
d s^{2} \sim-\left(1-\left(\frac{R_{\mathcal{U}}}{r}\right)^{2 d_{\mathcal{u}}-1}\right) d t^{2}+\frac{d r^{2}}{1-\left(\frac{R_{\mathcal{U}}}{r}\right)^{2 d_{u}-1}}+d \Omega^{2}
$$

- Looks like spacetime of $\left(2 d_{u}-2\right)$ extra dimensions!

$$
d s^{2}=-\left(1-\left(\frac{R_{S}}{r}\right)^{n+1}\right) d t^{2}+\frac{d r^{2}}{1-\left(\frac{R_{S}}{r}\right)^{n+1}}+d \Omega^{2}
$$

If $\Lambda_{\boldsymbol{u}} \sim 1 \mathrm{TeV}$, new EW physics without extra dimensions!

- Horizon ($M_{P l}$ independent):

$$
r_{H} \approx\left(\frac{2 M_{B H} \Gamma_{d_{\mathcal{U}}}}{M_{\mathcal{U}}^{2} \Lambda_{\mathcal{U}}^{-1}}\right)^{\frac{1}{2 d_{\mathcal{U}}-1}} \Lambda_{\mathcal{U}}^{-1}
$$

Unparticle BH thermodynamics

Gaete, Helayel-Neto, Spallucci, PLB693 (2010) 155 Mureika and Spallucci, PLB693 (2010) 129

- Hawking temperature:

$$
T_{d_{\mathcal{U}}}=\frac{1}{4 \pi\left[1 \pm\left(\frac{R_{\mathcal{U}}}{r}\right)^{2 d_{\mathcal{U}}-2}\right]} \cdot\left[1 \pm\left(2 d_{\mathcal{U}}-1\right)\left(\frac{R_{\mathcal{U}}}{r}\right)^{2 d_{\mathcal{U}}-2}\right]
$$

- Thermal limits:

$$
T_{d_{U}} \simeq \frac{2 d_{U}-1}{4 \pi r_{H}}
$$

$$
T_{H}=\frac{D-3}{4 \pi r_{H}}=\frac{1+1+[d]_{\mathrm{area}}-3}{4 \pi r_{H}}=\frac{[d]_{\mathrm{area}}-1}{4 \pi r_{H}}
$$

BH entropy

- First law:

$$
d M=T_{d_{\mathcal{U}}} d S \quad \Longrightarrow \quad \frac{\partial M}{\partial r} d r=T_{d_{\mathcal{U}}} d S
$$

- Thermal limits:

Unparticle black hole horizon is a fractal surface of area $2 d_{U}$

Unparticle black hole horizon is a fractal surface of area $2 d_{u}$

Fractal dimensions

- Hausdorff

- QM, string theory, NC geometry

Abbott and Wise, Am.J.Phys. 49 (1981) 37-39
Ansoldi, Aurilia and Spallucci, PRD 56, 2352 (1997)
Nicolini and Niedner, PRD 83, 024017 (2011)

- Spectral

- CDT, LQG, ASG, NC geometry

Ambjorn et al. PRL 95 (2005) 171301
Lauscher and Reuter, JHEP 0510 (2005) 050
Modesto, CQG 26 (2009) 242002
Benedetti PRL 102 (2009) 111303
Modesto and Nicolini, PRD (2010)

Spectral vs Unspectral

[Nicolini \& Spallucci, PLB (2011)]

$$
\begin{array}{rlrl}
\Delta K(x, y ; s) & =\frac{\partial}{\partial s} K(x, y ; s) & & \Delta_{U} K_{U}(x, y ; s)=\frac{\partial}{\partial s} K_{U}(x, y ; s) \\
K(x, y ; 0) & =\frac{\delta^{d}(x-y)}{\sqrt{\operatorname{det} g_{a b}}} & & \Delta_{U}=\Delta-\left(d_{U}-1\right) / s \\
\text { time dependent "heat source" }\left(d_{U}-\right.
\end{array}
$$

time dependent "heat source" $\left(d_{U}-1\right) / s$

$$
P(s)=\frac{\int d^{d} x \sqrt{\operatorname{det} g_{a b}} K(x, x ; s)}{\int d^{d} x \sqrt{\operatorname{det} g_{a b}}}
$$

$$
\begin{aligned}
\mathbb{D}_{U} & =-2 s \frac{\int d^{d} x \sqrt{\operatorname{det} g_{a b}} \Delta K_{U}(x, x ; s)}{\int d^{d} x \sqrt{\operatorname{det} g_{a b}} K_{U}(x, x ; s)}+\frac{2 \Gamma\left(d_{U}\right)}{\Gamma\left(d_{U}-1\right)} \\
& =\mathbb{D}+2 d_{U}-2
\end{aligned}
$$

$$
\begin{array}{lll}
s \gg \ell & \Longrightarrow \mathbb{D}_{\mathcal{U}}=d-2+2 d_{\mathcal{U}} & \text { geometry } \\
s \sim \ell^{2} \quad \Longrightarrow \quad \mathbb{D}_{\mathcal{U}}=2 d_{\mathcal{U}}-2+\frac{d}{2} & \text { Planck-scale } \\
\text { geometry }
\end{array}
$$

$$
s \ll \ell^{2} \quad \Longrightarrow \quad \mathbb{D}_{\mathcal{U}}=2 d_{\mathcal{U}}-2
$$

Post-Planck regime

Entronic ungravity

Nicolini, PRD 82 (2010) 044030

- Entropy gravity: Nverinde JHEP (2011) 1104:029; Padmanabhan, MPLA 25 (2010) 1129]

$$
E=F \Delta x=T \Delta S \quad \Rightarrow \quad F_{\text {entropic }}=T \frac{\Delta S}{\Delta x} \quad \square F=T \cdot \frac{\Delta S}{\Delta x}=\frac{m c}{\hbar}\left(\frac{2 \pi M G \hbar}{2 \pi R^{2} c}\right)=\frac{G m M}{R^{2}}
$$

- Holographic corrections

$$
\Delta S_{\Omega}=k_{B} \Delta A\left(\frac{c^{3}}{4 \hbar G}+\frac{\partial s}{\partial A}\right) \quad \square F=\frac{G M m}{r^{2}}\left[1+4 \ell_{P}^{2} \frac{\partial s}{\partial A}\right]
$$

- Ungravity corrections:

$$
S=\frac{k_{B} c^{3}}{\hbar G} \frac{\pi R^{2-2 d_{U}}}{d_{U} \Gamma_{U}} r_{H}^{2 d_{U}}
$$

$$
F=\frac{G M m}{r^{2}}\left[1-\frac{\Gamma_{U}\left(\frac{R}{r_{H}}\right)^{2 d_{U}-2}}{1+\Gamma_{U}\left(\frac{R}{r_{H}}\right)^{2 d_{U}-2}}\right]
$$

Experimentally testable!

Un-particle physics tests

- The interaction term depends on a dimensionless coupling constant $\lambda=\left(\Lambda_{\mathcal{U}} / M_{\mathcal{U}}\right)^{k}$

Un-particle Casimir effect

We will discuss the Casimir effect assuming the existence of a scalar unparticle sector weakly coupled to the standard model fields

Scalar case scenario

Working in Euclidean space one can use a Schwinger representation for $\mathbf{D}\left(p ; m^{2}\right)$ to get:

$$
\begin{aligned}
\mathbf{D}_{\mathcal{U}}\left(p^{2}\right) & =\frac{A_{d_{\mathcal{U}}}}{2 \pi\left(\Lambda_{\mathcal{U}}^{2}\right)^{d_{\mathcal{U}}-1}} \int_{0}^{\infty} d m^{2}\left(m^{2}\right)^{d_{\mathcal{U}}-2} \int_{0}^{\infty} d s e^{-s\left(p^{2}+m^{2}\right)} \\
& =\frac{16 \pi^{5 / 2} \Gamma\left(d_{\mathcal{U}}+1 / 2\right) \Gamma\left(2-d_{\mathcal{U}}\right)}{(2 \pi)^{2 d_{\mathcal{U}}+1}\left(\Lambda_{\mathcal{U}}^{2}\right)^{d_{\mathcal{U}}-1} \Gamma\left(2 d_{\mathcal{U}}\right)}\left(p^{2}\right)^{d_{\mathcal{U}}-2}
\end{aligned}
$$

we can relate the unparticle Casimir energy $\mathcal{E}_{\mathcal{U}}^{\mathcal{U}}$ with the standard Casimir energy of a particle field of fixed mass $\mathcal{E}^{\mathcal{C}}\left(m^{2}\right)$:

$$
\mathcal{E}_{\mathcal{U}}^{\mathcal{C}}=\frac{A_{d_{\mathcal{U}}}}{2 \pi\left(\Lambda_{\mathcal{U}}^{2}\right)^{d_{\mathcal{U}}-1}} \int_{0}^{\infty} d m^{2}\left(m^{2}\right)^{d_{\mathcal{U}}-2} \mathcal{E}^{\mathcal{C}}\left(m^{2}\right)
$$

Un-Casimir effect

[Frassino, Nicolini \& Panella (2013)]

$$
\begin{gathered}
\mathcal{E}_{\mathcal{U}}^{\mathcal{C}}=-\frac{1}{8 \pi^{2}} \frac{1}{a} \frac{A_{d_{\mathcal{U}}}}{\pi\left(\Lambda_{\mathcal{U}}^{2}\right)^{d_{\mathcal{U}}-1}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{\infty} d m m^{2 d_{\mathcal{U}}-1} K_{2}(2 a m n) \\
\mathcal{E}_{\mathcal{U}}^{\mathcal{U}}(a)=-\frac{1}{a^{3}} \frac{d_{\mathcal{U}} \zeta\left(2+2 d_{\mathcal{U}}\right)}{(4 \pi)^{2 d_{\mathcal{U}}}} \frac{1}{\left(a \Lambda_{\mathcal{U}}\right)^{2 d_{\mathcal{U}}-2}}
\end{gathered}
$$

The total attractive energy reads

$$
\mathcal{E}^{C}(a)=-\frac{\pi^{2}}{720 a^{3}}\left[1+\frac{720 d_{\mathcal{U}} \zeta\left(2+2 d_{\mathcal{U}}\right)}{\pi^{2}(4 \pi)^{2 d_{\mathcal{U}}}} \frac{1}{\left(a \Lambda_{\mathcal{U}}\right)^{2 d_{\mathcal{U}}-2}}\right]
$$

Plate fractalization

$$
\begin{aligned}
& \mathbb{D}=-\frac{\partial \log \left(\mathcal{E}^{C}(a)\right)}{\partial \log a}-1 \\
& \mathbb{D}=\frac{2+\left(2 d_{\mathcal{U}}\right) L}{1+L}: \quad L=\frac{720 d u \zeta(2+2 d u)}{\pi^{2}(4 \pi)^{2 d U}} \frac{1}{(a \Lambda u)^{2 d} \mathcal{U}^{-2}} \\
& \mathbb{D} \rightarrow 2 \quad \quad \text { For large plate separation } a \gg 1 / \Lambda_{\mathcal{U}} \quad \text { or } \quad d_{\mathcal{U}} \rightarrow 1 \\
& \mathbb{D} \rightarrow 2 d_{\mathcal{U}} \quad \text { in the unparticle dominated case } a \ll 1 / \Lambda_{\mathcal{U}}
\end{aligned}
$$

Estimate of un-particle scale

If $\Delta_{\text {Cas }}$ is the relative error of the experimental measurement we obtain

$$
\frac{720 d_{\mathcal{U}} \zeta\left(2+2 d_{\mathcal{U}}\right)}{\pi^{2}(4 \pi)^{2 d_{\mathcal{U}}}} \frac{1}{\left(a \Lambda_{\mathcal{U}}\right)^{2 d_{\mathcal{U}}-2}} \leq \Delta_{\mathrm{Cas}}
$$

Therefore we get (for $d_{\mathcal{U}} \neq 1$)

$$
\Lambda_{\mathcal{U}} \geq \frac{1}{a}\left[\frac{720 d_{\mathcal{U}} \zeta\left(2+2 d_{\mathcal{U}}\right)}{\pi^{2}(4 \pi)^{2 d_{\mathcal{U}}}} \frac{1}{\Delta_{\mathrm{Cas}}}\right]^{\frac{1}{2 d_{\mathcal{U}}-2}}
$$

strong dependence on the parameter $d_{\mathcal{U}}$:

- $d_{\mathcal{U}}$ slightly above $1 \Rightarrow$ the bound on $\Lambda_{\mathcal{U}}$ is very strong
- $d_{\mathcal{U}}$ increases \Rightarrow the bound exponentially decreases

Exclusion curves

The coupling is hidden!

- It disappears only in the perfect conductor limit

$$
\gamma \equiv \frac{1}{\omega_{\mathrm{pl}}^{2}} \frac{e^{2} c}{\hbar} \frac{1}{a^{2}} \sim 10^{-5} \quad \lambda \gg 10^{-5}
$$

: $\lambda \sim \gamma$ one has the critical case

$$
\alpha_{\mathrm{EM}} \approx 1 / 137 \gg \gamma=10^{-5}
$$

Conclusions

- Un particles offer new intriguing scenarios
- The Casimir effect offers a reliable testbed
- Vector case Casimir calculation (in preparation)

Like \quad B

Molte grazie! nicolini@fias.uni-frankfurt.de

