Dark Matter Searches at Large Hadron Collider

Shahram Rahatlou

Pomeriggio su Materia Oscura Roma, 20 Jan 2014

Dipartimento di Fisica

DARK MATTER Der Matter as a particle hints at

- interactions; important to get the right relic abundance trelic
 - search for production of DM annihilation why not
 - high energy photons, particle-anti-particle pairs
 - search for ultra-relativistic objects produced Dark Matter as a particle hints at many interactions with in galactic halo
 - observatory on earth-bound or with satellites
 - Direct detection
- as a particle hints at many interactions with ordinary matter
 - Pair production at LHC
 - large missing energy in the detector
 - need to identify ("tag") events of interest

DARK MATTER PRODUCTION AT LHC

 $\gamma/W/Z + MET$

gluon(jet) + MET

- EW bosons and gluons can be radiated by initial partons
- Presence of high energy photon/W/Z or jet(s) in addition to large missing transverse energy
- Gluon radiation at higher rate than EW bosons
 - strong interaction vs. electroweak

MONO-W + MET

- W being charged can distinguish between u and d quarks
 Need to account for interference
- Leptonic W decays
 - pro: clean high-pt lepton signature; single-lepton trigger
 - con: small branching ratio
- Hadronic W decays
 - pro: large branching ratio
 - con: large SM backgrounds

HIGGS PORTAL TO DARK MATTER

- Discovery of Higgs has opened new doors to Dark matter
- New searches proposed to investigate coupling of dark matter candidates to Higgs boson

q,g

mono-Higgs: Higgs + missing energy through new operator

- Higgs mediation: dark matter candidate couples only to Higgs and no other SM particle
 - $m_{DM} < m_H/2$: Higgs decay to DM pair
 - Currently branching ratio of invisible Higgs decays < ~60%
 - \Rightarrow expect to reach BR < 0.2-0.3 with 3000 fb⁻¹
 - $m_{DM} > m_{H}/2 : DM$ pair from virtual Higgs
 - Distinctive signature with forward jets

 $\begin{array}{c}h, Z, \gamma,\\ Z' S\end{array}$

THINKING OUT OF THE BOX: MONO-b/t

- Important for a scalar mediator operator
 - Structure constrained by flavor violation
- Enhanced coupling for third generation quark
 - coupling proportional to mass
- Dedicated analysis exploiting boosted top and b-tag more competitive than generic mono-jet search
- Efforts underway in ATLAS
 - reinterpretation of existing SUSY results performed by theorists

SUMMARY OF CURRENT SEARCHES

- mono-jet
 - strongest constraints
- mono-photon
 - more challenging for background estimation
 - less powerful: EW vs. strong interaction
- mono-W/Z leptonic
 - clean signature and simple trigger
 - penalized by W/Z branching fraction
- mono-W/Z hadronic
 - larger statistics with larger background

Mono-Jet Candidate

- No a-priori knowledge of longitudinal boost: xi different and unknown at each collision
- Conservation of 4-momentum in transverse plane
 - measure momenta and energy of interacting particles
 - compute momenta of escaping particles

Mono-Jet Search

- Pair produced Dark Matter
 - missing energy and radiated jet(s)
 - similar strategy also for photons
- Event selection
 - leading jet $p_T > \sim 120 \text{ GeV}$
 - topological cut to reduce QCD, e.g. opening of two jets
 - veto events with isolated leptons
- Background determination
 - mainly from data
 - Z(vv) + jets from measurement of Z + jets
 - W(Iv) + jets from measurement of W + jets
 - MC only for very small backgrounds
 - ttbar, QCD, non-collision
- Count events with MET > 350-400 GeV

BACKGROUNDS

Background Composition

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) \rightarrow	> 250	> 300	> 350	> 400	> 450	> 500	> 550
$Z(\nu\nu)$ +jets	30600 ± 1493	12119 ± 640	5286 ± 323	2569 ± 188	1394 ± 127	671 ± 81	370 ± 58
W+jets	17625 ± 681	6042 ± 236	2457 ± 102	1044 ± 51	516 ± 31	269 ± 20	128 ± 13
tī	470 ± 235	175 ± 87.5	72 ± 36	32 ± 16	13 ± 6.5	6 ± 3.0	3 ± 1.5
$Z(\ell\ell)$ +jets	127 ± 63.5	43 ± 21.5	18 ± 9.0	8 ± 4.0	4 ± 2.0	2 ± 1.0	1 ± 0.5
Single t	156 ± 78.0	52 ± 26.0	20 ± 10.0	7 ± 3.5	2 ± 1.0	1 ± 0.5	0 ± 0
QCD Multijets	177 ± 88.5	76 ± 38.0	23 ± 11.5	3 ± 1.5	2 ± 1.0	1 ± 0.5	0 ± 0
Total SM	49154 ± 1663	18506 ± 690	7875 ± 341	3663 ± 196	1931 ± 131	949 ± 83	501 ± 59
Data	50419	19108	8056	3677	1772	894	508

Systematic Uncertainty

$E_{\rm T}^{\rm miss}$ (GeV)	> 250	> 300	> 350	> 400	> 450	> 500	> 550
Statistics (N ^{obs})	1.7	2.6	3.9	5.6	7.6	10.9	14.6
Background (N ^{bgd})	0.8	0.6	0.8	0.2	0.0	0.0	0.0
Acceptance (A)	2.0	2.0	2.0	2.1	2.1	2.2	2.4
Selection efficiency (ϵ)	2.0	2.0	2.1	2.2	2.4	2.7	3.1
Total	4.5	4.9	5.8	7.1	8.9	12.1	15.6

MISSING ENERGY MEASUREMENT

MODEL-INDEPENDENT LIMITS

[ATLAS-CONF-12-147, CMS EXO-12-048]

 Both experiments quote model-independent limits for generic applicability to SUSY compressed spectra, invisible Higgs, or any other "monojet" signature

Mono-Photon Candidate

INTERPRETATION

Shahram Rahatlou, Roma Sapienza & INFN

MODELING THE DM INTERACTION

$$\sigma(pp \to \bar{\chi}\chi + X) \sim \frac{g_q^2 g_\chi^2}{(q^2 - M^2)^2 + \Gamma^2/4} E^2$$
$$\Lambda \equiv M/\sqrt{g_\chi g_q}$$

Pair-production of χ can be characterized by a contact interaction with operators

$$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)}{\Lambda^{2}}$$
$$\mathcal{O}_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

vector --> spin independent (SI)

axial-vector --> spin-dependent (SD)

~ $1/\Lambda^4 E^2$ for $M \rightarrow 40$ TeV (EFT)

• Cross section depends on the mass (m_{χ}) and the scale Λ (for couplings g_{χ}, g_{q})

 $\sigma_{SI} = 9 \frac{\mu^2}{\pi \Lambda^4} \qquad \Lambda = M/\sqrt{g_{\chi}g_q}$ $\sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4} \qquad \mu = \frac{m_{\chi} m_p}{m_{\chi} + m_p}$

[Bai, Fox and Harnik, JHEP 1012:048 (2010)] [Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, Phys.Rev.D82:116010 (2010)] [Beltran, Hooper, Kolb, Krusberg, Tait, JHEP 1009:037 (2010)] 16

Shahram Rahatlou, Roma Sapienza & INFN

LIMIT ON CROSS SECTION

- Limits depend on assumption on operator nature in Effective Theory
 - Varies significantly for different operators
 - Validity of assumption depends on mass of mediator
 - At low mediator mass, assumptions might not hold at high center of mass energy

Shahram Rahatlou, Roma Sapienza & INFN

CROSS SECTION AND OPERATORS

Name	Initial state	Type	Operator		
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$		
D5	qq	vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$		
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$		
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$		
D11	gg	scalar	$\frac{1}{4M_\star^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$		
in the loop					

VALIDITY OF EFT LIMITS

Imperial College

London

CONSTRAINTS ON MEDIATOR AND SCALE

HADRONIC MONO-W

Mono-W Constraints

 Constraints depend strongly on interference of up and down quark amplitudes

The Most Complete Theory

- On the "complete" end of the spectrum is our favorite theory: the MSSM.
- Reasonable phenomenological models have ~20 parameters, leading to rich and varied visions for dark matter.
- This plot shows a scan of the `pMSSM' parameter space by the SLAC group, in the plane of the WIMP mass versus the SI cross section.
- There are clear trends as to which experiments work best in different regions of this parameter space!

HIGH ENERGY AND LUMINOSITY LHC

OUTLOOK

- Rich and complementary program at LHC to search for Dark Matter
- Rather than competition, LHC offers a power alternative to probe low-mass candidates
- Dark Matter program will one of the primary goals of Run II

Intense theoretical activity to provide

new ideas and models to probe with data in the next few years
proper and optimal way to connect LHC results to (in)direct searches

MONOPHOTON CANDIDATE

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

MonoJet Candidate

- invisible higgs BR from CMS and ATLAS
- typical mono-X efficiency and trigger efficiency

TRIGGER

• A few hghlights but most likely not enough time

CONSTRAINTS ON INTERACTION SCALE

MONO-PHOTON STRATEGY

- Both ATLAS and CMS results are old 7 TeV
- Not enough time

Mono-Quark

90% CL limits on the scalar operator from DM plus heavy jet, including couplings to tops and bottoms