



Discovery of a Higgs boson with the

ATLAS detector at the LHC



Seminario @ Università degli Studi Roma Tre

08/10/2013





### Outline

- Introduction: Higgs boson
- Experimental overview
- Higgs boson couplings & mass measurement
  - Most of items are from *Phys. Lett. B* 726 (2013), pp. 88-119
- Higgs boson spin & parity measurement
  - Most of items are from Phys. Lett. B 726 (2013), pp. 120-144

### Higgs boson

- The quantum of the Higgs field, which has been introduced in 1960's
- Origin of elementary particles' mass
- Last missing piece of the standard model of elementary particle physics

#### The Standard Model and the Higgs boson

|         | Fermions                         |                                     |                                    | Bosons         |                |  |
|---------|----------------------------------|-------------------------------------|------------------------------------|----------------|----------------|--|
| Quarks  | <b>U</b> up                      | C<br>charm                          | t top                              | photon         | Force carriers |  |
|         | d<br>down                        | S<br>strange                        | <b>b</b> bottom                    | Z<br>Z boson   |                |  |
| Leptons | V <sub>e</sub> electron neutrino | <b>V</b> <sub>μ</sub> muon neutrino | <b>V</b> <sub>τ</sub> tau neutrino | W boson        |                |  |
|         | electron electron                | $\mu$ muon                          | <b>₹</b><br>tau                    | <b>g</b> gluon |                |  |

Higgs boson

# Significance

- Elementary particles are intrinsically massless
- Acquire 'apparent mass' through interaction with the vacuum (Higgs field)
- Phase transition of the vacuum 10<sup>-10</sup> seconds after the birth of the universe





discovery of the Higgs boson = new paradigm of study of v

= new paradigm of study of vacuum and early universe



### Significance

Higgs properties are important probes to new physic in higher energy. For example, mass.



$$m_H(obs.)^2 = m_H(theory)^2 + [k\Lambda]^2 \times [m_Z^2 + 2 \times m_W^2 + m_H(theory)^2 - 4 \times m_{top}^2 + (new phys)]$$



### Overall view of the LHC experiments.

The LHC: proton-proton collider with the world highest energy:

- $\sqrt{s} = 7 \text{ TeV } (2011)$
- $\sqrt{s} = 8 \text{ TeV } (2012)$

Four experiments: ATLAS, CMS, LHCb, ALICE



## Higgs production and decay



- Four main productions: ggF, VBF, VH, ttH
  - ggF dominates:  $\sim$  20 pb @ m<sub>H</sub> = 125 GeV
  - VBF, VH gives clean experimental signature
- Three sensitive decay modes: γγ, ZZ, WW

### ATLAS experiment

**Muon Spectrometer** ( $|\eta|$ <2.7) : air-core toroids with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to E<sub>u</sub> ~ 1 TeV



**EM calorimeter**: Pb-LAr Accordion  $e/\gamma$  trigger, identification and measurement E-resolution:  $\sigma/E \sim 10\%/\sqrt{E}$ 

**HAD calorimetry** ( $|\eta|$ <5): segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E<sub>T</sub> E-resolution:  $\sigma$ /E ~ 50%/ $\sqrt{E} \oplus 0.03$ 

# Luminosity



- Total luminosity for physics analysis: ~ 25 fb<sup>-1</sup>
  - 20.7 fb<sup>-1</sup> (2012)
  - 4.7 fb<sup>-1</sup> (2011)

(order of) 10<sup>5</sup> Higgs bosons have been recorded

160

140

 $\sqrt{s} = 8 \text{ TeV}, \int Ldt = 20.8 \text{ fb}^{-1}, <\mu> = 20.7$ 

 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 5.2 \text{ fb}^{-1}, <\mu> = 9.1$ 



### Overview of mass & coupling measurements

- Results of gauge boson decays: γγ, WW, ZZ
  - Overview of the analyses
  - Higgs boson search
  - Mass measurement
  - Coupling measurement







non-resonant γγ (irreducible bkg.)



jet faking photons (reducible bkg.)

### $\mathsf{H} o \gamma\gamma$

- $p_T > 40$  (30) GeV for (sub) leading photon
- Vertex selection combining tracks and photon pointing with NN
- Event categorization to enhance sensitivity (independent background estimation etc.)



### $\mathsf{H} o \mathsf{y} \mathsf{y}$

- A significant excess at  $m_H = 126.8 \pm 0.2$ (stat)  $\pm 0.7$ (syst) GeV
  - $-7.4 \sigma$  (observed)
  - $-4.3 \sigma$  (expected)
- Establishes the discovery of a new particle in γγ channel alone





 $\sigma(m_{\gamma\gamma})$  ranges from 1.4 GeV to 2.5 GeV (depending on categories)



### $H \rightarrow ZZ \rightarrow 4$ lepton

- Require four isolated leptons
  - $-\mu$ :  $p_T > 20$ , 15, 10, 6 GeV in  $|\eta| < 2.7$ ,  $d_0 < 1$  mm
  - e:  $p_T > 20$ , 15, 10, 7 GeV in  $|\eta| < 2.47$ ,  $d_0 < 1$  mm
- One lepton pair with Z consistent mass: 50 < m<sub>12</sub> < 115 GeV</li>
- One lepton pair with  $m_{min} < m_{34} < 115 \text{ GeV}$  (12 <  $m_{min} < 50 \text{ GeV}$ )
- Higgs mass reconstructed as m<sub>41</sub> (Z mas constraint on m<sub>12</sub>)



### $H \rightarrow ZZ \rightarrow 4$ lepton

- a significant excess at  $m_H = 124.3^{+0.6}_{-0.5} (\text{stat})^{+0.5}_{-0.3} (\text{syst}) \text{ GeV}$ 
  - 6.4  $\sigma$  (observed)
  - $-4.4 \sigma$  (expected)
- Establishes the discovery of a new particle in ZZ channel alone







Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

Two high-p<sub>⊤</sub> leptons

 $H \rightarrow WW \rightarrow |_{V}|$ 



- 0, 1-jet: WW, Z+jets, W+jets
- 2-jet: ttbar



Large missing transverse momentum

#### $H \rightarrow WW \rightarrow |v|_V$

- Require two isolated leptons
  - p<sub>T</sub> > 25 (15) GeV for (sub) leading leptons
- Large missing transvers momentum (neutrino)
- Jet multiplicity dependent analysis
  - 0, 1-jet: ggF dominant
  - 2-jet: VBF dominant
- Utilize lepton kinematics
  - Lepton collimation (spin-0 Higgs + V-A nature of weak interaction)
  - Large angular separation from leptons to neutrinos
  - Transverse mass for final fit







#### $H \rightarrow WW \rightarrow |v|v$

Dedicated background estimation for each lepton flavor/jet multiplicity

| Channel             | WW                 | Тор                | $Z/\gamma^* \rightarrow \tau \tau$ | $Z/\gamma^* \to \ell\ell$ | W+ jets | VV      |
|---------------------|--------------------|--------------------|------------------------------------|---------------------------|---------|---------|
| $N_{\rm iet} = 0$   |                    |                    |                                    |                           |         |         |
| $e\mu + \mu e$      | CR                 | CR                 | CR                                 | MC                        | Data    | MC + VR |
| $ee + \mu\mu$       | $CR(e\mu + \mu e)$ | $CR(e\mu + \mu e)$ | $CR(e\mu + \mu e)$                 | Data                      | Data    | MC + VR |
| $N_{\rm iet} = 1$   |                    |                    |                                    |                           |         |         |
| 'еµ + µе            | CR                 | CR                 | CR                                 | MC                        | Data    | MC + VR |
| $ee + \mu\mu$       | $CR(e\mu + \mu e)$ | $CR(e\mu + \mu e)$ | $CR(e\mu + \mu e)$                 | Data                      | Data    | MC + VR |
| $N_{\rm jet} \ge 2$ |                    |                    |                                    |                           |         |         |
| $e\mu + \mu e$      | MC                 | CR (merged)        | CR                                 | MC                        | Data    | MC      |
| $ee + \mu\mu$       | MC                 | CR (merged)        | $CR(e\mu + \mu e)$                 | Data                      | Data    | MC      |



Signal depleted region ( $m_T > 150$  GeV). Background estimations work quite well

#### $H \rightarrow WW \rightarrow |v|v$

- Excess seen over wide m<sub>II</sub> range
- 3 to 4  $\sigma$  level rejection of SM background only hypothesis





#### Combined mass measurement

Combined mass measurement with γγ and ZZ:

$$m_H = 125.5 \pm 0.2 \text{ (stat)}^{+0.5}_{-0.6} \text{ (sys) GeV}$$

Compatibility between γγ and ZZ:

$$\Delta \hat{m}_H = \hat{m}_H^{\gamma\gamma} - \hat{m}_H^{4\ell} = 2.3^{+0.6}_{-0.7} \text{ (stat) } \pm 0.6 \text{ (sys) GeV}$$



2.5  $\sigma$  rejection of  $\Delta m_H = 0$  hypothesis. 1.8  $\sigma$  when if non-gaussian effect in e/ $\gamma$  energy calibration into account



### Signal strength measurements



Global signal strength:

$$\mu = 1.33 \pm 0.14 \text{ (stat)} \pm 0.15 \text{ (sys)}$$

 If preliminary results of H→bb and H→ττ (13 fb<sup>-1</sup>) are included:

$$\mu = 1.23 \pm 0.18$$

Still, compatible with SM

### VBF production evidence



 The μ ratio between bosonic (VBF+VH) and fermionic (ggF +ttH) productions: 3 σ evidence of VBF production

$$\mu_{\text{VBF}}/\mu_{\text{ggF+}ttH} = 1.4^{+0.4}_{-0.3} (\text{stat})^{+0.6}_{-0.4} (\text{sys})$$

 Individual 2D measurements has compatible with the SM



### Fermion coupling scale factors

K<sub>V</sub>: Gauge boson coupling scale factor to the SM K<sub>F</sub>: fermion coupling scale factor to the SM

- With several assumptions
  - Signal comes from single resonance
  - Zero width:  $\sigma \cdot B \ (i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$  i, f. initial, final states  $\Gamma_f$ ,  $\Gamma_H$ : partial & total width

- Tensor structure as in the SM ( $J^P = 0^+$  assumed)
- No New Physics contribution to the Higgs width



$$\kappa_F \in [0.76, 1.18]$$

$$\kappa_V \in [1.05, 1.22]$$

Vanishing Higgs to fermion Coupling has been excluded by more than 5  $\sigma$ 

### Custodial symmetry

- $\lambda_{WZ} = \kappa_W/\kappa_Z$  (1 in the SM)
- $\lambda_{WZ} \in [0.61, 1.04]$



### Anomaly check in gg→H and H→γγ loop

- Anomaly check in the loops
  - Scale factor for the couplings to the SM particles are set to 1
  - Assuming the SM total width







# Higgs boson spin & parity



#### Overview of J<sup>P</sup> measurements

- The SM Higgs boson:  $J^p = 0^+$
- The strategy is to falsify the other hypothesis (0<sup>-</sup>, 1<sup>+</sup>, 1<sup>-</sup>, 2<sup>+</sup>), and demonstrate the consistency of the SM hypothesis
  - Spin 0: only gluon fusion (gg) production is considered
  - Spin 1: only quark-antiquark (qq) annihilation is considered (Landau-Yan Theorem)
  - Spin 2: a model corresponds to a graviton-inspired tensor with minimal couplings to SM particles is chosen (arXiv:1001.3396). ggqq fraction has been scanned over entire range
- See distributions of spin & parity sensitive variables which preserve the discrimination against various background

|           | Н→γγ    | H→ZZ    | H→WW |
|-----------|---------|---------|------|
| vs 0-     |         | 0       | 0    |
| vs 1+, 1- |         | 0       | 0    |
| vs 2+     | $\circ$ | $\circ$ | 0    |

Table. Channels used in each  $J^p$  hypothesis

### $H \rightarrow \gamma \gamma$

- $|\cos\theta^*|$  and  $m_{\gamma\gamma}$  of photons has been used, where  $\theta^*$  is the polar angle of the Collins-Soper frame (*Phys. Rev. D* 16 (1977), pp 2219-2225)
- Asymmetric photon  $p_T$  cut depending on  $m_{\gamma\gamma}$  to reduce correlation between  $|\cos\theta^*|$  and  $m_{\gamma\gamma}$





# $H \rightarrow ZZ \rightarrow 4$ lepton

- m<sub>12</sub>, m<sub>34</sub>, θ, θ<sub>1</sub>, θ\*, Φ, Φ<sub>1</sub>
- Boosted Decision Tree (BDT)







#### $H \rightarrow WW \rightarrow |v|_V$

- Only e/μ, 0 jet events are used
- $m_{\parallel}$ ,  $\Delta \varphi_{\parallel}$ ,  $p_{T}^{\parallel}$ , and  $m_{T}$
- 2D BDT (0+ vs bkg alt vs bkg)









### Spin & Parity Results



#### Conclusion

- A new particle has been found
  - $-7.4 \sigma$  in gg decay
  - 6.4  $\sigma$  in ZZ decay
  - $-3.8 \sigma$  in WW decay
- The mass has been measured as  $m_H = 125.5 \pm 0.2 \, (\text{stat}) \, ^{+0.5}_{-0.6} \, (\text{sys})$  GeV
  - Compatible with the only one resonance assumption
- The coupling properties has been measured
  - The evidence of the VBF production
  - 5  $\sigma$  exclusion of vanishing fermion coupling
  - Custodial symmetry has been observed
  - No anomalies found in production/decay loops
- The spin/parity strongly favors  $J^p = 0^+$

All the properties indicates the discovery of a (SM consistent) Higgs boson!! Deviations, more Higgs bosons…? Stay tuned for 2015!! Grazie mille!!!!!!

# Back Up

# $p_{Tt}$ , $m_{\gamma\gamma}$





pile-up-robust mass reconstruction

## $H \rightarrow \gamma \gamma$



### $H \rightarrow \gamma \gamma$

Signal strength for each production mode

$$- \mu_{VH} = 1.8^{+1.5}_{-1.3}(stat)^{+0.3}_{-0.3}(syst)$$

$$-\mu_{VBF} = 1.7^{+0.8}_{-0.8} (stat)^{+0.5}_{-0.4} (syst)$$

$$- \mu_{ggH+ttH} = 1.6^{+0.3}_{-0.3}(stat)^{+0.3}_{-0.2}(syst)$$

$$- \mu = 1.65^{+0.24}_{-0.24}(stat)^{+0.25}_{-0.18}(syst)$$



### $H \rightarrow ZZ \rightarrow 4$ lepton backgrounds

- ZZ\*: MC simulation
- Z+jets, ttbar: control regions
  - CR: Loosen the selection of sub-leading lepton pair
  - Extrapolate the event yield in CR to SR by using a transfer function derived from MC





### $H \rightarrow ZZ \rightarrow 4$ lepton

Signal strength for each production mode

$$- \ \mu_{\text{ggF+ttH}} = 1.8^{+0.8}_{-0.5}$$

$$-\mu_{VH + VBF} = 1.2^{+3.8}_{-1.4}$$

$$-\mu = 1.7^{+0.5}_{-0.4}$$



#### $H \rightarrow WW \rightarrow |v|_V$



#### $H \rightarrow WW \rightarrow |_{V}|_{V}$

- Signal strength for each production mode:
  - $-\mu_{ggF} = 0.82 \pm 0.36$
  - $-\mu_{VBF} = 1.66 \pm 0.79$
  - $-\mu = 1.26 \pm 0.35$



Table 10: Summary of the coupling benchmark models discussed in this paper, where  $\lambda_{ij} = \kappa_i/\kappa_j$ ,  $\kappa_{ii} = \kappa_i\kappa_i/\kappa_H$ , and the functional dependence assumptions are:  $\kappa_V = \kappa_W = \kappa_Z$ ,  $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$  (and similarly for the other fermions),  $\kappa_g = \kappa_g(\kappa_b, \kappa_t)$ ,  $\kappa_\gamma = \kappa_\gamma(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W)$ , and  $\kappa_H = \kappa_H(\kappa_i)$ . The tick marks indicate which assumptions are made in each case. The last column shows, as an example, the relative couplings involved in the  $gg \to H \to \gamma\gamma$  process, see Eq. (7), and their functional dependence in the various benchmark models.

| Model | Probed              | Parameters of                                                 | Functional assumptions |            |          |                   |            | Example: $gg \to H \to \gamma \gamma$                                                                                |
|-------|---------------------|---------------------------------------------------------------|------------------------|------------|----------|-------------------|------------|----------------------------------------------------------------------------------------------------------------------|
|       | couplings           | interest                                                      | $\kappa_V$             | $\kappa_F$ | Kg       | $\kappa_{\gamma}$ | $\kappa_H$ |                                                                                                                      |
| 1     | Couplings to        | $\kappa_V, \kappa_F$                                          | <b>√</b>               | √          | √        | <b>√</b>          | √          | $\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)/\kappa_H^2(\kappa_F, \kappa_V)$                                |
| 2     | fermions and bosons | $\lambda_{FV}$ , $\kappa_{VV}$                                | <b>V</b>               | 1          | <b>V</b> | <b>√</b>          | -          | $\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$            |
| 3     | Custodial symmetry  | $\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$                     | -                      | <b>V</b>   | <b>V</b> | <b>√</b>          | -          | $\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$ |
| 4     |                     | $\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$ | -                      | 1          | <b>√</b> | -                 | -          | $\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \lambda_{\gamma Z}^2$                                                      |
| 5     | Vertex loops        | $\kappa_g, \kappa_\gamma$                                     | =1                     | =1         | -        | -                 | √          | $\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g, \kappa_\gamma)$                                             |

$$\kappa_g^2(\kappa_b, \kappa_t) = \frac{\kappa_t^2 \cdot \sigma_{ggH}^{tt} + \kappa_b^2 \cdot \sigma_{ggH}^{bb} + \kappa_t \kappa_b \cdot \sigma_{ggH}^{tb}}{\sigma_{ggH}^{tt} + \sigma_{ggH}^{bb} + \sigma_{ggH}^{tb}}$$

$$\frac{\sigma \cdot \mathbf{B} (gg \to H \to \gamma \gamma)}{\sigma_{\mathrm{SM}}(gg \to H) \cdot \mathbf{B}_{\mathrm{SM}}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2} \quad (7) \qquad \kappa_\gamma^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W) = \frac{\sum_{i,j} \kappa_i \kappa_j \cdot \Gamma_{\gamma\gamma}^{ij}}{\sum_{i,j} \Gamma_{\gamma\gamma}^{ij}}$$
(8)

$$\kappa_{H}^{2} = \sum_{\substack{jj=WW^{*},\ ZZ^{*},\ b\bar{b},\ \tau^{-}\tau^{+},\\ \gamma\gamma,\ Z\gamma,\ gg,\ t\bar{t},\ c\bar{c},\ s\bar{s},\ \mu^{-}\mu^{+}}} \frac{\kappa_{j}^{2}\Gamma_{jj}^{\text{SM}}}{\Gamma_{H}^{\text{SM}}}$$

