

Physics prospects for Top (experiments)

Matteo Negrini INFN Bologna

ATLAS Italia - Workshop su fisica e upgrade Bologna, 14-16/01/2014

Why top physics at LHC

LHC is a top factory

Tevatron: $\sigma_{t\bar{t}}$ ~7 pb (~10⁴ events) LHC@8TeV: $\sigma_{t\bar{t}}$ ~240 pb (~5x10⁶ events)

Top physics at LHC moved to precision measurements

- Precision tests of QCD with NNLO predictions available
 - Exploring low-populated regions of the phase space
 - Precision measurements can be used for PDF fits
- Modeling of SM tt background for BSM physics searches

Italian top groups activities

Present contributions:

- tt differential cross section measurements (BO, CS)
- tt charge asymmetry (UD)
- Fake leptons and W+jets background estimates (UD)
- Boosted top reconstruction (BO)

Plans for the future:

- tt differential cross section measurements (incl. boosted) (BO, CS)
- Fake leptons and W+jets background estimate (UD)
- ttH (BO, Roma1, UD)
- Study of multi-top final states (UD)

LHC schedule

2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
	LS	51				LS2				LS3	
										HL-L	НС
0.7x1	0 ³⁴ cm ⁻² s	-1	1.5x	10 ³⁴ cm ⁻	⁻² S ⁻¹	2	x10 ³⁴ cm	1 ⁻² S ⁻¹		5x10 ³⁴ c	cm ⁻² S ⁻¹
pile	-up ~30		pi	le-up ~4	0		pile-up -	-60		pile-up	~140
2	5 fb ⁻¹		~	100 fb ⁻¹			~300 ft) ⁻¹		~3000	fb-1

Many measurements in top physics already limited by systematics

Studies that will profit from the increased energy and luminosity:

- → All searches (FCNC decays, tt resonances, top partners, ...)
- → Top quark mass
- Differential cross section
- → Charge asymmetry
- → tīV, tīH
- Measurements using boosted tops

Top quark production

	Tevatron 2 TeV	LHC 8 TeV	LHC 14 TeV
gg	10%	85%	90%
qq	90%	15%	10%

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

Top quark signatures

Top quark mass

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

Top quark mass: ATLAS

Strategy: fit a distribution using theoretical predictions where m_t enters as a free parameter.
Ingredients: NLO predictions needed to push the accuracy below the GeV level Kinematical distributions with a strong dependence on m_t

Template method: build a series of templates using different m_t values and setting different values for the JES to extract a likelihood function that is used to fit data

ATLAS single-lepton: three dimensional template fit

- $\rightarrow m_t^{reco}$: top quark mass, extracted from likelihood fit
- $\rightarrow m_w^{reco}$: invariant mass of the chosen jet permutation
- → R_{Ib}^{reco}: ratio of the scalar sum of p_T of b-tagged jets and the scalar sum of the p_T of the two light jets from W decay

Top quark mass: LHC

Precision measurement of the top mass needed for precision EW fits and to address the question of vacuum stability in the SM

LHC combination of top quark mass measurements: 173.29 ± 0.23 (stat) ± 0.92 (syst) GeV

Current measurements are already systematics dominated

Improvements in m_t measurement may be achieved applying alternative techniques with large statistics

	7 TeV	14 TeV (projections)		
Luminosity (fb ⁻¹)	5	100	300	3000
Template method Tot. uncertainty (GeV)	1.0	0.7	0.6	0.6
CMS end-point method Tot. uncertainty (GeV)	2.0	1.0	0.7	0.5

Example: extrapolation on m_t uncertainty using the template or the CMS end-point methods (Snowmass 2013 top quark WG, arXiv:1311.2028)

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

Cross section: tt

Excellent agreement. Comparable theoretical and experimental uncertainties. M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

Differential cross section

Large tt samples available at the LHC allow the measurement of differential cross sections:

- \rightarrow test/tune tt production models in different phase space regions
- Iook for discrepancies wrt SM predictions
- measurements to include in PDF fits
- > background for BSM searches

~

~

ATLAS-CONF-2013-099

Normalized diff. cross sections

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

Comparison with CMS

ATLAS and CMS results generally consistent with SM predictions, but...

- Some tension between ATLAS and CMS in the lowest p_T^t bin
- MC tend to overestimate the measured cross section at large p_T^t for both ATLAS and CMS

POWHEG+HERWIG provides the best description of the p_T^t distribution over the full range

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

PDFs

All the ingredients are available to use top quark pair cross section measurements to test the PDFs

- → Large statistics
- Differential measurements
- → NLO predictions (MCFM)

Theoretical predictions tend to show an excess on data at large p_T Theory/data in better agreement using HERAPDF 1.5

Cross section: prospects

- Experimental and theoretical uncertainties with similar accuracy needed to test theoretical predictions
- More statistics will help in the tails of the distributions

- -> Uncertainty increasing at large p_{T}
- Scale uncertainty dominating the predictions NNLO differential predictions needed

Top quark pair production cross section

Top quark pair production charge asymmetry

tt production charge asymmetry

Top quark mass

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

tt resonance search

Resolved selection (~10⁵ events)

Boosted selection (~10³ events)

ATLAS-CONF-2013-052

Setting limits on tt resonances

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

Top quark mass

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

Boosted objects

Boosted tops

Large-R jet grooming

Jet grooming techniques (Mass-drop filering, Trimming, Pruning): mitigate the effect of the pile-up by removing soft radiation spatially uncorrelated with the main energy deposits

Mass and p_{τ} of large-R jets

ATLAS-CONF-2013-084

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

Top tagging techniques

Several techniques based on the analysis of the substructure of the large-R jet are used for tagging

- Mass
- Splitting scales
- n-subjettiness
- HEPTopTagger
- Template Overlap
- Shower deconstruction

Template Overlap method

Generation of a large sample of top hadronic decays at the parton level (templates)

Energy deposits in the large-R jet are compared with the expectations from each template by summing energy deposition in sub-cones around the partons directions

Definition of an overlap function and loop over all templates to look the for maximum overlap

Maximum over all templates

 $Ov = max_{(TS)} \left\{ exp \right\}$

Energy resolution ($\sim E_1/3$)

Technique with low sensitivity to pile-up

Template parton energy

Sum over all reconstructed large-R jet constituents in a cone around the ith parton direction

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

ttH

q 000000

g 000000

Н°

Measurement of the top-Higgs coupling

Cross section for ttH at the LHC: 0.13 pb (8 TeV) 0.61 pb (14 TeV)

Complex final state with at least 8 objects Several final states depending on $\ensuremath{t\bar{t}}$ and H decay modes

Natural "extension" of tt event selection Main backgrounds from tt production associated with jets or EW bosons

ttH: examples

Expected precision on top Yukawa coupling at 14 TeV LHC: ~15% (300 fb⁻¹) - ~10% (3000 fb⁻¹)

More details on $ttH(\gamma\gamma)$ in the talk by Leandro

Top quark mass

Top quark pair production cross section

Top quark pair production charge asymmetry

tt resonances search

Top FCNC: BR limits

BR for FCNC processes <10⁻¹⁴ in the SM

Can be largely enhanced by new physics

arXiv:1311 2028

				ATL-PHYS	-PUB-2013-012
Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$			$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$		10^{-5}
$t \to c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	~ 10 ⁻⁶	$\sim 10^{-9}$	$2 \cdot 10^{-6}$
$t \to cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

QS: Quark-singlet model

2HDM-III: Two-Higgs doublet model without explicit flavor conservation FC-2HDM: Two-Higgs doublet model with explicit flavor conservation MSSM: Minimal supersymmetric model

Projected limits on top FCNC at the LHC

•	t→Zq	$t \rightarrow \gamma q$	t→gu	t→gc	t → Hq (γγ)	t → Hq (II)
300 fb ⁻¹	2.2x10 ⁻⁴	8x10 ⁻⁵	4x10 ⁻⁶	1x10 ⁻⁵	5x10 ⁻⁴	2x10 ⁻³
3000 fb ⁻¹	7x10 ⁻⁵	2.5x10⁻⁵	1x10 ⁻⁶	4x10 ⁻⁶	2x10 ⁻⁴	5x10 ⁻⁴

Study of t \rightarrow cH($\gamma\gamma$) in ATLAS

ATL-PHYS-PUB-2013-012

Analysis strategy:

- → Reconstruct the first top candidate in the $c\gamma\gamma$ channel
- Reconstruct the second top (either hadronic or leptonic decay)
- -> Extract number of signal events using $m_{\gamma\gamma}$ distribution

Extrapolation of the limits based on the analysis at 8 TeV (arXiv:1206.1257)

Considering different scenarios:

Nominal or conservative background

Number of background events extrapolated from the number observed at 8 TeV (or adding 1σ for a conservative estimate)

Loose or tight jet p_{τ} cuts

30/25 GeV (or 50/35 GeV) on leading/subleading jet

LHC limit with 3 ab⁻¹: BR($t \rightarrow cH$)<1.5x10⁻⁴ at 95% C.L.

Conclusions

Several measurement in top physics will profit from the increased top production cross-section at 14 TeV and a larger integrated luminosity

14 TeV LHC with 300 fb⁻¹ will allow precision SM physics for top: → m, with sub-GeV uncertainty

Comparison of diff. cross section with theoretical models

Boosted top reconstruction studies needed for searches and precision physics measurements

BSM physics searches involving top quarks:
 Push the limit on tt resonance production at ~3-4 TeV with 300fb⁻¹
 Any top-FCNC observation implies new physics
 Precision SM measurements needed for background modeling

Backup

m_t with CMS endpoint method

Exploit kinematical variables correlated with m,

Fit to the endpoint of three distributions (μ_{II} , μ_{bb} , M_{bI}) in dilepton tt events

Precision comparable with other techniques using dilepton tt events

 $m_t = 173.9 \pm 0.9 \text{ (stat)}^{+1.7}_{-2.1} \text{ (syst) GeV}$ Main systematic contribution: JES

Eur.Phys.J C 73 (2013) 2494

Jet grooming

Techniques used to mitigate the effect of pile-up (typically soft radiation spatially separated from the main energy deposits)

Mass-drop filtering: sub-jets with reduced R and significantly smaller mass are constructed. Residual energy deposits are rejected.

Trimming: sub-jets of smaller R are constructed. Sub-jets with p_{τ} smaller than a fixed fraction of the p_{τ} of the original jet are removed.

Pruning: jet reconstruction reapplied to all jet constituents. At each step of the reconstruction the constituents of small p_{T} and spatially separated are removed.

M. Negrini - Workshop ATLAS Italia - Bologna, 14-16/01/2014

ttZ

One event observed in ATLAS analysis (4.7 fb⁻¹ at 7 TeV), in agreement with SM expectations

ATLAS: σ(ttZ)<0.71 pb (95% CL) SM: σ(ttZ)=0.14 pb (NLO)

Will largely benefit from the increased energy ($\sigma \times 4$) and integrated luminosity

Hundreds of events expected with 300 fb⁻¹ at 14 TeV

ATLAS Preliminary

ATLAS-CONF-2012-126

stop

Increasing the total integrated luminosity from 300 fb⁻¹ to 3000 fb⁻¹ increases the stop mass discovery reach from ~800 GeV to ~920 GeV.