
Future prospects in Higgs Physics

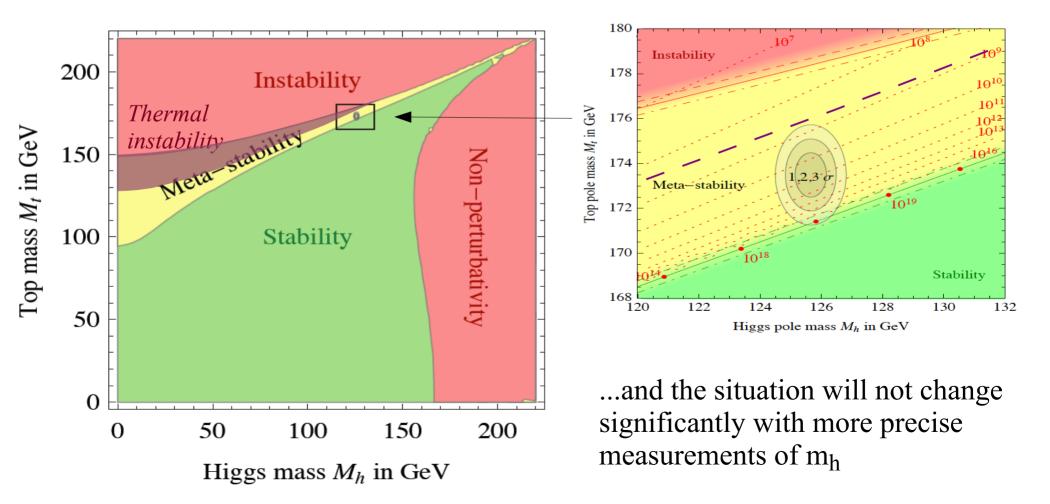
<u>Gino Isidori</u> [*INFN, Frascati*]

Introduction: what we learned so far

- The leading effective couplings
- Kinematical studies
- Rare modes within & beyond the SM
- Conclusions

Introduction [what we learned so far]

Introduction: what we learned so far


The discovery of the Higgs boson, and its first studies at run-I, represent a <u>turning point</u> in our understanding of fundamental interactions:

- All degrees of freedom predicted by the SM have been experimentally confirmed.
- Assuming h(125) is the the excitation of the Higgs field, then
 - → m_h is compatible with the indirect constraints from e.w. precision observables (→ *no clear clue for NP around the TeV scale*)
 - the leading Higgs couplings are compatible with SM expectations
 (→ no clear clue for extra light Higgses and/or NP around few 100 GeV)
 - the Higgs field has a small self-interaction ($\lambda \approx \frac{1}{2} m_h^2/v^2 \approx 0.13$) and the SM potential is unstable but sufficiently metastable up to the Planck scale (\rightarrow *no need for NP below the Planck scale*)

Introduction: what we learned so far [the Higgs mass]

Before the Higgs discovery there were strong hopes that knowing the *Higgs mass* (*the only mass scale in the theory*) we would have gained a clear clue about NP.

<u>These hopes were justified</u>, and indeed m_h *could have* given us clear clues about NP. However, we have not been so lucky...

Introduction: what we learned so far

Still... the SM suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- ➤ No explanation for the quantization of the U(1) charges [*hint of unification*?]
- No natural inclusion of neutrino masses [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter & no explanation of dark energy

Common view: the SM (and in particular the Higgs sector) is an <u>effective theory</u>, or the low-energy limit of a more fundamental theory, with new degrees of freedom at high energies.

Introduction: what we learned so far

Still... the SM suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- ➤ No explanation for the quantization of the U(1) charges [*hint of unification*?]
- No natural inclusion of neutrino masses [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter & no explanation of dark energy

The only (qualitative) indication of NP not far from 1 TeV:

$$\Delta m_{\rm h}^2 \sim \Lambda^2$$

Introduction: what we learned so far

The evidence of the new boson, compatible with the properties of the massive excitation of the Higgs field, indicates that the symmetry breaking sector of the effective theory has a *minimal* and *weakly coupled* structure...

 $\mathscr{L}_{\text{Symm. Break.}}(\phi, A_a, \psi_i) = D\phi^+ D\phi - V(\phi) + \dots$ $V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi_L^{\ i} \psi_R^{\ j} \phi$

...<u>but we are far from having established that there is nothing else beside the SM</u> (or that the cut-off of SM viewed as an effective theory is very high)

On general grounds, it is natural to expect possible deviations from the SM in the Higgs sector

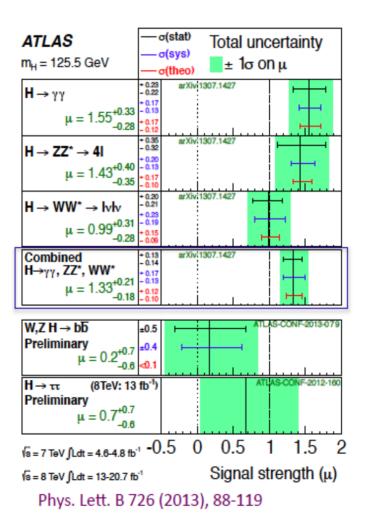
High-precision Higgs physics

Introduction: what we learned so far

The evidence of the new boson, compatible with the properties of the massive excitation of the Higgs field, indicates that the symmetry breaking sector of the effective theory has a *minimal* and *weakly coupled* structure...

 $\mathscr{L}_{\text{Symm. Break.}}(\phi, A_a, \psi_i) = D\phi^+ D\phi - V(\phi) + \dots$ $V(\phi) = -\mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + \mathbf{Y}^{ij} \psi_L^{\ i} \psi_R^{\ j} \phi$

...<u>but we are far from having established that there is nothing else beside the SM</u> (or that the cut-off of SM viewed as an effective theory is very high)


On general grounds, it is natural to expect possible deviations from the SM in the Higgs sector

High-precision Higgs physics

I. <u>precise measurements</u> of SM allowed processes (production & decay)

II. search for <u>rare/exotic</u> h decay modes

The leading effective couplings

from $\sigma(gg \rightarrow h)$

from $\sigma(gg \rightarrow t\underline{t}+h)$

h-gg


h-tt

<u>The leading effective couplings</u>

The <u>first step</u> in High-precision physics is the determination of the <u>leading effective</u> <u>3-point couplings</u> to SM fields [$h-f_{SM}f_{SM}$]

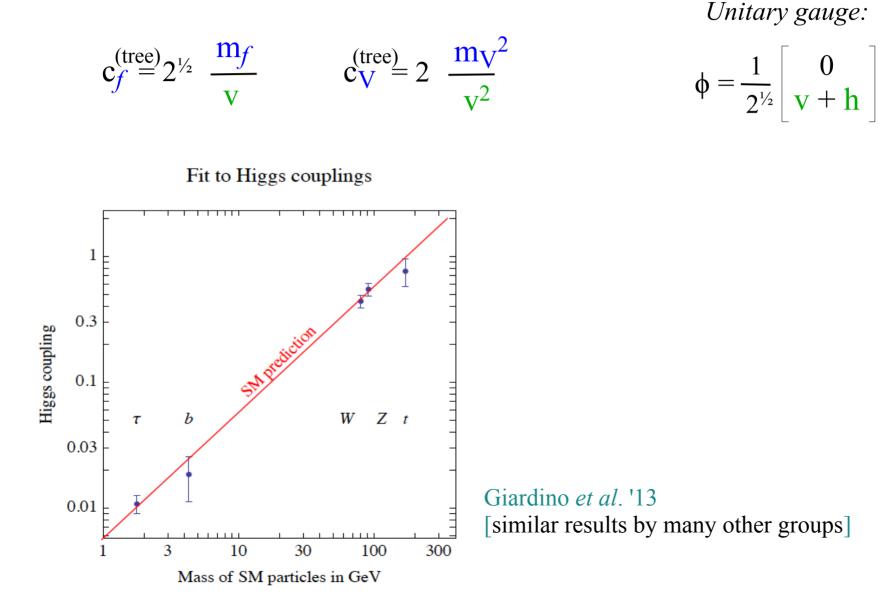
The peculiar value $m_h \sim 125$ GeV offers the possibility to precisely measure several of these couplings.

+

<u>The leading effective couplings</u>

The <u>first step</u> in High-precision physics is the determination of the <u>leading effective</u> <u>3-point couplings</u> to SM fields [$h-f_{SM}f_{SM}$]

The peculiar value $m_h \sim 125$ GeV offers the possibility to precisely measure several of these couplings.


As discussed by many authors, such coupling could deviate from the SM reference values in extensions of the SM...

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^{2} - \frac{1}{2} m_{h}^{2} h^{2} - \frac{d_{3}}{6} \left(\frac{3m_{h}^{2}}{v} \right) h^{3} - \frac{d_{4}}{24} \left(\frac{3m_{h}^{2}}{v^{2}} \right) h^{4} \dots$$
$$- \left(m_{W}^{2} W_{\mu} W_{\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z_{\mu} \right) \left(1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right)$$
$$- \sum_{\psi=u,d,l} m_{\psi^{(i)}} \bar{\psi}^{(i)} \psi^{(i)} \left(1 + c_{\psi} \frac{h}{v} + c_{2\psi} \frac{h^{2}}{v^{2}} + \dots \right) + \dots$$

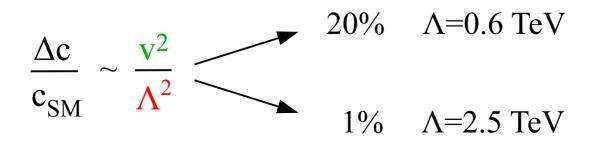
Contino et al. '10, '13

Key property within the SM:

Key property within the SM:

$$c_f^{\text{(tree)}} 2^{\frac{1}{2}} \frac{\mathbf{m}_f}{\mathbf{v}} \qquad c_V^{\text{(tree)}} = 2 \frac{\mathbf{m}_V^2}{\mathbf{v}^2}$$

Unitary gauge:


$$\phi = \frac{1}{2^{\frac{1}{2}}} \begin{bmatrix} 0 \\ v+h \end{bmatrix}$$

This prediction can change if...

- φ is not the only field responsible for e.w. symmetry breaking (*multi Higgs*)
- we add higher-dimensional operators (generic heavy NP)

$$y \psi_L \psi_R \phi + \frac{c}{\Lambda^2} \psi_L \psi_R (\phi^+ \phi) \phi^3 + \dots$$

Naïve estimate in generic EFT beyond SM:

The leading effective couplings

Key property within the SM:

$$c_f^{\text{(tree)}} 2^{\frac{1}{2}} \frac{m_f}{v} \qquad c_V^{\text{(tree)}} = 2 \frac{m_V^2}{v^2}$$

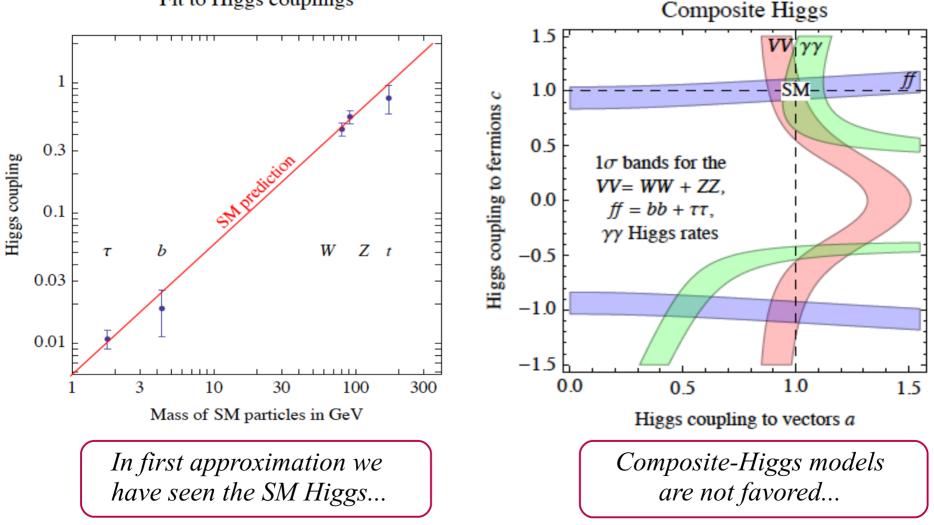
Unitary gauge:

$$\phi = \frac{1}{2^{\frac{1}{2}}} \begin{bmatrix} 0 \\ v+h \end{bmatrix}$$

This prediction can change if...

- ϕ is not the only field responsible for e.w. symmetry breaking (*multi Higgs*)
- we add higher-dimensional operators (generic heavy NP)

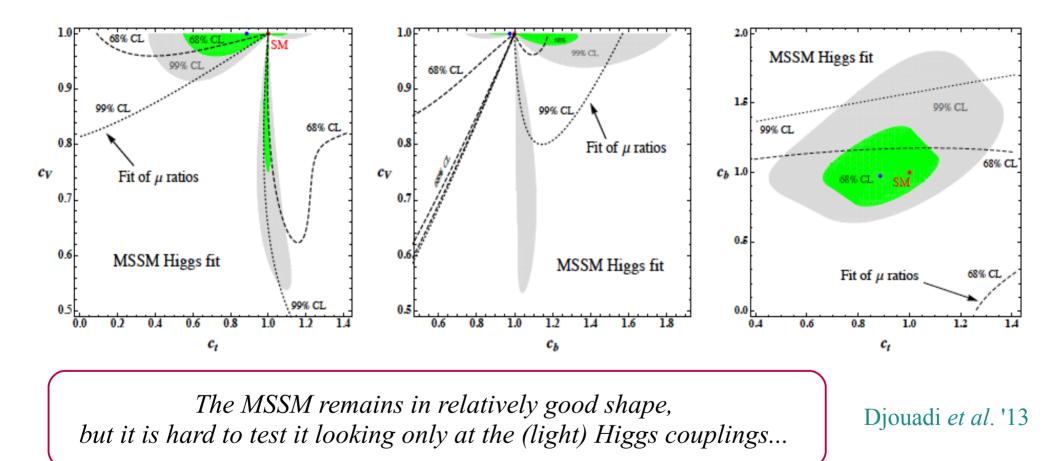
$$\mathbf{y} \psi_{\mathrm{L}} \psi_{\mathrm{R}} \phi + \frac{\mathbf{c}}{\Lambda^2} \psi_{\mathrm{L}} \psi_{\mathrm{R}} (\phi^+ \phi) \phi^3 + \dots$$

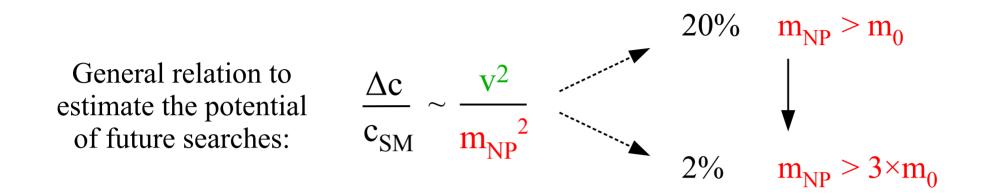

Specific models predicts specific correlations among the deviations in the various effective couplings (*reduced n. of free parameters*):

- Naïve composite/partial composite models: universal $c_f \& c_V$
- → (heavy) SUSY: 3-parameter fit c_b, c_t, c_V

The leading effective couplings

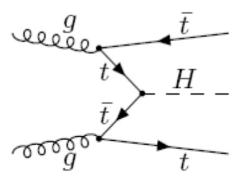
A few tests of this type have already been performed:


Fit to Higgs couplings

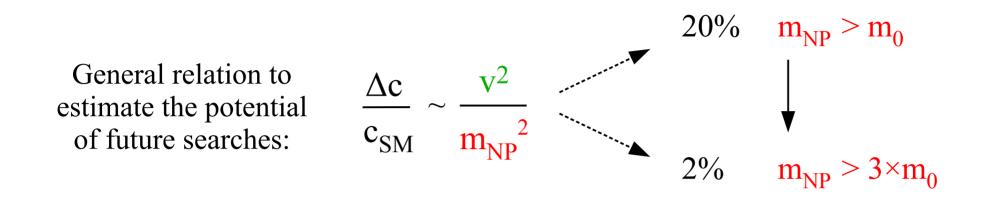

Giardino *et al.* '13 [similar results by many other groups]

The leading effective couplings

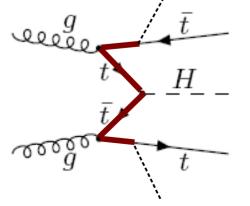
A few tests of this type have already been performed:



<u>The leading effective couplings</u>


But the deviations can be larger in specific channels (within specific NP models).

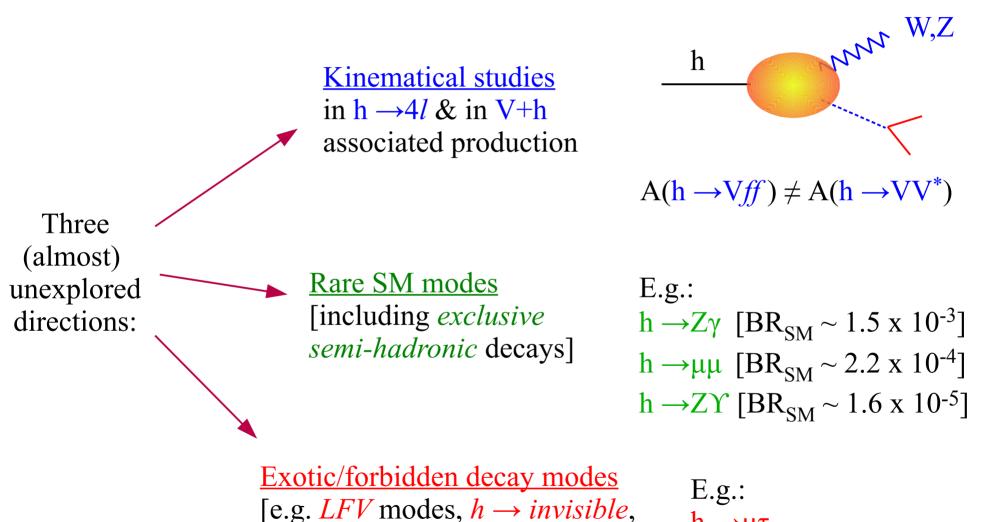
Particularly interesting case: H-tt coupling, in models where the top is a (partial-)composite state:


O(1) *deviations from the SM not impossible...*

The leading effective couplings

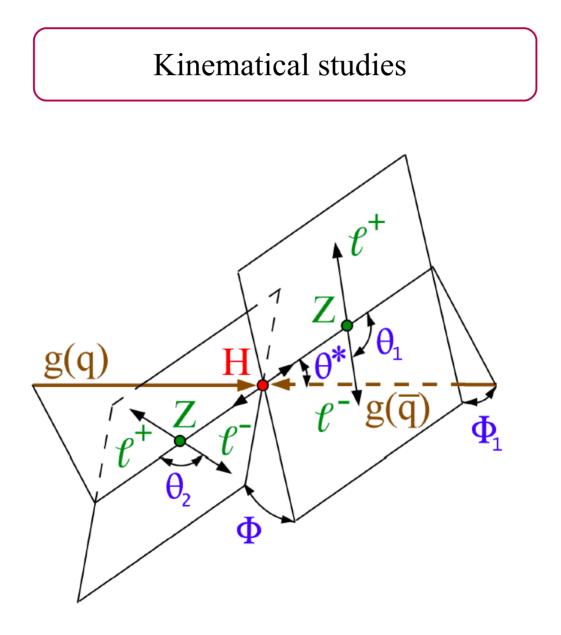
But the deviations can be larger in specific channels (within specific NP models).

Particularly interesting case: H-tt coupling, in models where the top is a (partial-)composite state:



O(1) *deviations from the SM not impossible...*

...especially if also other prod. mechanisms contribute

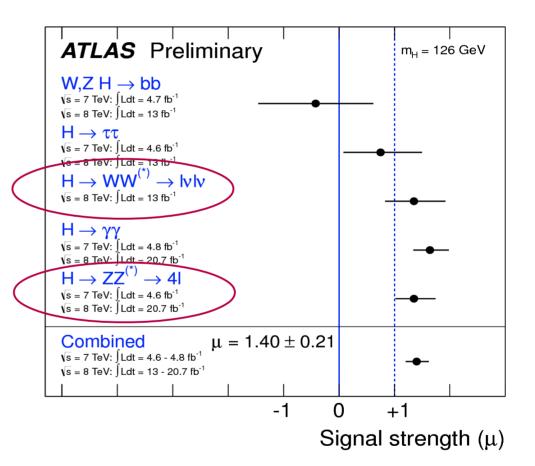

The leading effective couplings

But the peculiar value $m_h \sim 125 \text{ GeV}$ offers many more interesting tests:

 $h \rightarrow new \ light \ states, \ldots$

 $\begin{array}{c} h \longrightarrow \mu \tau \\ h \longrightarrow Z + A \end{array}$

\blacktriangleright *Kinematical studies* [mainly $h \rightarrow 4l$]

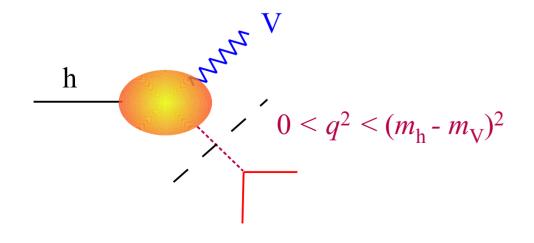

ATLAS and CMS have reported results about the $h \rightarrow WW^* \& h \rightarrow ZZ^*$ couplings

However, what is really measured are 4-lepton modes.

With suitable cuts what can be probed in experiments is the $h \rightarrow Vff$ amplitude (V=W, Z) and, in general,

$$\left(A(h \rightarrow V f f) \neq A(h \rightarrow V V^*) \right)$$

$$\frac{h}{J_{\mu}^{f}} = \bar{f} \gamma_{\mu} (v^{f} + a^{f} \gamma_{5}) J$$


$\blacktriangleright Kinematical studies [mainly h \rightarrow 4l]$

ATLAS and CMS have reported results about the $h \rightarrow WW^* \& h \rightarrow ZZ^*$ couplings

However, what is really measured are 4-lepton modes.

With suitable cuts what can be probed in experiments is the $h \rightarrow V_{ff}$ amplitude (V=W, Z) and, in general,

$$\left(A(h \rightarrow V f f) \neq A(h \rightarrow V V^*)\right)$$

The "offshellness" of the second lepton pair allows to probe a <u>richer dynamical structure:</u>

- We are far enough from the pole of the amplitude at $q^2 = m_V^2$ (the only pole within the SM)
- Measuring the q² dependence we could possibly reveal new "distant poles" (↔ contact interactions) or even new "light poles" (↔ new light states coupled to Higgs & fermions)

G. Isidori – Future prospects in Higgs Physics

∨ (*p*,*ε*)

\blacktriangleright *Kinematical studies* [mainly h $\rightarrow 4l$]

Assuming $J(h)=0 \rightarrow$ general decomposition of the amplitude in terms of 4 *independent form factors*:

$$\mathcal{A}_{V}^{\mathcal{F}} = C_{V} g_{V}^{2} m_{V} \frac{\varepsilon_{\mu} J_{\nu}^{\mathcal{F}}}{(q^{2} - m_{V}^{2})} \left[\frac{f_{1}^{V}(q^{2}) g^{\mu\nu} + f_{2}^{V}(q^{2}) q^{\mu} q^{\nu}}{+ f_{3}^{V}(q^{2})(p \cdot q \ g^{\mu\nu} - q^{\mu} p^{\nu}) + f_{4}^{V}(q^{2}) \epsilon^{\mu\nu\rho\sigma} p_{\rho} q_{\sigma} \right]$$

h

• SM limit: $f_1 = 1$, $f_2 = -1/m_V^2$, $f_{3,4} = 0$

GI, Manohar, Trott, '13

- f_2 do not contribute to conserved currents (\rightarrow irrelevant for $l=e,\mu$)
- f_3 do not contribute if $J_{\mu} \sim q_{\mu}$
- $\operatorname{Re}(f_4)$ is CP odd in $h \to ZZ^*$ if CP(h)=+
- $\operatorname{Im}(f_4)$ is CP even, but it is allowed only for a hWlv local interaction

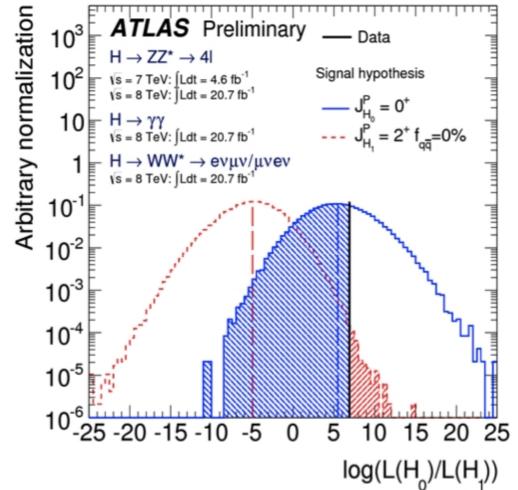
G. Isidori – Future prospects in Higgs Physics

 \blacktriangleright *Kinematical studies* [mainly $h \rightarrow 4l$]

Assuming J(h)= 0
$$\rightarrow$$
 general
decomposition of the amplitude in
terms of 4 independent form factors:
$$\mathcal{A}_{V}^{\mathcal{F}} = C_{V}g_{V}^{2}m_{V}\frac{\varepsilon_{\mu}J_{\nu}^{\mathcal{F}}}{(q^{2}-m_{V}^{2})}\left[\frac{f_{1}^{V}(q^{2})g^{\mu\nu} + f_{2}^{V}(q^{2})q^{\mu}q^{\nu}}{+f_{3}^{V}(q^{2})(p \cdot q \ g^{\mu\nu} - q^{\mu}p^{\nu}) + f_{4}^{V}(q^{2})\epsilon^{\mu\nu\rho\sigma}p_{\rho}q_{\sigma}}\right]$$

N.B.: This structure is more general than what presently used to analyze data:

$$\mathcal{A}_{VV*} = \frac{\kappa}{(q^2 - m_V^2)} \left[a_1 \ g^{\mu\nu} + a_2 \ q^{\mu} p^{\nu} + a_3 \ \epsilon^{\mu\nu\rho\sigma} p_{\rho} q_{\sigma} \right]$$


... but is trivial to relate the two parameterizations for $h \rightarrow Z+ll$ $\begin{vmatrix} a_i \rightarrow a_i (q^2) \end{vmatrix}$ $a_1(t) = f_1(t) + f_3(t) \times (m_h^2 - m_V^2 - t)/2$ $a_3(t) = -f_3(t)$ $a_4(t) = f_4(t)$

KEY POINT:

 \blacktriangleright *Kinematical studies* [mainly $h \rightarrow 4l$]

So far the $h \rightarrow 4l$ analysis were focused on determining

- The signal strength (= total rate)
- The J^{CP} properties of h

\blacktriangleright <u>Kinematical studies</u> [mainly h $\rightarrow 4l$]

So far the $h \rightarrow 4l$ analysis were focused on determining

- The signal strength (= total rate)
- The J^{CP} properties of h

However, we know very little yet about possible modification of the $q^2 = m_{ll}^2$ spectrum, that can <u>easily occur</u> even if h is a 0^+ state

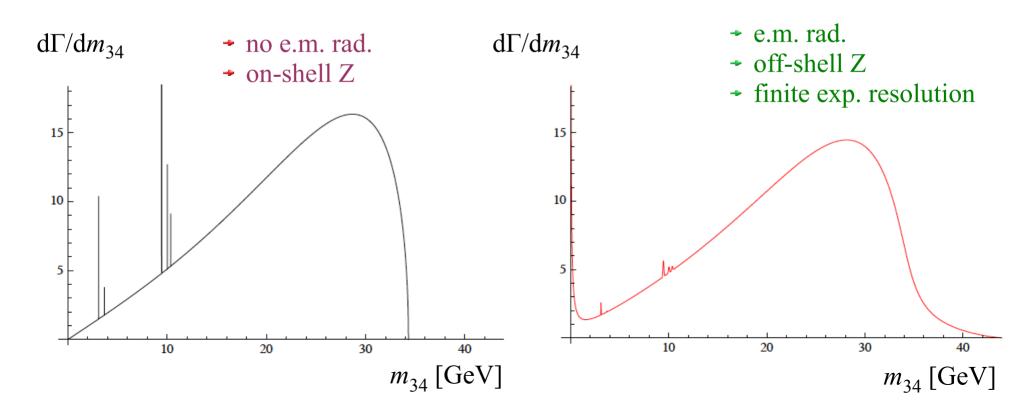
 $d\Gamma/dq^2$ 1.5SM 1 0.5 0.04 Possible modifications of the spectrum, 0.02 0.06 0.08 0 $q^2 / m_{\rm h}^2$ With generic NP \sim 1 TeV, leading to the same total rate

 \rightarrow significant constraints from EPWO [Pomarol & Riva, '13]

However... • significant deviations in the *Zll* spectrum still possible

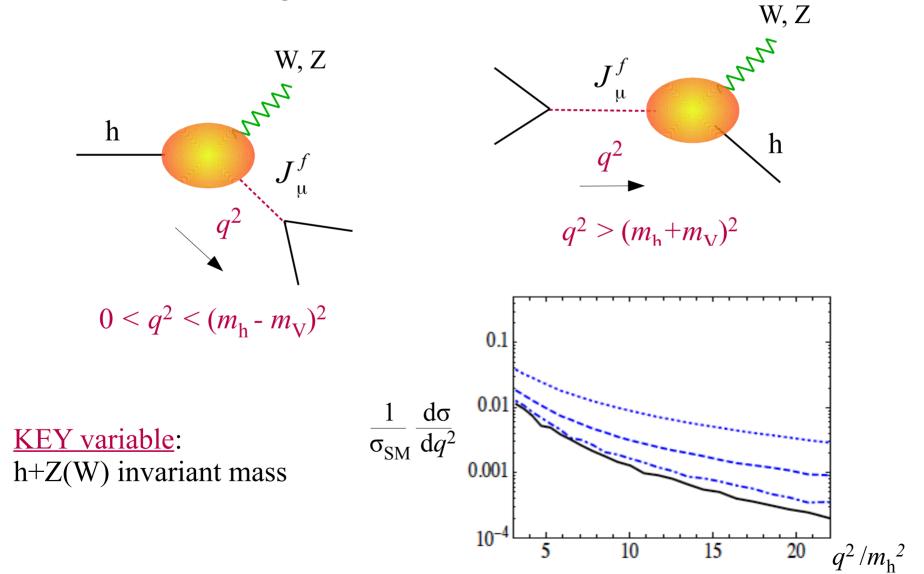
testing if such constraints are verified is a powerful tool to test if h is indeed part of an SU(2) doublet

GI, Trott, '13


$\blacktriangleright \underline{Kinematical \ studies} \ [mainly h \rightarrow 4l]$

The (spin-averaged) double differential distribution is the most efficient way to perform a model-indep. analysis aimed to extract the CP-conserving $f_i(q^2)$

$$\frac{d^2 \Gamma}{d m_{34} d \cos \theta}$$


2

Possible to derive a very precise SM distribution, even at low m_{34} , including charmonium states [GI & Gonzales-Alonso, work in prog.]:

$\blacktriangleright \underline{Kinematical \ studies} \ [mainly h \rightarrow 4l]$

The hVff form factors are accessible also inV+h associated production in a different kinematical regime

On general grounds, rare/exotic Higgs decays offer a <u>very interesting</u> window to NP

On the TH side:

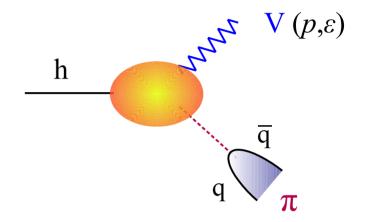
- Unique window on models where (light) NP couples directly (*effective tree-level coupling*) only to the Higgs field (*Higgs portal*, ...)
- Large deviations from the SM less constrained by other observables (e.g. EWPO)

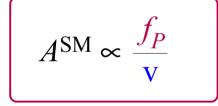
On the EXP side:

• Hopefully more room for improvement with increasing statistics vs. the (slow) improvement in measurements where we have already seen the SM signal...

I. $h \rightarrow Z\gamma$

This mode is semi-rare $[BR_{SM} \sim 1.5 \times 10^{-3}]$ and its knowledge would complete the picture of the h-SM_{gauge}-SM_{gauge} effective couplings


- Loop generated within the SM (similar to $h \rightarrow \gamma \gamma$)
- <u>Key observation</u>: No direct constraint within a generic EFT approach by $EPWO + h \rightarrow \gamma\gamma \implies O(1)$ deviations from the SM possible on general grounds (*naturally expected in composite-Higgs models*)


Azatov, Contino, Di Iura, Galloway, '13 Pomarol & Riva, '13

• Strong phenomenological interest if some deviation seen in $h \rightarrow \gamma \gamma$

II. Exclusive hadronic/semi-hadronic decays

Rare $h \rightarrow VP$ decays, where *P* is a single hadron state (*pseudo-scalar* or *vector-meson*) are a very interesting probe of the vacuumstructure of the theory

ratio of the two order parameters controlling the $SU(2)_L$ breaking

GI, Manohar, Trott, '13

Radiative modes of the type $h \rightarrow \gamma Y$ where Y is a quarkonium state have similar properties: more sensitivity to hqq couplings, but still dominated by $h \rightarrow \gamma Z^* \rightarrow \gamma Y$ within the SM

Bodwin, Petriello, Sonyev, Velasco, '13

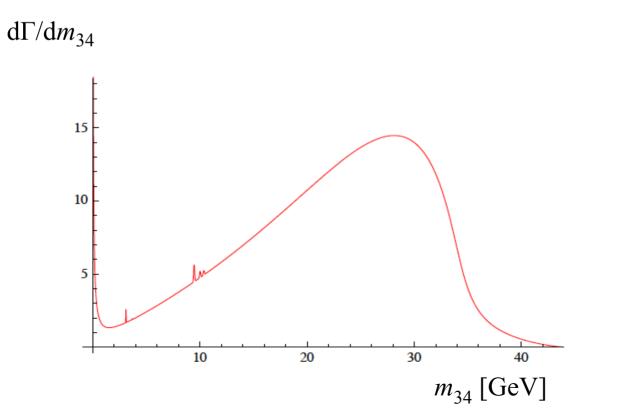
II. Exclusive hadronic/semi-hadronic decays

The SM rates are suppressed but not outrageously small (*thanks to* $m_h \sim 125$ GeV), and some channels may have a (*relatively*...) clean signature

$VP \mod$	${\cal B}^{ m SM}$	VP^* mode	${\cal B}^{ m SM}$	Sizable modifications
$W^{-}\pi^{+}$	0.6×10^{-5}	$W^- ho^+$	0.8×10^{-5}	possible in various
W^-K^+	0.4×10^{-6}	$Z^0\phi$	2.2×10^{-6}	BSM frameworks
$Z^0\pi^0$	0.3×10^{-5}	$Z^0 ho^0$	1.2×10^{-6}	
$W^-D_s^+$	2.1×10^{-5}	$W^{-}D_{s}^{*+}$	3.5×10^{-5}	
W^-D^+	$0.7 imes 10^{-6}$	$W^{-}D^{*+}$	1.2×10^{-6}	GI, Manohar, Trott, '13
$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	1.7×10^{-6}	
$h \rightarrow \gamma J/\psi$	2.5 x 10 ⁻⁶	$h \rightarrow Z\Upsilon$	1.6 x 10 ⁻⁵	Bodwin <i>et al.</i> '13 GI, Gonzales-Alonso '14

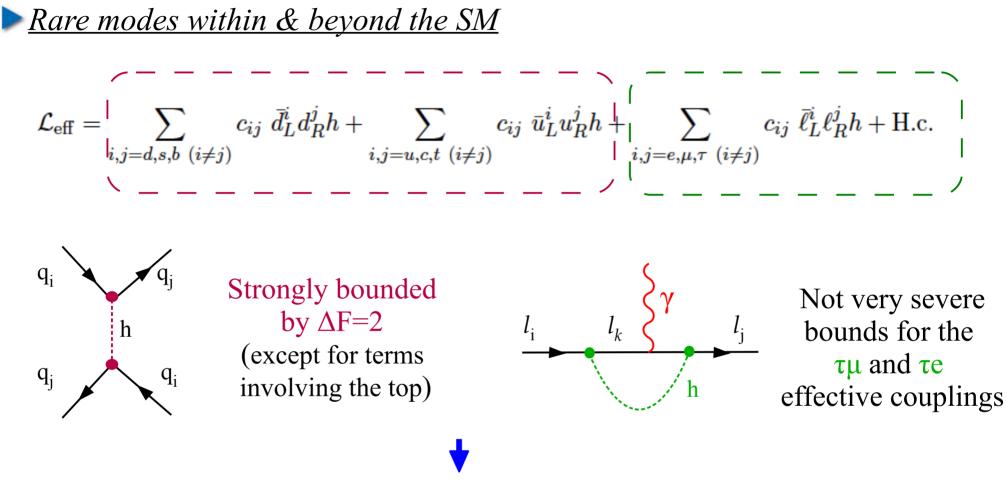
II. Exclusive hadronic/semi-hadronic decays

The SM rates are suppressed but not outrageously small (*thanks to* $m_h \sim 125$ GeV), and some channels may have a (*relatively*...) clean signature


	$VP \mod$	${\cal B}^{ m SM}$	VP^* mode	$\mathcal{B}^{ ext{SM}}$	Sizable modifications				
	$W^{-}\pi^{+}$	0.6×10^{-5}	$W^- \rho^+$	0.8×10^{-5}	possible in various				
	W^-K^+	0.4×10^{-6}	$Z^0\phi$	2.2×10^{-6}	BSM frameworks				
	$Z^0\pi^0$	0.3×10^{-5}	$Z^0 ho^0$	1.2×10^{-6}					
Ц	$W^-D_s^+$	2.1×10^{-5}	$W^{-}D_{s}^{*+}$	3.5×10^{-5}					
	W^-D^+	0.7×10^{-6}	$W^{-}D^{*+}$	1.2×10^{-6}	GI, Manohar, Trott, '13				
	$Z^0\eta_c$	1.4×10^{-5}	$Z^0 J/\psi$	1.7×10^{-6}					
	$h \rightarrow \gamma J/\psi$	2.5 x 10 ⁻⁶	$h \rightarrow Z\Upsilon$	1.6 x 10 ⁻⁵	Bodwin <i>et al.</i> '13 GI, Gonzales-Alonso '14				
	► $BR[h \rightarrow W^{\pm} D_{s}^{\mp}(\gamma)] \approx 10^{-4}$								

They definitely deserve a dedicated experimental search !

II. Exclusive hadronic/semi-hadronic decays


The quarkonium modes cannot be seen as peaks in the $h \rightarrow 4l$ distribution with the run-II statistics (maybe only in the HL phase).

Still, it is very interesting to search for possible larger <u>exotic peaks</u> in such distribution (due to $h \rightarrow Z + A \rightarrow 4l$) Curtin *et al.* '13

III. LFV h decays

Higgs-mediated FCNCs are unavoidable in models with more Higgs doublets and, more generally, can be viewed as the effect of higher-dimensional operators (in the EFT approach):

Flavor-changing decays into lepton pairs -<u>with one tau</u>- are not strongly constrained: BR($h \rightarrow \tau\mu, \tau e$) $\leq 10\% \rightarrow \underline{\text{worth a direct search !!}}$ Blankenburg, Ellis, G.I. '12

ATLAS & CMS already have the sensitivity to set bounds on BR($h \rightarrow \tau \mu$) $\leq 1\%$ Harnik, Kopp, Zupan, '12 Davidson, Verdier, '12

- A SM-like Higgs with $m_h = 125-126$ GeV does not allow us to derive model-independent conclusions about the scale of New Physics: the SM Higgs potential is unstable but sufficiently long-lived
- However, *leaving aside theoretical prejudices*... there is still a lot to learn from Higgs physics: precise measurements of signal strengths, differential distributions and rare decays are almost unexplored windows that is worth to investigate in more detail.