IX $\mathcal{A T L} \mathcal{A S}$ Italia Physics and Upgrade Workshop, 14-16 January 2014
Bologna - Dípartímento dí Física e Astronomía-Italy

Physics prospects for Susy / BSM (Theory)

Barbara Mele

Outline

9 pp collisions: where we stand today
Q guiding principles to go Beyond Standard Model
9 SUSY: present status
lastest fits on CMSSM and NUHM
Q extending mono-jet and VBF potential to Natural Compressed scenarios

9 Outlook

benefitted a lot from discussions with Giacomo Polesello and Tommaso Lari

pp collisions: where we stand today

9. LHC run at 7-8 TeV completed [$\int \mathrm{L} \sim 5+20 \mathrm{fb}^{-1 /}$ exp] (just initial LHC phase!) amazing performance \rightarrow results well above expectations...

Q SM tested at high accuracy in a new \sqrt{s} range : QCD (many regimes), top physics, EW processes, flavor

Q "direct" exploration of SM EWSB sector started up with observation of a (quite light) Higgs resonance !!!
9 still a lot of room for a non-SM EWSB sector
Q bounds on new heavy states predicted by many BSM models widely extended wrt pre-LHC era
Q no real hint of BSM physics !
Q SM Hierarchy-Problem solution getting harder...

guiding principles to go BSM

© SM not enough!
beautifully successful at $E<1$ TeV, but has some "messy features" (flavour sector...), and does not explain a number of things
(strong CP, neutrino sector, baryogenesis, Dark Matter...)

Q crucial issue for Collider Physics (and LHC !) :

what is the expected
 Energy Threshold $\left(\mathrm{E}_{\mathrm{TH}}\right)$ to go BSM ???

What is expected $\mathrm{E}_{\text {TH }}$ to go BSM ?

Q given by requirement of Naturalness of EWSB scale! quadratic divergences on mass parameters of fundamental scalars drive Higgs mass to the next energy threshold $\mathrm{E}_{\text {TH }}$ (because of absence of symmetry protecting m_{H} in SM)
\rightarrow to avoid Fine-Tuning of parameters, one expects roughly

$$
E_{T H} \sim m_{H} / g_{\text {coupling }} \sim 1 \mathrm{TeV}
$$

Q this was (before LHC start-up), and still is (!), a ROBUST statement !!!

Q WARNING : the way $E_{T H}$ materializes (enters theory) depends on actual SM extension (nobody presently knows!)
how has LHC Run I affected this statement?

how LHC Run I has affected the

statement $\mathrm{E}_{\text {TH }} \sim \mathrm{mH}_{\mathrm{H}} /$ gcoupling $\sim 1 \mathrm{TeV}$

Q in the last few decades a lot of theoretical speculations to build models satisfying this criterium (SuSy, Compositeness, Extra Dim.'s, Little Higgs,)

Q in general good features are introduced at the expenses of quite a number of UNPREDICTED new parameters

Q in PHENO studies at colliders, most emphasis given to SIMPLE versions of models (preserving basic features) (\rightarrow less free parameters)

Q after LHC Run I, Simplest Versions of different models look quite Fine-Tuned!
theories must build up on experimental facts

BSM present status!

Large ED (ADD)
 $R S g_{k K} \rightarrow t(B R=0.925$ ADD BH ${ }^{\text {K }}\left(M_{\text {TH }} / M_{\mathrm{D}}=3\right): S S$ ADD BH ($M_{\text {TH }} / M_{\mathrm{D}}=3$) : le Quantum black hc qq9q contáct in ত uutt CI : SS dileptc $>\quad$ Z' (leptophobic topcolor W^{\prime}
$W^{\prime}(-\ldots \ldots \ldots$ Scalar LQ pair $(\beta=1):$ kin. O Scalar LQ pair $(\beta=1)$: kin. Scalar LQ pair $(\beta=1)$: kin

 Excited b quark: WExcited leptons:I Techni-hadrons (LSTC) Techni-hadrons (LSTC) : WZ resc Major. neutr. (LRSM, no mix Major. neutr. (LRSM, no mix
む Heavy lepton $\mathrm{N}^{ \pm}$(type III seesaw) : Z
$\mathrm{H}^{ \pm}$(DY prod. BR $\mathrm{H}^{ \pm \pm \rightarrow I)}=1$) $H_{L}^{ \pm \pm}$(DY prod., $\left.B R\left(H_{L}^{ \pm \pm} \rightarrow \|\right)=1\right)$ Color octet scalar : dij Multi-charged particles (DY prod.) : high Magnetic monopoles (DY prod.) : high

T. how much we learned on EXP side

ATLAS Exotics Searches* - 95\% CL Lower Limits (Status: May 2013)

L=20 fb ${ }^{-1}, 8$ TeV [ATLAS-CONF-2013-017] $\quad 2.86 \mathrm{TeV}$ Z' mass
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1210.6604] $\quad 1.4 \mathrm{TeV}$ Z' mass
$L=14.3 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2013-052] $\quad 1.8 \mathrm{TeV}$ Z' mass
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1209.4446] ditching 2.55 TeV W' mass
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1209.6593] $\quad 430 \mathrm{GeV}$ W' mass

$L=14.3 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-050]	1.84 TeV	W' mass
$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1112.4828]	660 GeV	$1^{\text {st }}$ gen. LQ mass

$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1203.3172] $685 \mathrm{GeV} \quad 2^{\text {nd }}$ gen. LQ mass
L=4.7 fb ${ }^{-1}, 7 \mathrm{TeV}$ [1303.0526] $534 \mathrm{GeV} \quad 3^{\text {rd }}$ gen. LQ mass

$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1210.5468]$	656 GeV	t' mass
$L=14.3 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-051]	720 GeV	b' mass

$L=14.3 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2013-018] $\quad 790 \mathrm{GeV}$ T mass (isospin doublet)
$L=4.6 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [ATLAS-CONF-2012-137] $\quad 1.12 \mathrm{TeV}$ VLQ mass (charge $-1 / 3$, coupling $\kappa_{q Q}=v / m_{Q}$)
$L=2.1 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1112.3580]
$2.46 \mathrm{TeV} \mathrm{q}^{*}$ mass
$L=13.0 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2012-148] $\quad 3.84 \mathrm{TeV} \mathrm{q}^{*}$ mass
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1301.1583] $870 \mathrm{GeV} \quad \mathrm{b}^{*}$ mass (left-handed coupling)
$L=13.0 \mathrm{fb}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2012-146] $\quad 2.2 \mathrm{TeV} \mathrm{I}^{*} \operatorname{mass}\left(\Lambda=\mathrm{m}\left(\mathrm{l}^{*}\right)\right)$
$L=5.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1209.2535] \quad 850 \mathrm{GeV} \quad \rho_{T} / \omega_{T} \operatorname{mass}\left(m\left(\rho_{T} / \omega_{\mathrm{T}}\right)-m\left(\pi_{T}\right)=\mathrm{M}_{\mathrm{w}}\right)$

$L=13.0 \mathrm{ib}^{-1}, 8 \mathrm{TeV}$ [ATLAS-CONF-2013-015]	$920 \mathrm{GeV} \quad \rho_{\mathrm{T}} \operatorname{mass}\left(m\left(\rho_{\top}\right)=m\left(\pi_{\top}\right)+m_{\mathrm{W}}, m\right.$
$L=2.1 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1203.5420]$	1.5 TeV N mass $\left(m\left(\mathrm{~W}_{R}\right)=2 \mathrm{TeV}\right)$

$\begin{array}{lll}L=5.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1210.5070] & 409 \mathrm{GeV} & \mathrm{H}_{\mathrm{L}}^{ \pm \pm}\end{array}$
86 TeV Scalar resonance mass

| $L=4.8 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1210.1718]$ |
| :--- | :--- |
| $L=4.4 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1301.5272] \quad 490 \mathrm{GeV} \quad \operatorname{mass}(\|q\|=4 \mathrm{e})$ |

 \(10^{-1}\)
 today, SuSy is still the best candidate (among the ones we have thought of) to solve all problems
connected to the TeV scale (and beyond !)
Q predicts a light (fundamental) Higgs boson; radiat. EWSB
Q stabilizes mass hierarchy:
Q weakly coupled theory (coupl.s are known !) : allows accurate and consistent TH predictions even at scales $\gg \mathrm{TeV}$
Q can in principle be extended up to MGUT, MpI, and support the desert hypothesis \rightarrow consistent with GUT
Q delicate impact on EWPT's and FCNC's (as needed by exp's)
Q Dark Matter origin as a WIMP

Q one on the exp side :
no susy partner observed in > 30 years of searches: present LHC mass bounds on squarks and gluinos ~ 1-1.7 TeV (in CMSSM!)

Q one on the theory side :

\rightarrow| makes implications |
| :--- |
| of previous issue |
| less dramatic! |

vast arbitrariness in construction of theoretical models for SuSy breaking on which spectrum of SuSy partners is crucially based!

a few robust constraints on mass spectrum :

Q in order to stabilize SM mass hierarchy,
(a few) SuSy-partner masses should be in the $\mathrm{o}(\mathrm{TeV}$) range

Q (SuSy breaking) mass terms in SuSy Lagrangian should not spoil the good convergence properties of SuSy (\rightarrow soft)! $\rightarrow>100$ new parameters in MSSM (cf. ~ 10 SM mass param's)
9 FCNC's imply squarks and sleptons with same quantum \#'s be either almost degenerate in mass or almost diagonal in Yukawa matrices!
\rightarrow constrains \# of free parameters
Q many SuSy-breaking models proposed with reduced \# of parameters (CMSSM, SuGra, NUHM, GMSB, pMSSM....) (none meets all challenges!)

warning on "fashionable" SUSY models!

Q simplicity (\rightarrow few parameters) not always a good guiding principle!
[ex: simplicity in the SM would never lead to the observed fermion mass spectrum !]

Q changing model (and \# of parameter) in general affects pheno at LHC in a nontrivial way (different classes of signatures)!
(nicely illustrated by the ATLAS SUSY Summary plot \rightarrow)

ATLAS SUSY Searches* - 95\% CL Lower Limits

Status: SUSY 2013

Susy predicts extended Higgs sector !

92 Higgs doublets in MSSM $\rightarrow 5$ physical fields h, H, A, H^{+}, H^{-}
Q best fit for $m_{h} \sim 125 \mathrm{GeV}$ and measured h signal strengths : $M_{H} \sim 580 \mathrm{GeV}, M_{A} \sim M_{H_{+}} \sim 560 \mathrm{GeV}, \tan \beta \sim 1$

Djouadi et al, arxiv:1307.5205
Q gg, bb $\rightarrow \mathrm{A}, \mathrm{H} \rightarrow+\dagger$ could be accessible in next run!

news on Susy Higgs-mass calculators

Q new version of FeynHliggs (2.10.0) including resummation of $L L$ and NLL in $\log \left(m_{\text {stop }} / m_{\text {top }}\right)$ through 2-loop RGEs
9 achieves higher accuracy at large $m_{\text {stop }}$

upward shift in Mh relaxes constraints on CMSSM (and NUHM1)

new global fits in CMSSM and NUHM1

ATLAS E^{\top} miss, $B R(B)$'s, Mh, EWPT, DM density, LUX, $g \mu-2$

contribution of most relevant observables to global X^{2}

at best-fit points at high and low masses

arXiv:1312.5250
(MasterCode framework)

Observable	$\begin{gathered} \Delta \chi^{2} \\ \text { CMSSM } \\ \mu>0 \text { (high) } \end{gathered}$	$\begin{gathered} \Delta \chi^{2} \\ \text { CMSSM } \\ \mu>0 \text { (low) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta \chi^{2} \\ \text { CMSSM } \\ \mu<0 \text { (high) } \end{gathered}$	$\begin{gathered} \Delta \chi^{2} \\ \text { CMSSM } \\ \mu<0 \text { (low) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta \chi^{2} \\ \text { NUHM1 } \\ \mu>0 \text { (high) } \end{gathered}$	$\begin{gathered} \Delta \chi^{2} \\ \text { NUHM1 } \\ \mu>0 \text { (low) } \end{gathered}$	$\Delta \chi^{2}$ Standard Model
Global	35.1	35.8	36.6	38.9	32.7	33.3	36.5
$\mathrm{BR}_{\mathrm{b} \rightarrow \mathrm{s} \gamma}^{\exp / \mathrm{SM}}$	0.52	1.58	0.37	0.00	0.54	0.02	0.57
$\mathrm{BR}_{\mathrm{B} \rightarrow \tau \nu}^{\exp / \mathrm{SM}}$	1.77	1.63	1.63	1.61	1.65	1.66	1.60
ϵ_{K}	1.94	1.88	1.94	1.87	1.94	1.94	1.96
$a_{\mu}^{\exp }-a_{\mu}^{\text {SM }}$	10.71	9.34	11.42	12.65	10.50	9.63	11.19
M_{W}	1.35	0.22	2.15	0.04	0.00	0.11	1.38
M_{h}	0.00	0.04	0.03	0.53	0.00	0.22	(1.5)
R_{ℓ}	1.10	1.04	1.10	1.00	1.07	1.00	1.09
$A_{\text {fb }}(b)$	6.56	6.79	6.05	7.61	5.45	6.93	6.58
A_{ℓ} (SLD)	3.59	3.40	3.99	2.81	4.59	3.30	3.55
$\sigma_{\text {had }}^{0}$	2.52	2.55	2.56	2.51	2.59	2.56	2.54
LUX	0.03	0.07	0.66	0.07	0.00	0.07	-
ATLAS 20/fb	0.04	2.52	0.02	3.35	0.02	1.15	-
$B_{s, d} \rightarrow \mu^{+} \mu^{-}$	0.51	0.46	0.13	0.11	0.22	0.35	0.15

global X^{2} functions vary slowly over most of param. space allowed by M_{h} and E^{\top} miss + jets searches, with best-fit X^{2} /dof comparable to $S M$ one!

CMSSM $\quad \mu>0$

Q $B R\left(B_{s, d} \rightarrow \mu \mu\right) / S M$ fit

Buchmueller et al., arXiv:1312.5250 (MasterCode framework) $\quad 19$

95\% CL lower limits on masses

Buchmueller et al., arXiv:1312.5250
(MasterCode framework)

Sparticle	CMSSM $\mu>0$	CMSSM $\mu<0$	NUHM $\mu>0$
\tilde{g}	1810	$(2100)(3200) 3540$	1920
\tilde{q}_{R}	1620	$(1900) 6300$	1710
\tilde{t}_{1}	750	$(950) 4100$	$(650) 1120$
$\tilde{\tau}_{1}$	340	$(400) 4930$	380
M_{A}	690	$(1900) 3930$	450

Q large part of the preferred CMSSM and NUHM1 parameter regions accessible at future LHC runs!

$E_{\dagger}^{\text {miss }}$ searches strongly constrain universal soft Susy-breaking masses!

Q high priority to Natural Scenarios' searches !
Q light stop quarks (but also light higgsinos and gluinos) have a privileged role in stabilizing the Higgs mass
Q bounds on $\mathrm{M}_{\text {stop }}$ much softer than ones on $\mathrm{Ml}_{\text {light-flavor }}$

"Natural Scenario"		\tilde{B} \underline{W}	
			$\stackrel{B_{B}}{ }$
$\begin{aligned} & m_{\text {stop }}, m_{\text {sbottom }}<1 \mathrm{TeV} \\ & m_{\text {gluino }}<2 \mathrm{TeV} \\ & m_{\text {higgsino }} \sim 100-300 \mathrm{GeV} \end{aligned}$			
	natural SUSY	decoupled SUSY	

focus on stop pair production

Q for light stop, large cross sections
but $\mathrm{E}_{\text {visible }}$ and $\mathrm{E}_{\text {invisible }}$ released tends to be smaller \rightarrow signal can be missed in searches tailored to more generic spectra
Q huge background from top pairs
Q different mass hierarchies require different search strategies
Q small mass gaps can give soft (untriggered) $\mathrm{E}_{\text {(in)visible }}$!!!

bounds tend to evaporate for compressed spectra

compressed spectra : recent developments

Q small mass gaps give softer $E_{T}^{\text {miss }}$ and $E_{T^{\ell, j}}$. reducing search sensitivity
\rightarrow boost typical $\mathrm{E}^{i}{ }^{i}$ above the reconstruction threshold by considering same final state either in VBF topology or in mono-jet (mono- γ) events \rightarrow trigger on extra jets (photon)
Q two examples :
Q compressed-stop pairs with VBF tagging Dutta et al., arXiv:1312.1348 (1304.7779, 1210.0964)

Q compressed charginos/neutralinos in mono-jet (mono- γ) events

Schwaller and Zurita, arXiv:1312.7350
Baer, Mustafayev, Tata, arXiv:1401.1162
Han et al., arXiv:1310.4274

compressed stop in VBF topology

Q in inclusive $\tilde{t} \tilde{t}^{*}+$ jets production, ask for 2 forward jets with large $M_{\text {inv }}(J J)$

$\left(m_{\tilde{t}}, m_{\tilde{\chi}_{1}^{0}}\right)$	Selection	Signal	$t \bar{t}+$ jets
$(300,120)$		fb	fb
	VBF	95.7	16774
	1 lepton	22.1	3587
	$2 b$-jets	9.70	1612
	$\mathbb{F}_{T}>50$	8.00	924
$(400,220)$	VBF	25.2	16774
	1 lepton	5.93	3587
	$2 b$-jets	2.84	1612
	$\not \#_{T}>100$	1.48	337
(500, 320)	VBF	7.50	16774
	1 lepton	1.69	3587
	$2 b$-jets	0.74	1612
	$\not \#_{T}>150$	0.27	123

$m_{\tilde{t}} \Rightarrow m_{t}+m_{\tilde{\chi}_{1}^{0}}$
Dutta et al., arXiv:1312.1348

$E_{T}{ }^{\text {miss }}$ cut very effective in enhancing S/B

LHC discovery potential up to

$m_{\text {stop }} \sim 340$ (390) GeV with 1000 (3000) fb^{-1}

Q for stealthy stop ($m x^{0} \sim 0$), $E^{\text {miss }}$ cut looses performance

compressed X^{+} / X^{0} in mono-jet

Schwaller and Zurita, arXiv:1312.7350
Q extend strategies for DM searches to degenerate X^{+} / X^{0} whose $\chi^{\prime} \rightarrow \ell \ell^{\prime} \chi_{1}^{0}$ products are too soft to pass trigger requirements
Q two possibilities studied:
$\mu \gg M_{1}, M_{2} \sim M_{Z} \quad$ degenerate gauginos
$M_{1}, M_{2} \gg \mu \sim M_{Z}$

Q addition of soft leptons crucial to reach sensitivity at 14 TeV (for $\Delta \mathrm{M} \sim 10-30 \mathrm{GeV}$)

Q at 14 TeV for 300 (3000) fb^{-1} can exclude up to 250 GeV gauginos, for ΔM < 10-(40) GeV, and up to 150 (200) GeV higgsinos

what if a BSM signal comes out at LHC?

9 a Great Breakthrough in particle physics, although not a confirmation of any single theory model !!!

9 just the start-up of exploration of the "next layer of theory"

Q considerable degeneracy in the expected phenomenology for quite a number of BSM models (eg. missing P_{T} from many models with a WIMP candidate)

Q for any single TH model to be credited, it will have to overcome the "anomaly-fitting phase" and enter the "prediction phase"!

Q it will take time and a lot of effort to advance in theory !

Outlook (1)

Q SM built up on decades of unexplained experimental facts... By early 70's it was a complete framework whose many crucial predictions had to be checked out in following 40 years, guaranteeing a tremendous outcome for collider physics (and proving the model an extraordinary success!)
Q today no BSM framework is as mature as SM in 70's ! just a number of theoretical suggestions ... (with no guarantee of success for anyone!)

Q nevertheless, the statement that "new phenomena at the TeV scale are needed to make the EWSB scale Natural" is still robust after LHC Run 1

9 in which format?

Outlook (2)

Q many alternatives open: new resonances, but also deviations in inclusive cross sections / decay rates / Kinem. distributions / correlations
Q use theory suggestions
as "benchmark frameworks" for search strategies!
Q crucial also to extend "signature-driven" studies, as unbiased as possible by theoretical prejudice!
Q today exp data definitely needed to advance in theory
Q we are now in a thrilling phase: LHC is an extraordinary (and highly complex) tool that has still to develop its full potential ... (lot of effort and inventiveness will be needed)
big advances in the exploration of TeV scale in next few years "guaranteed"!

