IX ATLAS Italia Physics and Upgrade Workshop, 14-16 January 2014 Bologna - Dipartimento di Fisica e Astronomia -Italy

Physics prospects for Susy / BSM (Theory)

Barbara Mele INFN Istituto Nazionale di Fisica Nucleare Sezione di Roma

Outline

- pp collisions: where we stand today
- guiding principles to go Beyond Standard Model
- SUSY : present status

lastest fits on CMSSM and NUHM

extending mono-jet and VBF potential to Natural Compressed scenarios

benefitted a lot from discussions with Giacomo Polesello and Tommaso Lari

pp collisions: where we stand today

LHC run at 7-8 TeV completed [∫ L ~ 5 + 20 fb⁻¹/ exp]
 (just initial LHC phase !)

amazing performance -> results well above expectations...

- SM tested at high accuracy in a new √s range : QCD (many regimes), top physics, EW processes, flavor
- Solution of SM EWSB sector started up with observation of a (quite light) Higgs resonance !!!
- Solution of states of the sector of the sect
- Solution by bounds on new heavy states predicted by many BSM models widely extended wrt pre-LHC era
- Some of the second seco
- **SM** Hierarchy-Problem solution getting harder...

guiding principles to go BSM

SM not enough !

beautifully successful at E < 1 TeV, but has some "messy features" (flavour sector...), and does not explain a number of things (strong CP, neutrino sector, baryogenesis, Dark Matter...)

General issue for Collider Physics (and LHC !) :

what is the expected Energy Threshold (ETH) to go BSM ???

What is expected ETH to go BSM ?

Given by requirement of Naturalness of EWSB scale !
 quadratic divergences on mass parameters of fundamental scalars drive Higgs mass to the next energy threshold E_{TH}
 (because of absence of symmetry protecting m_H in SM)
 → to avoid Fine-Tuning of parameters, one expects roughly

ETH ~ MH / gcoupling ~ 1 TeV

whis was (before LHC start-up), and still is (!),
a ROBUST statement !!!

how has LHC Run I affected this statement ?

how LHC Run I has affected the statement $E_{TH} \sim m_H / g_{coupling} \sim 1 \text{ TeV}$

 in the last few decades a lot of theoretical speculations to build models satisfying this criterium (SuSy, Compositeness, Extra Dim.'s, Little Higgs,)

In general good features are introduced at the expenses of quite a number of UNPREDICTED new parameters

 ● in PHENO studies at colliders, most emphasis given to SIMPLE versions of models (preserving basic features) (→ less free parameters)

Seafter LHC Run I, Simplest Versions of different models look quite Fine-Tuned !
theories must build up on

experimental facts

🗲 how much we learned on EXP side 🕂 **BSM** present status ! ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Large ED (ADD) : **4.37 TeV** *M*_D (δ=2) V L=4.7 fb⁻¹, 7 TeV [1210.449¹] miss Large ED (ADD) : mon **1.93 TeV** *M*_D (δ=2) sid .=4.6 fb⁻¹, 7 TeV [1209.4625] miss ATLAS Large ED (ADD) : diphoton **4.18 TeV** M_{S} (HLZ δ =3, NLO) =4.7 fb⁻¹, 7 TeV [1211.1150] /γ / II Preliminary UED : d 1.40 TeV Compact. scale R =4.8 fb⁻¹, 7 TeV [1209.0753] miss 4.71 TeV M_{KK} ~ R⁻¹ S^{1}/Z_{2} m_{μ} L=5.0 fb⁻¹, 7 TeV [1209.2535] **2.47 TeV** Graviton mass $(k/M_{\rm Pl} = 0.1)$ R m_{μ} .=20 fb⁻¹, 8 TeV [ATLAS-CONF-2013-017] RS1 : WW re **1.23 TeV** Graviton mass $(k/M_{Pl} = 0.1)$ =4.7 fb⁻¹, 7 TeV [1208.2880] .lv lv $Ldt = (1 - 20) \text{ fb}^{-1}$ Bulk RS : Z m_{iljj} **850 GeV** Graviton mass $(k/M_{\rm Pl} = 1.0)$ =7.2 fb⁻ 8 TeV [ATLAS-CONF-2012-150] RS q → tt (BR=0.925 m_{tt} 2.07 TeV g_{µµ} mass =4.7 fb⁻¹. 7 TeV [1305.2756] s = 7, 8 TeV ADD $BH(M_{TH}/M_{D}=3)$: SS **1.25 TeV** *M*_D (δ=6) .=1.3 fb⁻¹. 7 TeV [1111.0080 part. ADD BH $(M_{TH}/M_D=3)$: le **1.5 TeV** *M*_D (δ=6) =1.0 fb⁻¹, 7 TeV [1204,4646] **UO** m_{jj} Quantum black he 4.11 TeV M_D (δ=6) 7 TeV [1210.1718 gggg contact in **7.6 TeV** Λ ¹. 7 TeV [1210.1718] m qql .=5.0 fb⁻¹, 7 TeV [1211.1150] **13.9 TeV** Λ (constructive int.) Know uutt CI : SS dilepto 3.3 TeV Λ (C=1) =14.3 fb⁻¹, 8 TeV [ATLAS-CONF-2013-051] miss =20 fb⁻¹, 8 TeV [ATLAS-CONF-2013-017] 2.86 TeV Z' mass e/uu m_{ττ} 1.4 TeV Z' mass 4.7 fb⁻¹, 7 TeV [1210.6604] 1.8 TeV Z' mass Z' (leptophobic topcolor m_# , 8 TeV [ATLAS-CONF-2013-052] 2.55 TeV W' mass ditching =4.7 fb⁻¹. 7 TeV [1209.4446] **Γ,e**/μ W' (m_{tq} 430 GeV W' mass =4.7 fb⁻¹, 7 TeV [1209.6593] W'_B (→ m 1.84 TeV W' mass 14.3 fb⁻¹. 8 TeV [ATLAS-CONF-2013-05 Q . th 660 Gev 1st gen. LQ mass Scalar LQ pair (β =1) : kin. ₽vjj =1.0 fb⁻¹, 7 TeV [1112.4828] Scalar LQ pair (β =1) : kin. 685 Gev 2nd gen. LQ mass ιvjj =1.0 fb⁻¹, 7 TeV [1203.3172] Scalar LQ pair (β =1) : kin 534 GeV 3rd gen. LQ mass τνjj .=4.7 fb⁻¹, 7 TeV [1303.0526] 656 GeV t' mass 4th generation : b'b' \rightarrow SS dilepto =4.7 fb⁻¹. 7 TeV [1210.5468] Wb New quarks Q b' mass , 8 TeV [ATLAS-CONF-2013-051 720 GeV miss **790 Gev** T mass (isospin doublet) Vector-like at +X 14.3 fb⁻¹, 8 TeV [ATLAS-CONF-2013-018 Vector-like **1.12 TeV** VLQ mass (charge -1/3, coupling $\kappa_{nQ} = \nu/m_0$) n_{lvq} =4.6 fb⁻¹, 7 TeV [ATLAS-CONF-2012-137] Excited quarks : y-jet 2.46 TeV q* mass =2.1 fb⁻¹. 7 TeV [1112.3580] $m_{ii}^{\gamma jet}$ Excit. ferm. Excited quarks : dije 3.84 TeV q* mass 13.0 fb⁻¹, 8 TeV [ATLAS-CONF-2012-148] Excited b guark : Wn_{wt} Moh 870 GeV b* mass (left-handed coupling) 4.7 fb^{⁻1}, 7 TeV [1301.1583] Excited leptons : I-**2.2 TeV** I* mass $(\Lambda = m(I^*))$ 8 TeV [ATLAS-CONF-2012-146] - ly Techni-hadrons (LSTC) **850 GeV** ρ_{T}/ω_{T} mass $(m(\rho_{T}/\omega_{T}) - m(\pi_{T}) = M_{u})$ 7 TeV [1209.2535 e/µµ Techni-hadrons (LSTC) : WZ resc ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) = 1.1 m(\rho_{T}))$ 920 GeV 8 TeV [ATLAS-CONF-2013-01 WZ **1.5 TeV** N mass $(m(W_p) = 2 \text{ TeV})$ Major. neutr. (LRSM, no mix jets 7 TeV [1203 5420 Heavy lepton N[±] (type III seesaw) : Z N^{\pm} mass (IV I = 0.055, IV I = 0.063, IV I = 0) m_{zı} $H_{L}^{\pm\pm}$ (DY prod., BR($H_{L}^{\pm\pm} \rightarrow II$)=1) 409 Gev H^{±±} mass (limit at 398 GeV for μμ) m Color octet scalar : dije 1.86 TeV Scalar resonance mass m_{ii} Multi-charged particles (DY prod.) : high lcks 490 GeV mass (lql = 4e) icks Magnetic monopoles (DY prod.) : high 862 GeV mass 1 1 1 **10**⁻¹ 10^{2} 10

Mass scale [TeV]

Barbar *Only a selection of the available mass limits on new states or phenomena shown

Extra dimensions

 \overline{O}

Ń

ГQ

Other

today, SuSy is still the best candidate (among the ones we have thought of) to solve all problems connected to the TeV scale (and beyond !)

- predicts a light (fundamental) Higgs boson; radiat. EWSB
 stabilizes mass hierarchy;
- Severally coupled theory (coupl.s are known !) : allows accurate and consistent TH predictions even at scales >>TeV
 - \bigcirc can in principle be extended up to M_{GUT} , M_{Pl} , and support the desert hypothesis \rightarrow consistent with GUT
 - Idelicate impact on EWPT's and FCNC's (as needed by exp's)
- Dark Matter origin as a WIMP

actually.... two weak points in SuSy

- one on the exp side : no susy partner observed in > 30 years of searches; present LHC mass bounds on squarks and gluinos ~ 1-1,7 TeV (in CMSSM !)
- Θ one on the theory side : \rightarrow

makes implications of previous issue less dramatic !

vast arbitrariness in construction of theoretical models for SuSy breaking on which spectrum of SuSy partners is crucially based !

a few robust constraints on mass spectrum :

In order to stabilize SM mass hierarchy, (a few) SuSy-partner masses should be in the o(TeV) range

- GuSy breaking) mass terms in SuSy Lagrangian should not spoil the good convergence properties of SuSy (→soft)!
 →>100 new parameters in MSSM (cf. ~ 10 SM mass param's)
 - FCNC's imply squarks and sleptons with same quantum #'s be either almost degenerate in mass or almost diagonal in Yukawa matrices !
 - → constrains # of free parameters

Many SuSy-breaking models proposed with reduced # of parameters (CMSSM, SuGra, NUHM, GMSB, pMSSM....) (none meets all challenges !)

warning on "fashionable" SUSY models !

Simplicity (→few parameters) not always a
good guiding principle !
[ex: simplicity in the SM would never lead to the
observed fermion mass spectrum !]

Sechanging model (and # of parameter)
in general affects pheno at LHC in a nontrivial way (different classes of signatures) !

(nicely illustrated by the ATLAS SUSY Summary plot →)

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit	U U	Reference
Inclusive Searches	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP)	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q, ğ ğ 1.1 TeV ğ 1.1 TeV q 740 GeV ğ 1.3 Te ğ 1.3 Te ğ 1.18 TeV ğ 1.12 TeV ğ 1.12 TeV ğ 1.12 TeV ğ 1.24 TeV ğ 1.07 TeV ğ 619 GeV ğ 900 GeV ğ 690 GeV F ^{1/2} scale 645 GeV	1.7 TeV $m(\tilde{q})=m(\tilde{g})$ any $m(\tilde{q})$ any $m(\tilde{q})$ $m(\tilde{\chi}_{1}^{0})=0$ GeV V $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV $\tan\beta < 15$ TeV $\tan\beta > 18$ $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>50$ GeV $m(\tilde{\chi}_{1}^{0})>220$ GeV $m(\tilde{\chi}_{1}^{0})>200$ GeV $m(\tilde{\chi}_{1}^{0})>10^{-4}$ eV	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-144
3 rd gen. ẽ med.	$ \begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV ğ 1.1 TeV ğ 1.34 Te ğ 1.3 Te	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){<}600\mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) <{}350\mathrm{GeV} \\ eV \qquad m(\tilde{\chi}_{1}^{0}){<}400\mathrm{GeV} \\ \mathbf{V} \qquad m(\tilde{\chi}_{1}^{0}){<}300\mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neavy}), \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{netural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{split}$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 90 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 2 m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \mathrm{GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) = m(\tilde{\chi}_{1}^{0}) + 180 \mathrm{GeV} \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) {=} 0 \ \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ \mathrm{GeV}, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ \mathrm{GeV}, \ m(\tilde{\tau}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5 (m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ sleptons \ decoupled \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ sleptons \ decoupled \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{e}, \tilde{g}) + \tau(\tilde$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\tilde{\chi}_1^{\pm}$ 270 GeV \tilde{g} 832 GeV $\tilde{\chi}_1^0$ 475 GeV $\tilde{\chi}_1^0$ 230 GeV \tilde{q} 1.0 TeV	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^{0}) = 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; ns \\ & m(\tilde{\chi}_1^{0}) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & 10 < \! tan\beta < \! 50 \\ & 0.4 < \! \tau(\tilde{\chi}_1^{0}) < \! 2 \; ns \\ & 1.5 < \! c\tau < \! 156 \; mm, \; BR(\mu) = \! 1, \; m(\tilde{\chi}_1^{0}) = \! 108 \; GeV \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{c} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \\ \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow ee \\ \tilde{v}_{\mu}, e \mu \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \\ \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow \tau \\ \tau \\ \tilde{v}_{e}, e \tau \\ \tilde{v}_{e}, e \tau \\ \tilde{v}_{e} \\ \tilde{g} \rightarrow q q q \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow b s \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	\tilde{v}_r 1. \tilde{v}_r 1.1 TeV \tilde{q}, \tilde{g} 1.2 TeV $\tilde{\chi}_1^{\pm}$ 760 GeV $\tilde{\chi}_1^{\pm}$ 350 GeV \tilde{g} 916 GeV \tilde{g} 880 GeV	61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 mm$ $m(\tilde{\chi}^0_1)>300 GeV, \lambda_{121}>0$ $m(\tilde{\chi}^0_1)>80 GeV, \lambda_{133}>0$ BR $(t)=BR(b)=BR(c)=0\%$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, µ (SS) 0	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 m(χ)<80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV artial data	√s = full ∉	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Susy predicts extended Higgs sector !

Q 2 Higgs doublets in MSSM → 5 physical fields
 h, H, A, H⁺,H⁻

Sest fit for m_h~125 GeV and measured h signal strengths :
M_H ~ 580 GeV, M_A~M_{H+}~ 560 GeV, tanβ~1

Djouadi et al, arxiv:1307.5205

news on Susy Higgs-mass calculators

In every ev

upward shift in M_h relaxes constraints on CMSSM (and NUHM1)

Barbara Mele

Bologna, 15 January 2014

contribution of most relevant observables to global X² at best-fit points at high and low masses

arXiv:1312.5250 (MasterCode framework)

Observable	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta \chi^2$	$\Delta\chi^2$	$\Delta\chi^2$
	CMSSM	CMSSM	CMSSM	CMSSM	NUHM1	NUHM1	Standard
	$\mu > 0$ (high)	$\mu > 0$ (low)	$\mu < 0 \text{ (high)}$	$\mu < 0 \text{ (low)}$	$\mu > 0$ (high)	$\mu > 0 \text{ (low)}$	Model
Global	35.1	35.8	36.6	38.9	32.7	33.3	36.5
$\mathrm{BR}^{\mathrm{exp/SM}}_{\mathrm{b} ightarrow \mathrm{s} \gamma}$	0.52	1.58	0.37	0.00	0.54	0.02	0.57
${ m BR}^{ m exp/SM}_{ m B o au u}$	1.77	1.63	1.63	1.61	1.65	1.66	1.60
ϵ_K	1.94	1.88	1.94	1.87	1.94	1.94	1.96
$a_{\mu}^{ m exp}-a_{\mu}^{ m SM}$	10.71	9.34	11.42	12.65	10.50	9.63	11.19
M_W	1.35	0.22	2.15	0.04	0.00	0.11	1.38
M_h	0.00	0.04	0.03	0.53	0.00	0.22	(1.5)
R_ℓ	1.10	1.04	1.10	1.00	1.07	1.00	1.09
$A_{ m fb}(b)$	6.56	6.79	6.05	7.61	5.45	6.93	6.58
$A_\ell(\mathrm{SLD})$	3.59	3.40	3.99	2.81	4.59	3.30	3.55
σ^0_{had}	2.52	2.55	2.56	2.51	2.59	2.56	2.54
LUX	0.03	0.07	0.66	0.07	0.00	0.07	-
ATLAS 20/fb	0.04	2.52	0.02	3.35	0.02	1.15	-
$B_{s,d} \to \mu^+ \mu^-$	0.51	0.46	0.13	0.11	0.22	0.35	0.15
					and the second se	and the second se	

global X^2 functions vary slowly over most of param. space allowed by M_h and E^T_{miss} +jets searches, with best-fit X^2 /dof comparable to SM one !

Bologna, 15 January 2014

95% CL lower limits on masses

Buchmueller et al., arXiv:1312.5250

(MasterCode framework)

	CMSSM	CMSSM	NUHM	
Sparticle	$\mu > 0$	$\mu < 0$	$\mu > 0$	
${ ilde g}$	1810	(2100) (3200) 3540	1920	
\widetilde{q}_R	1620	(1900) 6300	1710	
$ ilde{t}_1$	750	$(950) \ 4100$	(650) 1120	
$ ilde{ au}_1$	340	(400) 4930	380	
M_A	690	$(1900) \ 3930$	450	

Integration of the preferred CMSSM and NUHM1 parameter regions accessible at future LHC runs ! Et^{miss} searches strongly constrain universal soft Susy-breaking masses !

Ight priority to Natural Scenarios' searches !
 Ight stop quarks (but also light higgsinos and gluinos) have a privileged role in stabilizing the Higgs mass

Solution Solution Sector Secto

Bologna, 15 January 2014

focus on stop pair production

- - but $E_{visible}$ and $E_{invisible}$ released tends to be smaller \rightarrow
 - signal can be missed in searches tailored to more generic spectra
- Solution of the second seco
- Ifferent mass hierarchies require different search strategies
- Solution Second Second

bounds tend to evaporate for compressed spectra

m_{t̃} [GeV]

compressed spectra : recent developments

 Small mass gaps give softer E^{T^{miss}} and E^{t^{ℓ,j}}, reducing search sensitivity
 → boost typical E^t above the reconstruction threshold by considering same final state either in VBF topology or in mono-jet (mono-γ) events
 → trigger on extra jets (photon)

General compressed-stop pairs with VBF tagging

Dutta et al., arXiv:1312.1348 (1304.7779, 1210.0964)

 \bigcirc compressed charginos/neutralinos in mono-jet (mono- γ) events Schwaller and Zurita, arXiv:13

Schwaller and Zurita, arXiv:1312.7350 Baer, Mustafayev, Tata, arXiv:1401.1162 Han et al., arXiv:1310.4274

compressed stop in VBF topology

Θ in inclusive $\tilde{t}\tilde{t}^*$ + jets production, ask for 2 forward jets with large $M_{inv}(JJ)$

$(m_{ ilde{t}},m_{ ilde{\chi}_1^0})$	Selection	Signal	$t\bar{t}$ +jets	$m_{ ilde{t}}$
		fb	fb	
	VBF	95.7	16774	1
(300, 120)	1 lepton	22.1	3587	
	2 b-jets	9.70	1612	se<
	$\not\!\!\!E_{\rm T} > 50$	8.00	924	
				ts /
	VBF	25.2	16774	ven
(400, 220)	1 lepton	5.93	3587	of E
	2 b-jets	2.84	1612	<u>6</u> 10 ⁻²
	$\not\!\!\!E_{\rm T}>100$	1.48	337	ract
				ш
	VBF	7.50	16774	10 ⁻³
(500, 320)	1 lepton	1.69	3587	10
	2 b-jets	0.74	1612	
	$\not\!\!\!E_{\rm T} > 150$	0.27	123	E miss

$$p_{\tilde{t}} \Rightarrow m_t + m_{\tilde{\chi}_1^0}$$

Dutta et al., arXiv:1312.1348

Er^{miss} cut very effective in enhancing S/B

 Θ for stealthy stop (m_X⁰~ 0), E_T^{miss} cut looses performance

Bologna, 15 January 2014

compressed X⁺/X⁰ in mono-jet

Schwaller and Zurita, arXiv:1312.7350 Sextend strategies for DM searches to degenerate X⁺/X⁰ whose $\chi' \rightarrow \ell \ell' \chi_1^0$ products are too soft to pass trigger requirements wo possibilities studied: $\mu \gg M_1, M_2 \sim M_Z$ degenerate gauginos $M_1, M_2 \gg \mu \sim M_Z$ higgsinos (Natural Scen.) 0.100 Gaugino o 8 Higgsino Q0.050 χ_1^{\pm} LHC 8 TeV [qd] _ 0.020 8 0.0 \mathbf{O} 0.010 $pp \rightarrow \chi \chi' + 1, 2$ jets $\chi, \chi' = \chi_1^0, \chi_2^0, \chi_1^{\pm}$ χ^0_2 0.005 150100200250

Barbara Mele

 $m_{\chi^{\pm}_{1}}$ [GeV]

addition of soft leptons crucial to reach sensitivity at 14 TeV (for ∆M ~ 10-30 GeV)

At 14 TeV for 300 (3000) fb⁻¹
 can exclude up to 250 GeV gauginos,
 for △M < 10-(40) GeV, and
 up to 150 (200) GeV higgsinos

Significance (300 fb⁻¹), syst = 1% ary 2014

what if a BSM signal comes out at LHC ?

- a Great Breakthrough in particle physics, although not a confirmation of any single theory model !!!
- just the start-up of exploration of the "next layer of theory"
- Generation of BSM models
 (eg. missing P_T from many models with a WIMP candidate)
- If for any single TH model to be credited, it will have to overcome the "anomaly-fitting phase" and enter the "prediction phase" !

Outlook (1)

- SM built up on decades of unexplained experimental facts... By early 70's it was a complete framework whose many crucial predictions had to be checked out in following 40 years, guaranteeing a tremendous outcome for collider physics (and proving the model an extraordinary success !)
- today no BSM framework is as mature as SM in 70's !
 just a number of theoretical suggestions ...
 (with no guarantee of success for anyone !)
- Inevertheless, the statement that "new phenomena at the TeV scale are needed to make the EWSB scale Natural" is still robust after LHC Run 1

in which format ?

Outlook (2)

- In any alternatives open: new resonances, but also deviations in inclusive cross sections / decay rates / Kinem. distributions / correlations
- **Q** use theory suggestions
 - as "benchmark frameworks" for search strategies !
- Security of the extend "signature-driven" studies, as unbiased as possible by theoretical prejudice !
- Solution for the second second
- We are now in a thrilling phase: LHC is an extraordinary (and highly complex) tool that has still to develop its full potential ... (lot of effort and inventiveness will be needed)

big advances in the exploration of TeV scale in next few years "guaranteed"!