Hadronic effects in the exclusive $b \rightarrow s$ transitions

Alexander Khodjamirian

Seminar at Sapienza Uni.- INFN Rome, March 17 2014

Outline

- "anatomy" of the exclusive $b \rightarrow s$ transitions
- $B \rightarrow K^{(*)}$ form factors, current accuracy
- nonlocal /nonfactorizable hadronic effects \Rightarrow process-dependent function $\Delta C_9^{(B \to K^{(*)})}(q^2)$
- $B \rightarrow K \ell^+ \ell^-$ at large hadronic recoil
- comments on $B \to K^* \ell^+ \ell^-$ at large recoil
- low hadronic recoil region

$b \rightarrow s$ transitions at the quark level

- loops with virtual W, t, Z at scales ≥ m_b
- set of effective pointlike operators

• $b \rightarrow s \ell^+ \ell^-$ at the quark level

interference of "ordinary" weak transition and e.m. interactions

Alexander Khodjamirian

Æ

Exclusive $b \rightarrow s$ transitions

- measured at LHCb with continuously improved precision
 - semileptonic modes: B → Kℓ⁺ℓ⁻, B → K^{*}ℓ⁺ℓ⁻,... theory: effective operators sandwiched between hadronic states

- exclusive radiative mode: $B \to K^* \gamma$, "byproduct" of $B \to K^* \ell^+ \ell^-$

Anatomy of the $B \rightarrow K^{(*)} \ell^+ \ell^-$ decay amplitude

$$\mathcal{A}(B \to \mathcal{K}^{(*)}\ell^+\ell^-) = \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \frac{C_i}{\langle \mathcal{K}^{(*)}\ell^+\ell^- \mid O_i \mid B \rangle}$$

isolating hadronic matrix elements:

$$\begin{split} \mathcal{A}(B \to \mathcal{K}^{(*)}\ell^{+}\ell^{-}) &= \frac{G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{\alpha_{em}}{2\pi} \bigg[\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell \right) \mathcal{C}_{10} \left\langle \mathcal{K}^{(*)} | \bar{s} \gamma_{\mu} (1 - \gamma_{5}) b | B \right\rangle \\ &+ \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\mathcal{C}_{9} \left\langle \mathcal{K}^{(*)} | \bar{s} \gamma_{\mu} b | B \right\rangle + \mathcal{C}_{7} \frac{2m_{b}}{q^{2}} q^{\nu} \left\langle \mathcal{K}^{(*)} | \bar{s} i \sigma_{\nu\mu} (1 + \gamma_{5}) b | B \right\rangle \\ &+ \frac{8\pi^{2}}{q^{2}} \sum_{i=1,2,\dots,6,8} \mathcal{C}_{i} \mathcal{H}_{i}^{\rho} \bigg) \bigg] \end{split}$$

nonlocal matrix elements

 $\mathcal{H}^{
ho}_i(q,p) = \langle \mathcal{K}^{(*)}(p) | i \int d^4x \, e^{iqx} \, T\{j^{
ho}_{em}(x), O_i(0)\} | \mathcal{B}(p+q)
angle \, ,$

not all of them can be reduced to form factors and/or factorized!

$B \rightarrow K$ form factors

hadronic matrix elements:

 $egin{aligned} & \langle K(p) | ar{s} \gamma_{\mu} b | B(p+q)
angle \Rightarrow f^+_{BK}(q^2) \ & \langle K(p) | ar{s} \sigma_{\mu
u} b | B(p+q)
angle \Rightarrow f^T_{BK}(q^2) \end{aligned}$

- the kinematical region in $B \rightarrow K \ell^+ \ell^-$, $0 < q^2 < (m_B - m_K)^2 \simeq 23.0 \,\text{GeV}^2$
- hadronic form factors described by nonperturbative QCD

$B \rightarrow K^*$ form factors

• definitions: (alternatively: helicity form factors)

$$egin{aligned} &\langle K^*(p)|ar{s}\gamma_\mu(1-\gamma_5)b|B(p+q)
angle \Rightarrow V_{BK^*}(q^2), \ A^{1,2,3}_{BK^*}(q^2)\ &\langle K^*(p)|ar{s}\sigma_{\mu
u}(1+\gamma_5)b|B(p+q)
angle \Rightarrow T^{1,2,3}_{BK^*}(q^2) \end{aligned}$$

• more complicated objects due to unstable final state K*

• $K\pi \Leftrightarrow K^*$ effectively resums in $\Gamma_{tot}^{K^*}$

BW ansatz \oplus nonresonant background,

QCD calculation of the form factors

lattice QCD: small hadronic recoil (large q²) region accessible

most recent results:

- $B \rightarrow K$ HPQCD, P.Bouchard et al. (2013)
- $B \rightarrow K^*$ ("quenched"), R. Horgan, Z. Liu, S. Meinel, M. Wingate (2013)

• QCD light-cone sum rules (LCSR):

form factors at large hadronic recoil ($q^2 \ll m_b^2$)

• universal tools:

analyticity & unitarity, hadronic dispersion relations used for extrapolations in q^2

Light-Cone Sum Rules for $B \rightarrow K$ form factors

• introducing the correlation function

 $F_{\mu}(q,p) = i \int d^4x \ e^{iqx} \langle \mathcal{K}(p) \mid \mathcal{T}\{\bar{s}(x)\gamma_{\mu}b(x), \bar{b}(0)i\gamma_5d(0)\} \mid 0 \rangle$

• *b*-quark highly virtual

 \Rightarrow operator-product expansion near light-cone ($x^2 \sim 0$)

LCSR method: [I.Balitsky,V.Braun et al (1989); V.Chernyak, I.Zhitnitsky (1989)] $B \rightarrow K$ form factor [V.Belyaev, A.K., R.Rückl (1993)]

Alexander Khodjamirian

Calculation of the correlation function

the result of OPE

$$F_{\mu}(q,p) = \sum_{t=2,3,4,..} \int du T_{\mu}^{(t)}(q^2,(p+q)^2,m_b^2,\alpha_s,u) \varphi_{K}^{(t)}(u,\mu)$$

hard scattering ampl. \otimes kaon light-cone DA

 nonperturbative objects: distribution amplitudes (DA's): vacuum-kaon hadronic matrix elements, e.g.,

$$\langle \mathcal{K}(q)|\bar{s}(x)[x,0]\gamma_{\mu}\gamma_{5}d(0)|0\rangle_{x^{2}=0}=-iq_{\mu}f_{\mathcal{K}}\int_{0}^{1}du\,e^{iuqx}\varphi_{\mathcal{K}}(u)\,.$$

- DA's, defined originally for the pion, $SU(3)_{ff}$ breaking in f_K/f_{π} and in DA's (Gegenbauer expansion)
- t = 3, 4 contributions (soft gluon) power suppressed,

Alexander Khodjamirian

Calculation of the correlation function

currently achieved accuracy

$$F(q^{2}, (p+q)^{2}) = \left(T_{0}^{(2)} + (\alpha_{s}/\pi)T_{1}^{(2)}\right) \otimes \varphi_{K}^{(2)} + \frac{\mu_{\pi}}{m_{b}} \left(T_{0}^{(3)} + (\alpha_{s}/\pi)T_{1}^{(3)}\right) \otimes \varphi_{K}^{(3)} + \frac{\delta_{\pi}^{2}}{m_{b}\chi}T^{(4)} \otimes \varphi_{K}^{(4)} + \dots$$

 $\mu_K = m_K^2/(m_s+m_u), \quad m_b \gg \chi \gg \Lambda_{QCD}$

- LO twist 2,3,4 qq̄ and qq̄G terms [V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]
- NLO *O*(*α_s*) twist 2, (collinear factorization) [*A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);*]
- NLO *O*(*α*_s) twist 3 (coll.factorization for asympt. DA) [*P. Ball, R. Zwicky (2001); G.Duplancic,A.K.,B.Melic, Th.Mannel,N.Offen (2007)*]
- part of NNLO $O(\alpha_s^2 \beta_0)$ twist 2 [A. Bharucha (2012)]

Derivation of LCSR

• Hadronic dispersion relation in the variable $(p+q)^2$, (fixed $q^2 \ll m_b^2$) inserting the total set of *B*-states, isolating *B*-meson pole:

$$f_B f_{BK}^+(q^2) \qquad \qquad \sum_{B_h} \to duality \ (s_0^B)$$

- quark-hadron duality approximation
- f_B taken from two-point QCD sum rule

How accurate are LCSR's

• the "raw" sum rule: {OPE = dispersion relation}

the input for kaon DA's (Gegenbauer moments, normalization coeffs.):

- two-point QCD sum rules
- LCSR's for the kaon e.m. form factors
- "systematic error" of quark-hadron duality approximation (suppressed with Borel transformation, controlled by the *m_B* calculation)
- at 0 < q² ≤ 12 − 14 GeV² estimated uncertainties for B → π, K form factors amount to ±(12 − 15)%

$B_{(s)}$ and $D_{(s)}$ decay constants

[P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]

Decay constant	Lattice QCD [ref.]	this work
<i>f_B</i> [MeV] 196.9 ± 9.1 [1] 186 ± 4 [2]		207^{+17}_{-9}
f _{Bs} [MeV]	242.0 ± 10.0 [1] 224 ± 5 [2]	242^{+17}_{-12}
f_{B_S}/f_B	1.229± 0.026 [1] 1.205± 0.007 [2]	$1.17\substack{+0.04 \\ -0.03}$
f _D [MeV]	218.9 ± 11.3 [1] 213 ± 4 [2]	201^{+12}_{-13}
f _{Ds} [MeV]	260.1 ± 10.8 [1] 248.0 ± 2.5 [2]	238^{+13}_{-23}
f_{D_S}/f_D	1.188± 0.025 [1] 1.164± 0.018 [2]	$1.15\substack{+0.04 \\ -0.05}$

[1]-Fermilab/MILC, [2]-HPQCD

Alexander Khodjamirian

LCSR with B-meson distribution amplitudes

- In the correlation function: *B*-meson ⇒ on-shell state, light meson ⇒ current,
- B-meson DA's, defined in HQET, light mesons from quark-hadron duality

B

 $\sum_{n \in \mathbb{N}} p$

(c)

- B CONTRACTOR B CONTRACTOR
- so far only tree-level calculations, 2,3-particle DA's ^(b)
- all $B \to \pi, K^{(*)}, \rho$ form factors calculated at $q^2 \le 10 \text{ GeV}^2$ [A.K., Th.Mannel, N.Offen (2007)]
- LCSR in SCET [F. De Fazio, Th. Feldmann T.Hurth (2006)]

Extrapolation to large q^2

 Series parameterization of form factors based on conformal mapping:

...., [Boyd,Grinstein,Lebed(1995)],... [Bourrely,Caprini, Lellouch(2008)]

$$\begin{aligned} \mathsf{Z}(\mathbf{q}^2,\tau_0) &= \frac{\sqrt{\tau_+ - \mathbf{q}^2} - \sqrt{\tau_+ - \tau_0}}{\sqrt{\tau_+ - \mathbf{q}^2} + \sqrt{\tau_+ - \tau_0}} \\ \tau_+ &= (m_B + m_{\mathcal{K}^{(*)}})^2, \qquad \tau_- = (m_B - m_{\mathcal{K}^{(*)}})^2 \ \tau_0 = \tau_+ - \sqrt{\tau_+ - \tau_-} \sqrt{\tau_+}. \end{aligned}$$

we use BCL parameterization

$$\begin{split} F(q^2) &= \frac{F(0)}{1-q^2/m_{B_s(J^P)}^2} \bigg\{ 1 + b_1 \bigg(z(q^2,t_0) - z(0,t_0) \\ &+ \frac{1}{2} \big[z(q^2,t_0)^2 - z(0,t_0)^2 \big] \bigg) \bigg\} \,, \end{split}$$

allows to extra(inter)polate the LCSR and lattice QCD FF's

Alexander Khodjamirian

$B \rightarrow K, K^{(*)}$ form factors from LCSR's

[A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]

form factor	$F_{BK^{(*)}}^{i}(0)$	b ⁱ 1	$B_{s}(J^{P})$	input
	BRO			at $q^2 < 12 { m GeV^2}$
f_{BK}^+	$0.34\substack{+0.05 \\ -0.02}$	$-2.1^{+0.9}_{-1.6}$	$B_{s}^{*}(1^{-})$	
f ⁰ _{BK}	$0.34\substack{+0.05 \\ -0.02}$	$-4.3^{+0.8}_{-0.9}$	no pole	LCSR
f_{BK}^T	$0.39\substack{+0.05\\-0.03}$	$-2.2^{+1.0}_{-2.00}$	$B_{s}^{*}(1^{-})$	with <i>K</i> DA's
V ^{BK*}	$0.36\substack{+0.23\\-0.12}$	$-4.8^{+0.8}_{-0.4}$	$B_{s}^{*}(1^{-})$	
A ₁ ^{BK*}	$0.25^{+0.16}_{-0.10}$	$0.34^{+0.86}_{-0.80}$	<i>B</i> _s (1 ⁺)	
$A_2^{BK^*}$	$0.23\substack{+0.19 \\ -0.10}$	$-0.85^{+2.88}_{-1.35}$	$B_{s}(1^{+})$	LCSR
$A_0^{BK^*}$	$0.29\substack{+0.10 \\ -0.07}$	$-18.2^{+1.3}_{-3.0}$	$B_s(0^-)$	with <i>B</i> DA's
$T_1^{BK^*}$	$0.31\substack{+0.18 \\ -0.10}$	$-4.6\substack{+0.81\\-0.41}$	$B_{s}^{*}(1^{-})$	
$T_2^{BK^*}$	$0.31\substack{+0.18 \\ -0.10}$	$-3.2^{+2.1}_{-2.2}$	<i>B</i> _s (1 ⁺)	
$T_3^{BK^*}$	$0.22\substack{+0.17 \\ -0.10}$	$-10.3^{+2.5}_{-3.1}$	$B_{s}(1^{+})$	

correlations between normalization & slope out of the scope

$B \rightarrow \pi$ form factor: LCSR vs lattice QCD

[A.K, Th.Mannel, N.Offen, Y-M. Wang (2011)]

$B \rightarrow K$ form factor: LCSR vs lattice QCD

dashed: LCSR, central input

[A.K, Th.Mannel, A.Pivovarov, Y-M. Wang (2010)]

solid: unitarity bounds for the z-transformed form factor, [L.Lellouch (1996); Th.Mannel, B.Postler(1998)]

Alexander Khodiamirian

Status of the $B \rightarrow K^*$ form factors

• LCSR's for $B \rightarrow K^*$ form factors

[P. Ball, V.Braun (1998), P.Ball, R. Zwicky (2004,...)]
DA's of vector mesons worked out up to twist 4
P. Ball, V. M. Braun, Y. Koike and K. Tanaka, (1998),...

- input ⊕ duality uncertainties
 in the same ballpark as for B → K
- $\Gamma_V = 0$ approximation ("quenched") \Rightarrow additional uncertainty
- the same in LCSRs with *B*-meson DA's (see above table)
 BW ansatz (a model !) with Γ_V ≠ 0 for the K* pole can be included in the sum rule...

Comments on $B \rightarrow V$ form factors

- the problem more general, concerns also experiment: ρ (*K**) are strongly coupled to 2π (*K* π) in *P*-wave:
 - a simple constraint on the invariant mass of 2π ($K\pi$) state may not be accurate enough
 - scalar, tensor resonances in 2π ($K\pi$): a more detailed angular analysis is needed
- on the theory side:
 - $B \rightarrow \pi \pi \ell \nu_{\ell} (B \rightarrow K \pi \ell \ell)$ in terms of generic $B \rightarrow \pi \pi (B \rightarrow K \pi)$ form factors,

including the partial expansion and resonance contributions;

S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, 1310.6660

- estimating $B \rightarrow$ light scalar, tensor meson form factors
- more work in this direction is on the way:

LCSR's with 2-pion DAs

Alexander Khodjamirian

Hadronic input in $B \to K \ell^+ \ell^-$

• after inserting the $B \rightarrow K$ form factors:

$$\begin{aligned} A(B \to K\ell^+\ell^-) &= \frac{G_F}{\sqrt{2}} \frac{\alpha_{em}}{\pi} V_{tb} V_{ts}^* \Bigg[\bar{\ell} \gamma_\mu \ell \, p^\mu \bigg(C_9 f_{BK}^+(q^2) \\ &+ \frac{2(m_b + m_s)}{m_B + m_K} C_7^{eff} f_{BK}^T(q^2) + \sum_{i=1,2,\dots,6,8} C_i \, \mathcal{H}_i^{(BK)}(q^2) \bigg) + \bar{\ell} \gamma_\mu \gamma_5 \ell \, p^\mu C_{10} f_{BK}^+(q^2) \Bigg] \end{aligned}$$

• new nonlocal $B \to K$ hadronic matrix elements: $\langle K(p) | i \int d^4x \, e^{iqx} T\{j^{\rho}_{em}(x), O_i(0)\} | B(p+q) \rangle = [(p \cdot q)q^{\rho} - q^2p^{\rho}] \mathcal{H}_i^{(BK)}(q^2)$

 $j^{
ho}_{em} = \sum\limits_{q=u,d,s,c,b} e_q ar q \gamma^{
ho} q$, O_i -quark-gluon effective operators

• a (process- and q²-dependent) correction to C₉:

$$\Delta C_{9}^{(BK)}(q^{2}) = \frac{\sum\limits_{i=1,2,...,6,8} C_{i} \mathcal{H}_{i}^{(BK)}(q^{2})}{t_{BK}^{+}(q^{2})}$$

The (topological) diagrams

Theory of nonlocal effects

• earlier estimates: simple loop, neglecting nonfactorizable effects, adding resonances to the loop,

 \Rightarrow kink in the branching fraction at $q^2 = 4m_c^2$, double counting,...

 QCD factorization approach at large recoil region q² ≪ M²_{J/ψ} [M.Beneke, Th.Feldmann, D.Seidel (2001)]

estimating soft-gluon nonfactorizable effects

OPE at spacelike q² ⇒ hadronic disperison relations at timelike q²
 [A.K., Th. Mannel, A. Pivovarov, Yu-M. Wang, (2010)];
 [A.K., Th. Mannel and Yu-M. Wang, (2013)]

Charm loops in $B \to K^{(*)} \ell^+ \ell^-$

• the largest nonlocal effect:

 $O^c_{1,2} = (\bar{s}\Gamma^a_\mu c)(\bar{c}\Gamma^{\mu a}b) \ j^
ho_{em,c} = e_c \bar{c} \gamma^
ho c$

• virtual *c*-quarks \Rightarrow quark-loop diagrams, applicable at $q^2 \ll 4m_c^2$ (large recoil of $K^{(*)}$)

• operator-product expansion (OPE) near the light-cone $i\int d^4x \, e^{iqx} T\{j_{em}^{\rho}(x), O_i(0)\}$

•
$$q^2 \ll 4m_c^2$$
, $\langle x^2
angle \sim 1/(2m_c - \sqrt{q^2})^2$

• $q^2 \rightarrow 4m_c^2$ OPE diverges, i.e. the quark-loop approximation invalid

• at $q^2 \to m_{J/\psi}^2$, $\bar{c}c$ loop becomes a hadronic state: $B \to K^{(*)}\ell^+\ell^- = \{ B \to J/\psi K \otimes J/\psi \to \ell^+\ell^- \}$

Scheme of the operator-product expansion

• *T*-product of $\bar{c}c$ -operators expanded near $x^2 \sim 0$:

the simple loop loop-function $\otimes \bar{s} \Gamma b$

 $\begin{array}{l} \text{one-gluon emission:} \\ \text{nonlocal operator} \sim G_{\mu\nu}(ux), 0 < u < 1 \\ \widetilde{\mathcal{O}}(\boldsymbol{q}) \sim \bar{\boldsymbol{s}} \left(\frac{1}{4m_c^2 - q^2 - q \cdot (i\,D)} \right) G_{\mu\nu} \, b \end{array}$

two-gluon emission

$$\sim rac{\Lambda^2_{QCD}}{4m^2_c-q^2} imes$$
{one-gluon term}

\oplus $O(\alpha_s)$ perturbative corrections

LCSR for the soft-gluon hadronic matrix element

- soft-gluon emission from charm loop reduced to an effective nonlocal operator Õ(q)
- the correlation function: (in terms of *B* meson DAs)

• hadronic dispersion relation in the kaon channel \oplus duality

$$\mathcal{F}^{(B o \mathcal{K})}(p,q) = rac{f_{\mathcal{K}}}{m_{\mathcal{K}}^2 - p^2} \widetilde{\mathcal{A}}(q^2) + \int_{s_h}^\infty ds \; rac{\widetilde{
ho}(s,q^2)}{s - p^2}$$

Alexander Khodjamirian

Hadronic effects in the exclusive $b \rightarrow s$ transitions

Charm-loop effect in $B \rightarrow K \ell^+ \ell^-$ in terms of ΔC_9

• the LO loop \oplus soft-gluon contribution:

$$\Delta C_9^{(\bar{c}c,B\to K)}(q^2) = \frac{\mathcal{H}^{(B\to K)}(q^2)}{f_{BK}^+(q^2)} = (C_1 + 3C_2) g(m_c^2,q^2) + C_1 \frac{\tilde{A}(q^2)}{f_{BK}^+(q^2)}$$

Accessing the large q^2 region

• analyticity of the hadronic matrix element in q^2 , \oplus unitarity \Rightarrow hadronic dispersion relation:

$$egin{aligned} \mathcal{H}^{(B
ightarrow K)}(q^2) &= \mathcal{H}^{(B
ightarrow K)}(0) + q^2 \Big[\sum_{\psi=J/\psi,\psi(2S),..}rac{f_\psi A_{B\psi K}}{m_\psi^2(m_\psi^2-q^2-im_\psi\Gamma_\psi^{tot})} \ &+ \int_{4m_D^2}^\infty ds rac{
ho(s)}{s(s-q^2-i\epsilon)} \Big] \end{aligned}$$

- the residues $|A_{B\psi K}|$ and $|f_{\psi}|$ determined by $BR(B \to \psi K)$, $BR(\psi \to \ell^+ \ell^-)$, eff.pole ansatz for the rest
- complex FSI phase in each A(B → ψK), (Im part in (p + q)²) destructive interferences between different ψ terms possible !
- we fit disp. relation for H^(B→K) at q² ≪ 4m²_c to the calculated OPE result ⇒ model-dependence inevitable results stable at q² < 6 - 8 GeV²

A complete hadronic input for $B \to K \ell^+ \ell^-$

- all operators $O_{1,2}$, O_{8g} , O_{3-6} included
- quark-loop soft-gluon effects at $q^2 < 0$ calculated
- soft-gluon emission from gluonic penguin operator (new LCSR calculation)
- hard-gluon effects estimated at q² < 0 employing QCDF (partly cross-checked with LCSRs)
- LO weak annihilation (small effect)
- dispersion relation includes V = ρ, ω, φ in addition to
 V = J/ψ, ψ'; the parameters fitted with q² < 0 calculation and with measured BR(B → VK).

$\Delta C_9(q^2)$ below J/ψ region

the red (blue) solid curve corresponds to the Re (Im) part obtained from the hadronic dispersion relation, fitted to the QCD calculation at $q^2 < 0$ (central input, default parametrization). The shaded areas indicate the uncertainties. The dashed curves correspond to the prediction of QCDF.

Alexander Khodjamirian

Hadronic effects in the exclusive $b \rightarrow s$ transitions

 $d\mathrm{BR}(B
ightarrow K \mu^+ \mu^-)/dq^2$ and bins

solid (dotted) lines - central input, default (alternative) parametrization for the dispersion integrals.

long-dashed line -the width calculated without nonlocal hadronic effects.

The green (yellow) shaded area indicates the uncertainties including (excluding) the one from the $B \rightarrow K$ FF normalization.

$[q_{min}^2, q_{max}^2]$	Belle	CDF	LHCb	LHCb	this work
[0.05, 2.0]	$0.81^{+0.18}_{-0.16}\pm0.05$	$0.33 \pm 0.10 \pm 0.02$	$0.21\substack{+0.27 \\ -0.23}$	$0.56 \pm 0.05 \pm 0.03$	$0.71\substack{+0.22 \\ -0.08}$
[2.0, 4.3]	$0.46^{+0.14}_{-0.12}\pm0.03$	$0.77 \pm 0.14 \pm 0.05$	$0.07\substack{+0.25 \\ -0.21}$	$0.57 \pm 0.05 \pm 0.02$	$0.80^{+0.27}_{-0.11}$
[4.3, 8.68]	$1.00^{+0.19}_{-0.08}\pm0.06$	$1.05 \pm 0.17 \pm 0.07$	1.2 ± 0.3	$1.00 \pm 0.07 \pm 0.04$	$1.39^{+0.53}_{-0.22}$
[1.0, 6.0]	$1.36^{+0.23}_{-0.21}\pm0.08$	$1.29 \pm 0.18 \pm 0.08$	$0.65\substack{+0.45\\-0.35}$	$1.21 \pm 0.09 \pm 0.07$	$1.76^{+0.60}_{-0.23}$

Hadronic effects in the exclusive $b \rightarrow s$ transitions

Isospin asymmetry: $ar{B}^0 o ar{K}^0 \ell^+ \ell^-$ vs $B^- o K^- \ell^+ \ell^-$

• integrated over $1.0 < q^2 < 6.0 \text{ GeV}^2$.

Belle (2009)	BaBar (2012)	LHCb (2012)	this work
$-0.41^{+0.25}_{-0.20}\pm0.07$	$-0.41 \pm 0.25 \pm 0.01$	$-0.35\substack{+0.23\\-0.27}$	(-0.4)% ÷ (-0.3)%

Nonlocal effects in $B \to K^* \ell^+ \ell^-$

- $B \to K^* \ell^+ \ell^-$, a rich set of observables, sensitive to new physics
- calculated: △C₉^(cc,B→K*)(q²) (simple c-loop ⊕ soft-gluon effect)

• three kinematical structures for the nonfactorizable part (cf. three $B \rightarrow K^*$ form factors),

$$\Delta C_9^{(\bar{c}c,B\to K^*,V)}(q^2) = (C_1 + 3C_2) g(m_c^2,q^2) - C_1 \frac{(m_B + m_{K^*})\widetilde{A}_V(q^2)}{q^2 V^{BK^*}(q^2)},$$

- nonfactorizable part enhanced by 1/q² factor
- $\Delta C_{9}^{(\bar{c}c,B\to K^{*},V)}(1.0 \text{ GeV}^{2}) = 0.7^{+0.6}_{-0.4} \qquad \qquad \Delta C_{9}^{(\bar{c}c,B\to K^{*},A_{1})}(1.0 \text{ GeV}^{2}) = 0.8^{+0.6}_{-0.4} \\ \Delta C_{9}^{(\bar{c}c,B\to K^{*},A_{1})}(1.0 \text{ GeV}^{2}) = 1.1^{+1.1}_{-0.7}$
- to be completed with $O(\alpha_s)$ (QCDF), other operators, topologies
- timelike $q^2 \Rightarrow$ dispersion relation with $B \rightarrow K^* \psi, K^* \phi, ...$

Can we use the low-recoil, $q^2 > m_{\psi(2S)}^2$, region ?

• charmonium states above $\psi(2S)$: $\psi(3770), \psi(4040), \psi(4160), \psi(4415)$

measurement of $R(e^+e^- \rightarrow hadrons)$, from: BESS Collab. 0705.4500 [hep-ex]

• nonlocal effects: local OPE valid at $|q^2| \sim m_b^2 \gg 4m_c^2$,

B.Grinstein, D. Pirjol (2004); Beilich, Buchalla, Feldmann (2011)

• a duality ansatz *Beilich,Buchalla, Feldmann (2011)* nonfactorizable effects (FSI phases in $B \rightarrow \psi K$) not included...

Summary

- $B \rightarrow K$ form factors accessible on the lattice and with LCSR's, $B \rightarrow K^*$ form factors demand additional efforts
- nonlocal effects accessible combining QCDF (perturbative factorizable effects) and LCSRs (soft-gluon effects) full analysis for $B \to K^* \ell \ell$ to be done
- hadronic dispersion relation fitted to OPE ⊕ data on B → ψK allows to access large recoil region
- B → Kℓℓ at large recoil (small q²): nonlocal effects small, a hint of a tension with LHCb (BR bins, isospin asymmetry)
- B → K*ℓℓ at large recoil (small q²): nonlocal effects are larger and have larger errors, influencing "form-factor independent" and "clean" observables ?

BACKUP FILES

B-meson DA's

• defined in HQET:

$$\langle 0|\bar{q}_{2\alpha}(x)[x,0]h_{\nu\beta}(0)|\bar{B}_{\nu}\rangle$$

$$= -\frac{if_Bm_B}{4}\int_0^\infty d\omega e^{-i\omega\nu\cdot x} \left[(1+\nu) \left\{ \phi^B_+(\omega) - \frac{\phi^B_+(\omega) - \phi^B_-(\omega)}{2\nu\cdot x} \not X \right\} \gamma_5 \right]_{\beta\alpha}$$

• key input parameter: the inverse moment of ϕ^{B}_{+}

$$rac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty}d\omegarac{\phi_{+}^{B}(\omega,\mu)}{\omega}$$

- QCD sum rules in HQET: λ_B(1 GeV) = 460 ± 110 MeV [V.Braun, D.Ivanov, G.Korchemsky,2004]
- QCD sum rule based model for 3-particle DA's [A.K., T.Mannel, N.Offen (2007)]

The local OPE limit

• $\omega \rightarrow$ 0 in the nonlocal operator, no derivatives of $G_{\mu\nu}$

 $\widetilde{\mathcal{O}}^{(0)}_{\mu}(\boldsymbol{q}) = \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}) \bar{\boldsymbol{s}}_L \gamma^{
ho} \widetilde{\boldsymbol{G}}_{lphaeta} \boldsymbol{b}_L \; ,$

$$egin{aligned} I_{\mu
holphaeta}(q,m_c) &= (q_\mu q_lpha g_{
hoeta} + q_
ho q_lpha g_{\mueta} - q^2 g_{\mulpha} g_{
hoeta}) \ & imes rac{1}{16\pi^2} \int_0^1 dt \; rac{t(1-t)}{m_c^2 - q^2 t(1-t)} \end{aligned}$$

At $q^2 = 0$, the quark-gluon operator obtained in $B \to X_s \gamma$ in [M.Voloshin (1997)] in $B \to K^* \gamma$ [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

 the neccesity of resummation was discussed before [Z. Ligeti, L. Randall and M.B. Wise,(1997); A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei (1997); J. W. Chen, G. Rupak and M. J. Savage,(1997); G. Buchalla, G. Isidori and S.J. Rey (1997)]

Charm-loop effect in $B \rightarrow K^* \gamma$

- By-product of our calculation for $B \to K^* \ell^+ \ell^-$ at $q^2 = 0$
- factorizable part vanishes, nonfactorizable part yields a correction to $C_7^{eff}(m_b) \simeq -0.3$ in the two inv. amplitudes:

$$\begin{split} & \boldsymbol{C}_7^{\text{eff}} \rightarrow \boldsymbol{C}_7^{\text{eff}} + [\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}]_{1,2} \,, \\ & \left[\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}\right]_1 \simeq \left[\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}\right]_2 = (-1.2^{+0.9}_{-1.6}) \times 10^{-2} \,, \end{split}$$

 the previous results in the local OPE limit, LCSR with K* DA:

$$\begin{split} & [\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}]_1^{BZ} = (-0.39\pm0.3)\times10^{-2}\,, \\ & [\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}]_2^{BZ} = (-0.65\pm0.57)\times10^{-2}\,. \end{split}$$

[P.Ball, G. W. Jones and R. Zwicky (2007)]

 our result in the local limit is closer to 3-point sum rule estimate: [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

Alexander Khodjamirian

Hadronic effects in the exclusive $b \rightarrow s$ transitions