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OUTLINE

1. Strong interactions in e.m. backgrounds and overview of l attice results

2. LQCD in a magnetic field and technical issues with the free e nergy determination

3. Magnetic susceptibility and the equation of state of stro ngly interacting matter:
results and discussion



1 – Introduction

• Strong interactions are described by QCD, the theory of quar ks and gluons.

• Quarks are also subject to electroweak interactions, which in general induce small

corrections to strong interaction dynamics, but exception s are expected in pres-

ence of strong e.m. backgrounds, a situations which is relev ant to many contexts:

– Large magnetic fields ( B ∼ 1010 Tesla) are expected in a class of neutron stars

known as magnetars (Duncan-Thompson, 1992) .

– Large magnetic fields ( B ∼ 1016 Tesla,
√

|e|B ∼ 1.5 GeV), may have been

produced at the cosmological electroweak phase transition (Vachaspati, 1991) .

–

in non-central heavy ion collisions, largest mag-

netic fields ever created in a laboratory ( B up to

1015 Tesla at LHC) with a possible rich associated

phenomenology: chiral magnetic effect (Vilenkin,

1980; Kharzeev, Fukushima, McLerran and Warringa, 2008) .



E.m. fields affect quarks directly and gluons only at the 1-lo op level.

However non-perturbative effects can be non-trivial in the gluon sector as well.

Various model computations predict a rich phenomenology:

• Effects on the QCD vacuum structure (e.g., on chiral symmetr y breaking)

• Effects on the QCD phase diagram (location and nature of the d econfinement tran-

sition, possible emergence of new phases)

• Effects on the QCD equation of state: is strongly interactin g matter paramagnetic

or diamagnetic?

LQCD is the ideal tool for a non-perturbative investigation of such issues. QCD+QED

studies of the e.m. properties of hadrons go back to the early days of LQCD

- G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, Phys . Lett. B 116, 434 (1982).

- C. Bernard, T. Draper, K. Olynyk and M. Rushton, Phys. Rev. L ett. 49, 1076 (1982).

Recent years have seen an increasing activity on the subject .



Overview of lattice results

I focus here on thermodynamical and vacuum properties:

• QCD vacuum response:

– B-induced increase of chiral symmetry breaking (magnetic ca talysis):

- P. V. Buividovich et al, Phys. Lett. B 682, 484 (2010), Nucl. Phys. B 826, 313 (2010)

- M. D. and F. Negro, Phys. Rev. D 83, 114028 (2011)

- G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz and A. Schafer, Phys. Rev. D 86, 071502 (2012)

– B-induced anisotropies in gluon action:

- E. -M. Ilgenfritz et al, Phys. Rev. D 85, 114504 (2012)

- G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaef er, JHEP 1304, 130 (2013)

- E. -M. Ilgenfritz, M. Muller-Preussker, B. Petersson and A . Schreiber, arXiv:1310.7876 [hep-lat]

– ~E · ~B 6= 0 induced effective θ term in the QCD vacuum:

- M. D., M. Mariti and F. Negro, Phys. Rev. Lett. 110, 082002 (2 013)



• QCD phase diagram and B-dependence of Tc:

- simulations on coarse lattices and unphysical mπ show an increase of Tc.

- Improved studies at the physical point show a decrease of Tc and the likely re-

lated appearance of a new phenomenon around Tc: inverse magnetic catalyis

- The origin of the discrepancy is still not completely clari fied.

- An increase of the strength of the transition is observed in all studies

- No B-induced splitting of deconfinement / χSB is observed by any study

- M. D., S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2 010)

- G. S. Bali et al, JHEP 1202, 044 (2012)

- E. -M. Ilgenfritz et al, Phys. Rev. D 85, 114504 (2012)

- G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaef er, JHEP 1304, 130 (2013)

- F. Bruckmann, G. Endrodi and T. G. Kovacs, JHEP 1304, 112 (20 13)

- E. -M. Ilgenfritz, M. Muller-Preussker, B. Petersson and A . Schreiber, arXiv:1310.7876 [hep-lat].

• QCD equation of state:

Is strongly interacting matter paramagnetic or diamagneti c?

this is the main topic of this talk.



2 – Lattice QCD in a few words

The starting point is the path-integral approach to Quantum Mechan-

ics and Quantum Field Theory, opened by R. Feynman in 1948

〈0|O|0〉 ⇒

∫

Dϕe−S[ϕ]O[ϕ]

The QCD path integral is discretized on a finite space-time la ttice

=⇒ finite number of integration variables

For QCD, integration variables are 3 × 3 unitary matrices, Uµ(n),

living on lattice links (elementary parallel transporters )

(K.G. Wilson, 1974)

The path-integral is then computed by Monte-Carlo algorith ms

which sample field configurations proportionally to e−S[U ]

〈O〉 =
1

Z

∫

DUe−S[U ]O[U ] ≃ Ō =
1

M

M
∑

i=1

O[U{i}]



The thermal QCD partition function is naturally rewritten i n terms of an Euclidean

path integral with a compactified temporal extension

SQCD =

∫

d4x

(

∑

f

ψ̄fi
(

Dµ
ijγ

E
µ +mfδij

)

ψfj +
1

4
Ga
µνG

µν
a

)

→ ψ̄M [U ]ψ+SG[U ]

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

As long as DUe−SG detM [U ] is positive, it can be interpreted as a probability dis-

tribution DUP [U ] over gauge link configurations, which can be sampled by prope r

algorithms



LQCD in electromagnetic background fields

An e.m. background field aµ modifies the continuum covariant derivative as follows:

Dµ = ∂µ + i gAaµT
a → ∂µ + i gAaµT

a + i qaµ

in the lattice formulation, the simplest symmetric discret ization is

Dµψ →
1

2a

(

Uµ(n)uµ(n)ψ(n+ µ̂) − U †
µ(n− µ̂)u∗µ(n− µ̂)ψ(n− µ̂)

)

Uµ ∈ SU(3)

uµ ≃ exp(i q aµ(n)) ∈ U(1) depends on the quark charge q.



1
T

The thermal partition function of QCD is written as

usual in terms of an euclidean path integral, with

T =
1

τ
=

1

Nta(β,m)

where τ is the extension of the compactified time

Z = Tr
(

e−
H
T

)

⇒

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U,u]ψ) =

∫

DUe−SG[U ] detM [U, u]

where M is the fermion matrix

• u fields affect gluon fields through the quark determinant and a re not dynamical

in the following (no integration): quenched QED approach.

• By loop expansion of the determinant (loop ∈ U(3)) or by D/ †γ5 = γ5D/ :

detM [U, u] > 0 =⇒ MC simulations are feasible (with a caveat for electric fields)



Some limitations and constraints

• Field quantization on compact manifolds:

– To minimize finite size effects, one usually works on a compa ct manifold, like a

torus (periodic b.c.).

Like for magnetic monopoles, consistency conditions for th e gauge phases

picked up by charged particles impose a quantized field flux th rough each closed

surface (’t Hooft, 1979) .

– e.g. for ~B = Bẑ on a torus populated by particles of charge q:

qB =
2πb

LxLya2

where b is an integer



Consider an lx × ly torus and a realization of ~B = Bẑ: Ax = 0, Ay = Bx

- this is discontinous at x = 0: that can be cured by adding A(x) = −δ(x)Blxy

- but then A(x) is discontinous in y = 0, and that cannot be cured any more

Particles looping around the origin will

take a wrong −qBlxly additional phase

we are left with a uniform field plus a Dirac

string, which is invisible only for quantized

fields



– The lattice U(1) links corresponding to the choice above are the following:

uy(B, q)(n) = ei a2qB nx ; uµ(B, q)(n) = 1 for µ = x, z, t ; ux(B, q)(n)|nx=Lx
= e−i a2qLxB ny

they corresponds to a uniform field plus a Dirac string in the o rigin of each xy

surface, which is invisible for integer b.

The Dirac string can actually be moved anywhere on the torus, for integer b this

is done by a simple gauge transformation.

• UV limitations from discretization:

the plaquette sets the minimum explorable flux on the lattice , which is defined up

to a 2π phase, thus fixing a sort of first Brillouin zone:

−
π

a2
< qB <

π

a2



3 – The magnetic susceptibility of strongly interacting mat ter

Which kind of material is ”strongly interacting matter”?
A question strictly related to the equation of state of the sy stem as a function of B

• DIAMAGNETIC? free energy density f increases with B, pressure decreases

• PARAMAGNETIC? free energy density decreases with B, pressure increases

The question is, in principle, simple and well posed:

We need the magnetization M = −∂f/∂B and the magnetic susceptibility

χ = −∂2f/∂B2 which are in principle perfectly computable equilibrium qu antities.

χ > 0 =⇒ PARAMAGNETIC χ < 0 =⇒ DIAMAGNETIC

PROBLEM: in the usual lattice setup (compact manifold with periodic b .c.), B is quan-

tized and the derivative is not well defined.



Previous studies

• P. V. Buividovich et al, Nucl. Phys. B 826, 313 (2010)

G. S. Bali et al, Phys. Rev. D 86, 094512 (2012)

Only the spin component of the magnetization is computed

M spin =
1

2

∑

f

qf
mf

〈

ψ̄fσxyψf
〉

diamagnetic behavior at T = 0 and T 6= 0, but ”orbital” contribution unknown.

• G. S. Bali et al, JHEP 1304, 130 (2013)

total vacuum magnetization computed from pressure differe nces in directions or-

thogonal or parallel to B

Perturbative anisotropic lattice coefficients needed

outcome: the magnetic susceptibility of the QCD vacuum is zero, but hi gher order

terms in the free energy are paramagnetic

(recently extended also to finite T , see later)



OUR APPROACH
C. Bonati, M. D., M. Mariti, F. Negro and F. Sanfilippo, Phys. R ev. Lett. 111, 182001 (2013) [arXiv:1307.8063]

• The idea is to reconstruct directly the B-dependent part of the free energy density

in place of its derivatives ∆f(B, T ) = − T
V

log
(

Z(B,T,V )
Z(0,T,V )

)

• However, a direct determination of the ratio of partition fu nctions is hardly feasible

Z(B, T, V )

Z(0, T, V )
=

∫

DUe−SG[U ] detM [U,B]
∫

DUe−SG[U ] detM [U, 0]
=

〈

detM [U,B]

detM [U, 0]

〉

B=0

difficulties emerge both in computing the observable and in c orrectly sampling it

• A standard trick is to rewrite the ratio as the product of inte rmediate, easily com-
putable ratios of interpolating partition functions (like the ’t Hooft loop) , possibly
also a continuous interpolation → derivative method (like for the pressure)

log

(

Z ′

Z

)

= log

(

Z ′

ZN

ZN

ZN−1

. . .
Z2

Z1

Z1

Z

)

= log
Z

ZN
+ · · · + log

Z1

Z
→

∫ Z′

Z

dx
d log Z(x)

dx

NOTICE: Any interpolation is good! Provided the reconstruc tion is unambiguous



• Our idea is to extend the definition of f(b) also to non-integer, unphysical values

of b, and to obtain physical differences as follows:

f(b2) − f(b1) =

∫ b2

b1

∂f(b)

∂b
db ,

with b1 and b2 integers, computing the integrand on a grid of points.

• ∂f/∂b is not the ”magnetization”, but just a derivative of the inte rpolating free

energy. As long as the f(b) is differentiable, the procedure is unambiguous.

• In practice, our choice for the interpolating f corresponds to the same U(1) field

defined above, which for non-integer b describes a uniform field plus a (visible)

Dirac string.

On a finite lattice, analyticity is always guaranteed.



b=2.00000

example of interpolating magnetic field on a 4 × 4 lattice torus

the plaquette in the up-right angle is pierced by the Dirac st ring



b=2.25000

example of interpolating magnetic field on a 4 × 4 lattice torus

the plaquette in the up-right angle is pierced by the Dirac st ring



b=2.50000

example of interpolating magnetic field on a 4 × 4 lattice torus

the plaquette in the up-right angle is pierced by the Dirac st ring



b=2.75000

example of interpolating magnetic field on a 4 × 4 lattice torus

the plaquette in the up-right angle is pierced by the Dirac st ring



b=3.00000

example of interpolating magnetic field on a 4 × 4 lattice torus

the plaquette in the up-right angle is pierced by the Dirac st ring



In practice:

• We have considered QCD with fermions in the rooted staggered formulation

Z ≡

∫

DUe−SG

∏

f

detD
1
4 [U,mf , qf ]

where the product runs over the different flavors

• The Dirac operator is

D
(q)
i,j ≡ amδi,j +

1

2

4
∑

ν=1

ην(i)
(

u(q)
ν (i) Uν(i)δi,j−ν̂

− u∗(q)ν (i− ν̂) U †
ν (i− ν̂)δi,j+ν̂

)

qu = 2|e|/3 and qd/s = −|e|/3.

• The derivative of the interpolation can be expressed as

M ≡ −a4∂f

∂b
=

1

4LtL3
s

∑

f

〈{∂D(mf ,qf )

∂b
D(mf ,qf )−1

}〉



Renormalization

• B-dependent divergences do not cancel when taking the differ ence

∆f ≡ f(B) − f(0), and must be properly subtracted.

• We are interested in the magnetic properties of the strongly interacting thermal

medium, which may be probed experimentally. Therefore, our prescription is to

subtract the vacuum ( T = 0) contribution

∆fR(B, T ) = ∆f(B, T ) − ∆f(B, 0)

no further divergences, depending both on B and on T , appear

• Divergences are really removed only if the contributions to fR are evaluated at a

fixed value of the lattice spacing.



Effects of QED quenching

• for a linear homogeneous, isotropic medium, the magnetizat ion is proportional to

the field (SI units)

M = χ̃B/µ0 ; M = χH ; H = B/µ0 − M ; χ = χ̃/(1 − χ̃)

• After subtraction of the magnetic field energy in vacuum, one has

∆fR = −

∫

M · dB = −
χ̃

µ0

∫

B · dB ≃ −
χ̃

2µ0

B
2 = −

χ̂

2
(eB)2

in the small field limit. Last expression defines the suscepti bility in natural units.

• B is the total field felt by the medium. No backreaction from the medium (QED

quenching) =⇒ it coincides with the external field added to the Dirac operat or

• The determination of χ̃ is not affected by quenching effects, however, in a real

medium, the backreaction would lead to an increase of ∆fR by a factor 1/(1−χ̃)2



RESULTS: we have first explored our method for Nf = 2 unimproved staggered fermions
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b
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163×16
163×4

M ≡ a4∂f/∂b on a T = 0 and a T 6= 0 lattice a ≈ 0.188 fm

mπ ≈ 480MeV, T ≃ 262MeV The lines are third order spline interpolations.

• Oscillating behavior caused by Dirac string becoming more o r less visible, two

harmonics due to different u and d quark charges

• The area spanned between integer values gives the free energ y difference ∆f
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• restricting to regions where a4∆f(b) ≃ c2 b
2 for both T = 0 and T 6= 0 (linear

response region)

a4 (f(b) − f(b− 1)) ≡

∫ b

b−1

M(b̃)db̃ ≃ c2 (2b− 1)

• Finally: c2R = c2(T ) − c2(T = 0) and

χ̃ = −
|e|2µ0c

18~π2
L4
s c2R ; χ̂ = −L4

s c2R /(18π
2)



Stability checks

• Right: Results change within errors if we refine the

grid of points or change the order of the spline inte-

grator

• Below (M and
∫

M ): Stability within errors if we

change the interpolating free energy: comparison

with a ”two Dirac strings” interpolation and with

adding a constant Aµ background

↓

s 16 points 32 points

1 0.000596(16) 0.000594(12)

2 0.000594(17) 0.000593(12)

3 0.000592(17) 0.000594(12)

4 0.000592(17) 0.000594(13)
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Final results for Nf = 2 QCD, standard unimproved staggered fermions
Simulations performed on GPU farms in Genoa, Pisa and Rome (Q UONG)

100 200 300
T [MeV]

0

0.001

0.002

0.003

χ~

mπ=195MeV, a=0.188fm
mπ=275MeV, a=0.17fm
mπ=480MeV, a=0.141fm
mπ=480MeV, a=0.188fm
mπ=480MeV, a=0.24fm

• χ̃ is small or vanishing below Tc, while it steeply rises above deconfinement

• numbers indicate strong paramagnetism, one can compare, e. g., χ̃ ≃ 2.8 × 10−4

for Platinum and χ̃ ≃ 3.9 × 10−3 for Liquid Oxygen.

• Data show only a mild dependence on the lattice spacing and on the pion mass

• The fact that the free energy of the deconfined phase decrease s with B can ac-

count for the fact that Tc decreases with B.



Results confirmed by different approaches by other groups

L. Levkova and C. DeTar, arXiv:1309.1142:

• A constant B for half of the lattice, and a con-

stant −B for the other half.

• Zero magnetic flux for every B: no quantization

is required. But interface effects at the bound-

ary must be kept under control.
100 150 200 250 300 350 400

T [MeV]

0

0.005

0.01

0.015

0.02

C
r 2

Consistent results, based on 〈ψ̄ψ〉 integration, presented in G. S. Bali, F. Bruckmann,

G. Endrodi and A. Schafer, arXiv:1310.8145 [hep-lat].

Consistent results, based on the pressure anisotropy, pres ented in G. S. Bali, F. Bruck-

mann, G. Endrodi and A. Schafer, arXiv:1311.2559 [hep-lat] .



Extension to Nf = 2 + 1 QCD with physical quark masses
C. Bonati, M. D., M. Mariti, F. Negro and F. Sanfilippo, arXiv: 1310.8656 [hep-lat].

In order to refine our study and check for effects related to th e quark mass spectrum

and the UV cutoff, we have repeated our analysis with an impro ved discretization,

adopting the same action used by the Budapest-Regensburg-W uppertal collaboration

(see, e.g., Aoki et al., JHEP 0906 (2009) 088)

• Tree level Symanzik improved gauge action

• Nf = 2 + 1 stout rooted staggered quarks (2 stouting levels), with phy sical light

and strange quark masses

We have used three different spacings, aLs ∼ 5 fm and temperatures in the range

90 − 400 MeV (by varying Lt):

Ls a(fm) β amu/d ams

24 0.2173(4) 3.55 0.003636 0.1020

32 0.1535(3) 3.67 0.002270 0.0639

40 0.1249(3) 3.75 0.001787 0.0503

Simulations performed on the Fermi BlueGene/Q machine at CI NECA
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Intermediate results for ∂f/∂b and for the finite free energy differences show the

same qualitative behavior as for unimproved fermions

It is interesting to notice that the linear response region o f strongly interacting matter

seems to extend to eB ∼ 0.1 − 0.2 GeV2, which is the region relevant for heavy ion

collisions.



Magnetic susceptibility
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Low temperature

HRG model

χ = A exp(-M/T)

G. Endrodi, JHEP 1304)

High temperature

Free quark gas

χ = A’ log(T/M’)

P.Elmfors et al., PRL 71 (1993)

Results for χ do not change qualitatively with respect to unimproved resu lts

• there is a slight increase, partly due to the inclusion of the strange quark

• UV cutoff effects seem well under control

• The system is paramagnetic also in the region around and belo w Tc ≃ 155 MeV

• Low T and high T regions are well described by HRG or free quark predictions



Magnetic susceptibility
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Remarkably, we are able to fit data in the whole T range by the mentioned predictions:

• χ̃ = A exp(−M/T ) for low T

• χ̃ = A′ log(T/M ′) for high T

with a differentiable matching at T ∼ Tc. M ∼ 900 MeV, in agreement with the

lightest hadrons carrying a non-trivial magnetic moment, a nd M ′ ∼ Tc.



Flavor contributions
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M ≡ a4 ∂f
∂b

= 1
4LtL3

s

∑

f

〈{

∂D
(qf )

∂b
D(qf )−1

}〉

=⇒ we can distinguish the differ-

ent contributions, χ̃ = χ̃u + χ̃d + χ̃s even if the separation is not strict, because of

quark loop mixings.

• χ̃d/χ̃u ≃ (qd/qu)
2 = 0.25 over the whole T range

• χ̃s/χ̃u → 0.25 only for high T : strangeness thermally suppressed for lower T .



Magnetic contributions to the QCD pressure
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For homogeneous systems ∆P (B) = −∆fR. We plot ∆P (B)/P (B = 0) for two

different values of B (data at B = 0 taken from S. Borsanyi it et al, arXiv:1309.5258)

• ∆P/P is larger around the transition and already in the range 10-5 0% for the

typical fields produced in heavy ion collisions at the LHC, eB ∼ 0.1 − 0.2 GeV2.

• In the high T regime ∆P/P → 0 as expected, since P (B = 0) ∝ T 4



4 – Conclusions and perspectives

• We have determined the response of strongly interacting mat ter to external mag-

netic fields

• Strongly interacting matter is a paramagnetic medium, with a linear response for

fields up to eB ∼ O(0.1) Gev2 and a magnetic susceptibility which steeply rises

above deconfinement, and apparently like log(T ) for high T

• The relative increase in the pressure may be significant, aro und Tc, already for the

magnetic fields produced in heavy ion collisions.

• Future studies should compute the non-linear contribution s, which become sig-

nificant for eB ∼ 1 GeV2, and which could be important for cosmological models

• The c quark contribution could also be non-negligible at moderat ely high T (mass

suppression but (qc/qs)
2 = 4) and should be taken into account


