

Cyclotron Test Site for

High Power Proton Beams

Luciano Calabretta, A. Calanna, D. Campo, D. Rifuggiato INFN-LNS DAE&ALUS collaboration BEST Theratronics

A CYCLOTRON ABLE TO ACCELERATE H2+, DEUTERON and He⁺⁺ up to 7 MEV/AMU

Decay At rest Experiment for δ_{cp} studies At the Laboratory for Underground Science

<2 MW> with a peak power of 10 MW or higher

DAEδALUS base module features

Injector Cyclotron compact, resistive

- $< 1 \text{ mA} > \text{H}_2^+ 60 \text{ MeV/n}$
- Peak current 5mA of H_2^+
- Average power 120 kW
- Peak power 600 kW

Space Charge effectsElectrostatic Deflectors

arXiv.org > physics > arXiv:1207.4895

- <1 mA> H_2^+ 800 MeV/n
- Peak Power 10 MW,
- Average power 2 MW
- Beam losses < 200 W!
- Stripping extraction
- Superconducting Coils
 Losses due to residual gas
 Electromagnetic stripping

ABNP2014, Legnaro, 14-15 April

Diametro 15 m

Primary Cyclotron Separated sectors, superconducting

Target/shielding

Acceleration of H₂⁺ ions to produce high intensity proton beam

✓ Two protons for every ion (1 emA = 2 pmA)

The Generalized Perveance measures the space charge effect and it is defined by the Reiser's formula:

$$K = \frac{qI}{2 \cdot \pi \cdot \varepsilon_o \cdot m \cdot \gamma^3 \beta^3}$$

Perveance of 5 emA H₂⁺ at 35 keV/amu same as 2 emA of 30 keV protons

- axial injection of 2 emAprotons at 30 keV isestablished
- ✓ Extraction with stripping foil, because it requires a highacceptance extraction channel and not a clean turn separation

DAEδALUS Injector Cyclotron

E _{inj}	35 keV/n	E _{max}	61.7 MeV/n
\mathbf{B}_0	1.075 T	 at R_{ext}	1.166 T
<r<sub>inj></r<sub>	51.58 mm	$< R_{ext} >$	2000 mm
N. Sectors	4	Hill width	$25.5^{\circ} \div 44.^{\circ}$
Valley gap	1800 mm	Hill gap	100 mm
Diameter	6240 mm	Full height	2700 mm
N. Cavities	4	Cavities $\lambda/2$	Double gap
RF Harmonic	4 th	RF frequency	32.8 MHz
Acc. Voltage	70÷250 kV	Power/cavity	<160 kW
Coil size	200x250 mm ²	Current density	3.17 A/mm ²

arXiv.org > physics > arXiv:1207.4895

Beam dynamics in DAE ALUS Injector Cyclotron

Simulation made by J. Yang and A. Adelman @ PSI, using OPAL code.

Vertical beam size vs. turns number for different beam currents

Due to the space charge effects the emittance increases initial rms normalised emittance 0.6 π mm.mrad \rightarrow 4 π mm.mrad

Beam dynamics in DAE ALUS Injector Cyclotron

60 MeV Cyclotron Extraction efficiency 99.98%, if beam power is 600 kW on the septum 120 W!

At 7 MeV/amu interturn separation is about14 mm!

Extraction efficiency 99.9% With beam power 70 kW Power on the septum 70 W!

Phase & isochronism

• Between -7 deg and 4 deg

• Almost everywhere in the order of 0.1%

Courtesy by Alessandra Calanna

- Cyclotron half height 70 cm
- Valley 50 cm from M.P.
- External radius 142 cm (yoke thickness 31cm)
- Skirt valley starts 10 cm from the median plane and his thickness is 4cm
- Inner hole r=13cm,
- Valley holes r=16.3cm
- Inner radius of the central plug 2.8cm
- Central plug distance from the median plan 3cm (min), 7.8 cm (max)

part 1 name: pole QTY(total): 2 weight(only one part): 16.9ton

-

RF Cavity parameters

	B28 Cavity Performances	
	Resonant Frequency	≈ 31.7 MHz
	Quality Factor	≈ 6'869
	Power dissipation	≈ 10.58 kW
	Max Surface Current	≈ 49 A/cm
	Max Electric Field	$\approx 5 \mathrm{MV/m}$
	Voltage Distribution on a gap	≈ 70-70 kV
	Dee Radial Extension (Length)	= 735 mm
	Stem Diameter/Liner Cyl Diameter	= 80/288 mm
	Dee Gap	= 30 mm
J		

RF Liner and outer coaxial

Normalized Emittance 13 π mm.mrad >> 4 π mm.mrad

Electrostatic Deflector	Gap	Field	Gradient kGaus/cm	θ_{i}	θ_{f}
Electrostatic Deflector	20 mm	27 kV/cm		26°	70°
Magnet channel 1	20 mm	3 kGauss	1.2	120°	134°
Magnet channel 2	20 mm	4 kGauss	1.6	140°	162°
Magnet channel 3	20 mm	4 kGauss	.4	166°	186°
Magnet channel 4	20 mm	12 kGauss	1.25	190°	196°

Ion Source, Injection Tests

- How much H_2^+ can we get from a proton source? (VIS Catania)
- How much can we capture in central region?
- Tests performed at Best Cyclotron Systems development Lab, Vancouver BC, Summer 2013

