Construction Status of BNCT Facility Using an 8-MeV High Power Proton Linac in Ibaraki, Japan ABNP14, INFN, April 14-15, 2014

H. Kobayashi, (KEK , NAT, Tsukuba Univ.)

- M. Yoshioka, T. Kurihara, H. Matsumoto (KEK)
- H. Kumada, A. Matsumura, H. Sakurai ,S. Tanaka(Tsukuba Univ.)
- F. Hiraga, (Hokkaido Univ.)
- H. Nakashima, T. Nakamura (JAEA)
- T. Ohba, Ha. Kobayashi, N. Nagura (<u>Nippon Advanced Technology CO.,LTD</u> (NAT))
- T. Hashirano, F. Inoue, K. Sennyu, T. Sugano, M. Yamasaki (Mitsubishi Heavy Industries LTD)

Many Thanks to industry people and Ibaraki local government;

- Ibaraki Prefecture for their total support
- ATOX CO.,LTD, Nihon Koshuha CO.,LTD, Toshiba Electron Tubes and Devices CO.,LTD, TOYAMA CO.,LTD, NEC/TOKIN CO.,LTD and many other industries

Project Organization and Outline of the Facility

iBNCT group:

industry-government-academia research group

Ibaraki prefecture

Basic idea of *i-BNCT*

Spin off of J-PARC frontend injector linac technology RF design is based on J-PARC design

Ibaraki BNCT Construction Site: Ibaraki Neutron Medical Research Center, adjacent J-PARC site (but not J-PARC)

Aiming "hospital friendly BNCT" :very low residual radioactivity

R. C. Byrd, C. E. Floyd, P. P. Guss, K. Murphy and R. L. Walter, "CROSS-SECTION MEASUREMENT AND LANE MODEL ANALYSIS FOR THE ⁹Be(p,n)⁹B REACTION", Nuclear Physics A399(1983)94-118

Beryllium or Lithium?

In case of *Li*, the cross section is very attractive, ♦ Sharp rise below 2.5MeV

◆ Neutron energy spectrum is fine (< 300keV)

But!

target material: priority: hospital friendly

Beryllium: No residual radioactivity for 8 MeV proton

Lithium : ⁷Li(p,n)⁷Be & ⁶Li(n,t)⁴He

- > ⁷Be has 53 days T_{1/2} and high radioactivity
- > Tritium should be avoided for hospital use
- ➢ Melting temperature is only 180 ℃
- > Chemically very active

our decision: Beryllium target +8-MeV proton

Energy selection

How we decide the beam energy

IAEA GUIDELINE

Epithermal (0.5eV-10keV): $10^{9}n/(s \cdot cm^{2})$ \rightarrow to get moderate irradiation time.

need to reduce following accompanying beam: IAEA-TECDOC-1223

- Fast neutron >10 keV
 - \rightarrow 2x10⁻¹³ Gy cm² per epithermal neutron
- Gamma rey
 - \rightarrow 2x10⁻¹³ Gy cm² per epithermal neutron
- Ratio between thermal flux and epithermal flux
 - → 0.05

Residual Radioactivity vs Proton Energy

Cooling Time(day)

Energy selection

8 MeV was chosen

residual radiation

operation

Target development

Crucial items for 8-MeV proton and Beryllium Target

- blistering
- ≻heat removal

Target thickness of *i-BNCT*: 0.5mmnot enough mechanical strength as a beam window

Be target strength is enough for a beam window
Beam stops in cooling water, blistering free!!

Easy fabrication & blistering free

8-MeV Target

Separated function target
top: neutron production
middle: beam stop and blistering mitigation
back: heat sink (water cooling)

Thermal conductivity measurement

Direct measurement of heat conductivity of three layer metals with laser-flash method → 200 W/(m/K) Good enough for the practical use

Water cooling of high-density heat load

Surface temperature of the top layer is determined with steady state energy flow from the surface to the heat sink

heat load 4.5MW/m², heat transfer in nucleate boiling region.

Simulation of target temperature

Temperature: surface to cooling pipe

Target manufacturing

Target and moderator

2014/5/8 Three layer target

Research of blistering

前段加速器:0 → 750keV イオン源土マッククロフト・ウォルトン型 ピーク電流(H):20mを we have developed observation system of blistering

We have leaned a lot from LENS experiences (13 MeV proton linac)

T. Kurihara

in situ observation of blistering

Laser Light Reflectivity Measurement (LRM)

Surface observation with PLDM

- Incident angle dependency of reflectivity of s, p polarized light -

blistering observation using reflection

IAEA GUIDELINE

Epithermal (0.5eV-10keV): 10⁹n/(s·cm²) → to get moderate irradiation time.

need to reduce following accompanying beam: IAEA-TECDOC-1223

- Fast neutron >10 keV
 - \rightarrow 2x10⁻¹³ Gy cm² per epithermal neutron
- Gamma rey
 - \rightarrow 2x10⁻¹³ Gy cm² per epithermal neutron
- Ratio between thermal flux and epithermal flux
 - → 0.05

Characteristics of BNCT linac:

- High duty linac
- ➢ J-PARC: 2.5 %
- **BNCT: 20%**
- High current linac
- > 50mA peak
- > 10mA average

Construction started 2011

Accelerator status

Installation has just finished

Ion source tuning has started

Timeline of the *i-BNCT* project

R&D/Construction item	JFY2011	JFY2012	JFY2013	JFY2014	JFY2015	JFY2016			
	R&D period				R&D/Opera	ation period			
Building Renovation <i>i-NMRC</i>	-								
Accelerator Target/Moderator	Development/Construction of linac ==> Upgrading								
	proton be	am commi	ssion ing		for medi	beam com ical applica	missioning tion		
Neutron beam for treatment, Treatment planning	Medical plan Patient posit Neutron& γ-	ning system ion adjustmer ray monitorin	nt sytem g system	\rightarrow	Practica	al use			
Property measurement & microbial testing		Р	roperty mea	surement	Cell study				
Clinical research							d medical tre	eatment	
Application to PMDA (Pharmaceuticals and Medical Devices Agency)			a 10000			u y			

summary

- We have just installed acceleartor
- ion source tuning has started
- Expected epi-thermal neutron: 4.66x10⁹n/(s⁻ cm²)
- three layers target has been manufactured :thermal conductity 200W/m/K
- further study of blisering will be continued