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Long-range interactions

A

t large inter particle distance r

Energy per particle

E f J
€=y = /5 ddfrpr—a X {Rd_o‘ — 5d_0‘}

® If > dthen e — const when R — oc.
8 ifo<a<dthene~ Vi=¥/d(y ~ R
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Off and on lattice

- .

U(?l,...7?]\f) = Z V(’?i—7j’)—|—h Z Ve(?z)
1<i<j<N i=1, N

Gravitational point masses and Coulomb point charges fall
Into this category.

N
Ulqq,....dn) = Z CijV(Qi>Qj)‘|—hZ‘/<e(qfi)

1<i<j<N i=1

q; represents “internal”" degrees of freedom sitting at lattice
site r; and the coupling

1
Cij ’77; — 73‘\0‘ . 0<a<d
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Non additivity
B -
Ervrr # Er+ Epg

Curie-Welss Hamiltonian

How = —— ZO’ZO]

with o; = 1.
Zero magnetization state M = » . 0; =0

1 2
e e

e e
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| Erir=0  E;j=E;=—J/8N. -
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Energy and free energy
l7Total energy E = €V

a>d E~V
a<d E~V2o/d

Free energy

F=E-TS , S~V , s=8/V

Kac rescaling in order for the entropy to compete with energy.

J—Jve/d=l  pLVv | f=F/V

or, alternatively,

T_>Tvl—04/d : FNv2—a/d
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a-1sing model

Barré, Bouchet, Dauxois and Ruffo, 2005

J 00

Hy = —— —
with
N o
\ —  ~ Nl—«o
N_E p N , 0<a<l1
i=1

Continuum limit:Divide the lattice in K boxes, each with n = N/K sites and introduce the
box-averaged magnetization my, kK = 1, ... K. Take the limit N — oo, K — oo,
1/n = K/N — 0. The magnetization becomes a continuous function of m(z) in the interval

[0, 1] and
Hy = NH[m| + o(N)
with

- pim = [ [ 200 -

Iw—ylo‘
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Entropy of a-Ising

Large deviation principle for the probability of observing a given magnetization m;, in the k-th
box

1 1 1 — 1 —
P(my) x exp(ns(my)) = exp {—n( +2mk In +2mk + 2mk In 2mk )]

Since the microscopic random variables are a-priori independent

P(mi,ma,...,mg)

K K
[T Pmi) ~ [ | exp(ns(me)) =

ex
P K

= s(mg)
nk S 2Tk ] ~ exp(Ns[m(z)])
k=1

where s[m(z)] = fol dxs(m(x)) is the entropy functional associated with the global variable
m(x). This results implies that entropy is extensive (proportional to V) also for long-range
systems.
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Non concave entropy

s A

1 | —
81 82 e

0%s/0e* = —(cyT?) ™!



Negative specific heat

i "
;—_ e
i oo
= 2 N
= ] =S
. re”
1 ﬁﬁﬁm&@
o
{:. i 1 1 1 I 1 1 1 I 1
0 40 =0

Energy(eV)

F. Gobet et al., 2001

Caloric curve of hydrogen cluster ions Hy (H2)m<14
bombarded by Helium projectile (liquid-gas transition),
energy and temperature are determined from the size
distribution of the fragments.
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Large deviations, Legendre transform

-

Step 1 Express the Hamiltonian in terms of global variables ~
Hy(wn) = Hy (7(wn)) + Ry (wi)

(wn a phase-space configuration) leading to h(v) = LimN— oo HN (v(wn)) /N.
Step 2 Compute the entropy functional in terms of the global variables using, e.g., Cramer’s

theorem
1
= i — In )
s(7y) im —In ~ ()

N — oo

with Q () the number of microscopic configurations with fixed ~.
Step 3 Solve the microcanonical and canonical variational problems

s(e) =sup (s(7) [ h(y) =€) ,
g

BF(8) = inf (Bh(7) — s(7))
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Concave regions and broken ergodicity

 E=MEi+(1-NEy , M=AM+(1-\)M, , 0<A<1



Metastabllity

T ~e kT canonical , 7 ~e ¥ microcanonical

Griffiths, Weng and Langer, 1966; Antoni, SR and Torcini, 2004; Schreiber, Mukamel and
SR, 2005
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The Kardar-Nagel model
|7Nagel, 1970; Kardar, 1983; Schreiber, Mukamel and SR, 2005 T

K (N
H:_EZ(SiS”l_l)_z_N(ZSi) ;

LetU = —(1/2) >_.(S:iSi+1 — 1) be the number of antiferromagnetic bonds in a given
configuration characterized by N4 up spins and N_ down spins, e.g. Ny =12, N_ = 3§,
U/2 =2

Simple counting arguments yield to leading order
Ny —1 N_ -1
Q(N4,N_,U) ~ T .
U/2—1 U/2—1
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Phase diagram
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Broken ergodicity
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Magnetization flips

I
0 25 50 75 100
(MC sweeps)/1000
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Microcanonical dipolar needles
B -

Final Spin Configuration for t = 3000 Final Spin Configuration for t = 5000
N '

¥
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Dipolar interaction and mapping
fMiloshevic, Dauxois, Khomeriki and SR, 2013 T

3 (. S, - 7S -7
H:sz%@ﬂj_g( 7is) (5, m)  — hoo® /()
it i "

Mapping to the Kardar-Nagel model
N 2
K Z Q= J z
Hepyr=—+ E:(Sz‘sﬂ_l)_ (E,&)
2 G 2N \—

drea3(1 — 30, 1 02 1
5 _ A4mea ( ) o= | B | B ( - ) _
SUO 47TV Vv \V4 82;2 "r' — 7"1|

K is negative in units of e and depends on the lattice type: simple cubic, body-centered
cubic, face-centered cubic, etc.
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Energy per spin
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Co nanoparticles

Models with interactions that decay weakly with distance — p.21/3

Varon, 2013



The HMF model
|7Antoni and SR, 1995

N
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Vlasov equation

-
N
Z% U010y Zve—e

Z<]

of | 0f 9w df 1<05va(5f>
ot o0 90 op  N' 00 op

(0)(6.1) = / 40 dp'V (0 — ) F(0 . p ) / / d0dpf = 1



Yamaguchi, Barré, Bouchet, Dauxois and SR, 2004
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Quasistationary states

Initial Condition

Violent

relaxation | ¢ O1)

Y

Quasistationary state

Collisional

. 7. = N4
relaxation

Y

Boltzmann’s Equilibrium
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Scaling law

Bachelard and Kastner, 2013

T = N1

3
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FIG. 3 (color online). As in Fig. 1, but for scaling exponents g
as modified by the presence of an N-dependent prefactor 2N in
the Hamiltonian. The left plot is for the long-range guantum
Ising model, the right for the classical «X¥ chain.
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Response

Patelli, Dauxois, Gupta, Nardini and SR, 2012

H(t)

(ma) ()

= Ho + Hext = Ho — h
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Linearized Vlasov equation

- .

f(eapat) — fO(p) +6f(07p7t)

s f odf  0dv Ofo

ot P50 " 50 ap

5f(0,p,t) = f(p) ’*O7D 50(0,t) = b e RO,

—iw f(p) + pik f(p) — ik o f5(p) =0

Plasma response dielectric function (HMF) | nagaki - Koni shi (1993)

B +o0 fé(p)
D(w,k) =14 mk (6k,1 + 0k, —1) dp ,
oo pk — w

Dispersion relation

o -
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Stability of the homogeneous state

Stability condition for the homogeneous state of the HMF model

+oo £/
I:1—|—7r/ fo®) 45
— 00 p

Gaussian distribution

o) = 2| L exp(=r?/2

I=1-06/2>0,T=1/6>1/2,¢>3/4
“Waterbag” distribution

1 1

fwb(p) = o7 2Ap [©(p + Ap) — ©(p — Ap)]

I=1—-1/2Ap% >0, Ap* >1/2,e>7/12

o

=

-
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Vlasov equation on a lattice

Bachelard, Dauxois, De Ninno, SR and Staniscia, 2011
p; 1 o~ (g, qr) al
b J? ; \ F— o l—a
— 4+ — , i =ja, N = ) x N , 0<a<1
M=% "o 2 oy —apfe 2
J 7,k=1 =1

Continuum limit

dq

v Y
Vz[f](g,t —Iia///dqdpda:fqpa:t)|(:1$/|)a,

+1/2
wat= [ do/lal®

—1/2

where

Vlasov equation

L of , oI oVilfl(a.t) Of

ot ' g g op

—
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Linearized Vlasov equation

Expansion around a homogeneous state

f(Q7p;x7t) - fO(p) +5f(Q7p;x7t)

Ot(6f) +p0q(6f) — Opfo(p)9qVz[df](q,t) = 0.

Fourier expansion

Sfe(q,p;x) = Y e fi(q,p) exp(irkz)

Dispersion relation

where

+1/2 _2itk X R
cx(a) = Fva/ - aydy , VIfil(e) = //dQ’dp’fk(Q’,p’)v(q, q')
—1/2 v
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a-HMF model

Tamarit, Anteneodo (2000), Campa, Giansanti Moroni (2000), Mori (2011,2012)

v(g,¢') = —cos(g—¢) , V[fil(@) = —ka (mm [fx] cos g + my [ fx] sin q) ,

ma[fr] = // dq'dp’ fr(d',p')cosq’ , mylfi] = // dq'dp’ fr(q',p") sing’

Dispersion relation

2 2
fo(p) fo(p)
(1—|—7rck(a)/dpp (1 iL)) -+ (W%(a)/dppz (f_fﬁ)) = 0.

Waterbag distribution

1 1

fo(p) = 27 2Ap (©(p+ Ap) — O(p — Ap)) ,

The eigenvalue of the k-th Fourier mode is given by

\_ A = \/c’“(o‘) — Ap2. J

2
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Zero-mode dominance-|

N =262144 | |
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Overdamped Langevin dynamics

Langevin dynamics (canonical ensemble) Gupta, Campa and SR, 2012

d@z . 1 i Sin(ej — 97,)
dt N 4=, (I7—il)

+mi(t), (ni(t)) =0, (ni(t)n; (t")) = 2T6;;0(t —t)

s =1i/N € [0, 1], local density p(0; s, t)
Smoluchowski equation

9 _ ()2 [(/d@’ds’ Zi;(ﬁls_lji p(e’;s’,t)) ] +T%

Linearized Smoluchowski equation around the homogeneous state pg = 1/(27).

6p ko cos(0' — 0) 0%5p
= do’'ds’ ~0 08" t)+T :
ot 27 / ° c p(65s", 1) + 502

Mode k grows if

N .
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Zero mode dominance-l|
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Time t

N
1 . .
rm(t) = N‘ g et Ost2mim/N) |y — 01,2, ...
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Conclusions

f # Long-range interacting systems show unusual T
properties both in equilibrium and out of equilibrium:
ensemble inequivalence, negative specific heat,
temperature jJumps, quasistationary states, etc.

# These effects could be observable in experimental
conditions: dipolar systems, cold atoms, etc.
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