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Introduction

•What is LUX?
oDark Matter direct search experiment
oDual-phase (gas/liquid) TPC
o370 kg of xenon

•LUX first WIMP search results
oPresented last October 30th

o85 live-days (21 April - 8 August)
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Dark Matter Evidences 4

Bullet-cluster: DM not MOND

D. Clowe, et al

CMB + BAO: precision tests of ΛCDM

2.2. Evidence for dark matter

Figure 2.2: Rotation curve of spiral galaxy NGC-3198. The sum of disk and expected
dark matter halo contributions match the observations [14].

between baryonic or dark origin. In fact, gravitational lensing was first suggested by

Zwicky as a viable technique to measure the mass distribution in our Universe [15].

We distinguish between three different classes of gravitational lensing: strong, weak

and micro lensing. Strong lensing distorts the images of the lensed objects to great

extent, resulting in clearly visible arcs and multiple images of the same source. On the

contrary, micro-lensing imposes no visible distortion on the shape, but the amount of

light detected from a background source changes over time.

The weak lensing technique is based on the statistical analysis of numerous weakly

lensed sources and is most commonly used for large sky surveys. When observing a

preferred direction in the distortion of the intrinsic shape of captured galaxies, mass

distributions in the area may be reconstructed. Recent advances in this technique,

utilising the redshift dependence (higher redshift galaxies experience stronger shear

distortion), enable the recovery of the full three-dimensional gravitational potential

of the matter density, resolving large scale structures in both angle and time. This

was achieved, for example, by studying the weak lensing data from the Hubble Space

Telescope (HST)/Space Telescope A901/902 Galaxy Evolution Survey (STAGES) [16].

A very prominent example, demonstrating the presence of dark matter using the

technique of weak gravitational lensing, is the observation of the Bullet cluster [17],

a merger of two galaxy clusters. When the two clusters collided, the fluid-like x-ray

emitting hot gas or ICM was spatially separated from the visible stellar components,

which simply passed through each other. However, the gravitational potential does

not trace the ICM, the dominant baryonic mass fraction, but, rather approximately,

11

Rotation curve NGC-3198

CMB 
Spectra
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Dark Matter Fraction 5

Dark Matter
Ordinary Matter ≈ 5.44 ± 0.14
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Weakly Interacting Massive Particles 
(WIMPs)

•Favoured candidates for cold dark matter 
•Neutral in most scenarios
•Non-relativistic freeze-out resulting in relic density today of ~1000/m3

•Requires physics beyond the standard model:
oSuper-symmetry: LSP neutralino, 10-40 to 10-50 cm2,  mass range from 
Mproton→1000×Mproton

• If mWIMP = 100 GeV ⇒ 3 WIMPs/liter

6
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Direct Detection

•Elastic scattering of galactic WIMPs with 
the nucleus of the target material.

•Isothermal model: WIMP speed                 
~220 km/s expect recoil <10 keV                 - 
require detectors with low threshold

•Weak interaction
oSpin dependent
oSpin independent

7
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Figure 1. Predicted integral spectra for WIMP elastic scattering (left) and for coherent neutrino-nucleus

elastic scattering (right) for Xe, Ge, Ar and Ne (in order of decreasing rate at zero threshold). Both plots

assume perfect energy resolution. Dark matter rates are for a 100 GeV/c
2

WIMP with 10
−45

cm
2

(10
−9

pb)

interaction cross section per nucleon, calculated as per [21] with the halo parameters shown; the markers

indicate typical WIMP-search thresholds for each technology. CNS rates are calculated at 10 m from a

3 GWth nuclear reactor (4 ·10
13 ν/cm

2
/s) and at the same distance from the ISIS neutron spallation source

(thanks to E. Santos), where 3 neutrino flavors result from pion and muon decay at rest (1 ·10
7 ν/cm

2
/s for

all flavors [34]).

quarks: for neutrons it is σν ,n ≈ 0.42 · 10
−44(Eν/MeV)2

cm
2
, whereas for protons it is a factor

of ∼200 smaller. Therefore, the effect of coherence over the whole nucleus is an enhancement

factor of N2
. For example, for 10 MeV neutrinos, the cross section for scattering on a Xe nucleus

is σν ,Xe ∼ 2 ·10
−39

cm
2
; for Ar it is an order of magnitude smaller, σν ,Ar ∼ 2 ·10

−40
cm

2
. Although

these values are even smaller than those expected for WIMPs, significantly higher fluxes can be ob-

tained with neutrinos from artificial sources (∼10
13

cm
−2

s
−1

at a distance of ∼10 m from a nuclear

reactor, to give one example). Calculated rates as a function of threshold for two neutrino sources

are shown in Figure 1 (right). In addition, ‘on/off’ experiments are also possible in this instance,

which is a significant advantage for controlling systematic uncertainties. Therefore, detectors with

a mass of the order of kilograms can, in principle, provide a reasonable rate. However, one must

not neglect the fact that, contrary to WIMP searches, where only a few events with correct signa-

ture could constitute a discovery in a nearly background-free experiment conducted underground,

a neutrino experiment in a surface laboratory must accumulate enough recoil signals to produce

a statistically significant distribution in energy (or in the number of ionization electrons, as only

few-electron signals can be expected for MeV neutrinos [24, 36, 37]).

The low scattering rate makes the background issue of extreme importance. Background re-

duction (passive shielding, low radioactivity environment and radio-clean construction) and its

active discrimination in the experimental setup are essential. In the case of direct dark matter

searches in underground laboratories, two kinds of background can be distinguished: one resulting

in electron recoils and the other leading to production of nuclear (atomic) recoils in the sensitive

– 6 –

Spin Independent

σ ∝ A2
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Direct Detection 8

Problem
•Very low event rate (< 1 event/kg/year) 
versus high background from µ, γ and 
neutrons (~kHz). 

Solutions
•Reduce Background

oLow background Materials
oPassive shielding
oActive shielding
oScalability
oGo Deep Underground

•Reject Background
oDiscriminate between electron and nuclear 
recoils

Thursday, December 12, 2013
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Xenon As a Detector Medium

•Why xenon?
oHigh atomic mass (A=131 g/mol) 
oRelatively high density (2.9 g/cm3) 
oSpin-dependent sensitive isotopes
oLarge light output and fast response
oLong electron drift lengths (~1 m) 
oNo intrinsic backgrounds
oSelf-shielding (using position recons.)
oScalable to multi-ton size

•Recoil energy deposited in two 
channels:

oLight (photons)
oCharge (electrons)

9

Thursday, December 12, 2013



Double-Phase TPC

•Primary scintillation (S1)
•Secondary scintillation signal from 
electroluminescence after drift (S2)

•Position reconstruction
oZ from time difference between S1 and 
S2 (1.51 mm/µs in LUX for a electric field 
of 181 V/cm)

oXY reconstructed from light pattern 
observed in the top array.
• Typical resolution of some mm.

10

Efficient way to reject events near 
the walls (self shielding) and 

multiple scatterers
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Descrimination between Nuclear and 
Electronic Recoils

•WIMPs and neutrons interact with the nucleus ⇒ short, dense tracks

•!s and e- interact with the atomic electrons ⇒ long, less-dense tracks

•S2/S1 used for discrimination (S2/S1)γe > (S2/S1)WIMP

11

S2/S1 utilizado 
para descriminação 

Recoil
median

Electron recoils
137Cs source

Nuclear recoils
(AmBe source)

ZEPLIN-III
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Current WIMP Cross-section Limits 12
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THe LUX Detector - Self Shielding

•370 kg Liquid Xenon Detector (59 cm height, 49 
cm diameter) in Gas/liquid fases.

o250 kg in the active volume
o118 kg in the fiducial volume

•Construction materials chosen for low 
radioactivity: Ti, Cu, PTFE

•Screened for radioactivity at SOLO counting 
facilities and at LBNL

13

49 cm 
59 cm 
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The LUX Detector - PMTs

•122 ultra low-background PMTs (61 on top, 61 
on bottom). 

•Active region defined by PTFE (high reflectivity 
for the VUV light - high  light collection)

14

49 cm 
59 cm 

2 x 61 PMT arrays
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Assembling The Detector

•The detector was assembled during the year of 2011.

15
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Typical S1+S2 Event 16

electron recoil 
of 1.5 keV
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LUX AT SURF 17

Raymond Davis
(Nobelpriset i fysik 

2002)

•Sanford Underground Research 
Facility Lead, South Dakota, 
USA.

•Former Home of the Homestake 
Solar Neutrino Experiment 
1970-1994
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LUX AT SURF 18

Muon flux reduced by 107

(4.3 km w.e.)

SURF
Homestake 

Mine

 µ flux reduced by x10-7 
(compared to sea level)

1478 m deep
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The Water Shield

•Water Tank
oDimensions: ø = 8 m, h = 6 m (300 tonnes).
oPassive shielding
oMuon active veto: 20 PMTs Ø10”.

•Ultra-low Background  
oγ suppression: x10-9

oNeutron sup. (En >10 MeV  ~10-3  and En <10 
MeV >10-9).

19
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20

Davis Cavern SURF - Upper Floor, September 2012
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LUX in the water tank, September 2012
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LUX in the water tank, September 2012
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Run 3 data-taking

•Detector cool-down January 2013, Xe condensed mid-February 2013
•Data-taking April 21 - August 8, 2013, 85 live days
•> 95% data taking efficiency over WIMP search region 
•Drift field of 181 V/cm and extraction field of 6.0 kV/cm in the gas
•Very stable conditions during the run: thermal stability of ∆T<0.2 K, pressure 
stability ∆P/P<1% and liquid level variation of <0.2 mm

•83mKr and AmBe calibrations throughout, CH3T after WIMP search
•Non-blind analysis

23
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Krypton Calibration

•83Rb produces 83mKr when it decays; this 
krypton gas can then be flushed into the LUX 
gas system to calibrate the detector as a 
function of position.

•Provides reliable, efficient, homogeneous 
calibration of both S1 and S2 signals, which 
then decays away in a few hours, restoring 
low-background operation.

•Krypton calibrations is used to measure
oCorrect S1 and S2 with position
oElectron drift length measurement
oLight detection efficiency

24

83mKr conversion electrons
(T1/2 = 1.86 hours)

83mKr
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•Electron drift length between 90 
and 130 cm during.

•Light detection efficiency of 
14%.

•65% extraction efficiency
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Position Reconstruction 26

5 mm

Projection along the wires

•Light Response Functions (LRFs) are found by iteratively fitting the distribution of S2 signal 
for each PMT.

•XY position is determined by fitting the S2 hit pattern relative to the LRFs.
•Reconstruction of XY from events near the anode grid resolves grid wires with 5 mm pitch. 
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Tritium Calibration

•Tritium is an ideal source for determination of the 
detector’s electron recoil band and low energy 
threshold

oE(max) - 18.6 keV 
o<E> - 5.9 keV
oβ decay with T(1/2) = 12.6 a - Long Lifetime

•Tritiated methane was injected in the gas system 
and removed by the getter.

27

system of tritium injection

H

H

H

T

C
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µi (S1) = AmS1Bm

σi (S1) = AsS1
Bs −AmS1Bm

ER Band - Tritium Calibration

•Parameterize as Gaussian, with power laws for mean and sigma in 1 phe 
S1 slices

28
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Neutron Calibrations

•Obtained with 241AmBe and 252Cf.
•The results are consistent with NEST (Noble Element 
Simulation Technique) which is based on the canon of 
existing experimental data

o(see http://nest.physics.ucdavis.edu).
•GEANT4 + NEST MC was carried out that includes 
Neutron+X, to allow direct comparison 
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30

ER band
NR band

80 % of the events are 
within the ER or NR band
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Electron Recoil Discrimination

•Average discrimination from 2-30 S1 photoelectrons measured to be 
99.6% (with 50% nuclear recoil acceptance)

31
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Light  Yield

•Modeled using the NEST.
•Artificial cutoff in light and charge yields assumed below 3 keVnr . This is to be 
conservative and it does not represent actual physics.

•Includes E field quenching of light signal (77-82% compared to zero field)

32
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Observed Backgrounds 33

All the run Last 44 days

•118 kg average Apr. - Aug. is 3.1x10-3 events/keVee/kg/day (0.5x10-3 are 
cosmogenic)

r<18 cm z=7-47 cm
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Backgrounds in LUX 34

oFull gamma Spectrum, excluding region ±2 cm from top/bottom grids

3
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(238U)
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129mXe

FIG. 2. Measured gamma energy spectrum in the 270 kg LUX drift region (black). Measured spectrum includes both single
and multiple scatter events, and is reconstructed from combined S1 and S2 signals. No fiducial cuts are used. The high-energy
spectrum from simulation (red) is also shown based on best-fit parameters with measured data. Simulations feature gammas
generated from 238U, 232Th, 40K, and 60Co decays, spread over the top, bottom, and side construction materials adjoining
the active region, as well as activated xenon evenly distributed in the bulk. The best-fit spectrum was matched to data over
13 slices in depth, for energies >500 keVee. [2]

[1] First results from the LUX dark matter experiment at the Sanford Underground Research Facility – D. Akerib et al. -
Submitted to PRL (2013)

[2] LUX Backgrounds Paper, in preparation.

black = measured

red = simulated based on screening
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•Electron capture from S-wave orbital: 

•

35

p+ e− → n+ νe

Simulation results

for (log(S2/S1), 
S1)

Predict 15 events in WIMP search data
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Background From Pb-214/Kr-85 36

214Pb and 85Kr 
Uniform in (r,z)

Predict 10 events in WIMP search data

•85Kr - beta decay – intrinsic background 
in liquid X

•Kr concentration reduced from 130 ppb to 
3.5 ppt (factor of 30000) using a 
chromotographic system developped by 
the LUX collaboration  

214Pb (from 238U chain)  has a half-life of 
27 minutes and undergoes a beta decay. 
This generates a low-energy ER 
background in the WIMP search region.
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Full Background Model 37
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Full Background Model Fits ER Data Over Entire Range
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Low Energy Backgrounds 38

•Monte Carlo predictions of low-energy ER background rates from all significant 
sources, 118 kg fiducial and 0–8 keVee  energy

Background Component Source 10-3 x evts/keVee/kg/day

γ-rays Internal Components 1.8±0.2stat±0.3sys 

127Xe (36.4 day half-life) Cosmogenic
0.87 -> 0.28 during run 0.5±0.02stat±0.1sys

214Pb 222Rn 0.11-0.22(90% CL)

85Kr Reduced from 
130 ppb to 3.5±1 ppt 0.13±0.07sys

Total Predicted Total 2.6±0.2stat±0.4sys

Observed Total 3.1±0.2stat 
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Run 3 event selection and cuts 39

Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•We aimed to apply minimum set of cuts in order to reduce any 
tuning of event cuts/acceptance. 

•The cut list is very short.
•Hardware trigger:  at least two trig. channels > 8 phe within 2 µs 
window (16 PMTs per trig. channel)

o> 99% efficient for raw S2 > 200 phe (~8 e-).
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Remove periods of live-time when liquid level, gas 
pressure or grid voltages were out of nominal ranges:

oLess than 1.0 % live-time loss!
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Exactly 1 S2 and 1 S1 as identified by the pulse finding and 
classification code:

oSeparate S1s from S2s using pulse shape and PMT hit distributions.
oS1s identification includes a two fold PMT coincidence requirement.
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Accept events with S1 between 2-30 phe (0.9-5.3 keVee, 
~3-25 keVnr):

oWe impose that at least 2 PMTs are above threshold.
o2 phe analysis threshold allows sensitivity down to low WIMP masses. 
Expected S1 for a 3 keVnr event is 1.94 phe.

oUpper limit avoids 127Xe 5 keVee activation.
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•S2 threshold cuts subdominant to S1:
o200 phe ~ 8 single electrons
oRemoves small S2 edge events and single electron events 
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Require less than 100 phe (< 4 extracted electrons) of 
additional signal in 1 ms period around S1 and S2 signals:

oSimple cut to removes additional single electron events in 0.1-1 ms 
following large S2 signals

oOnly 0.8% hit on live-time 
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Cut Events Remaining
All Triggers 83,673,413
Detector Stability 82,918,904
Single Scatterer (1 S1 + 1 S2) 6,585,686
S1 Yield 2-30 phe 26,824
S2 Yield 200-3300 phe 20,989
Single Electron Background 19,796
Fiducial Volume 160

•Fiducial Cut: radius < 18 cm, 38<drift time<305 µs, 118.3+-6.5 kg fiducial 
oLow energy alpha-parent nuclear recoil events generate small S2+S1 events. The radius 
and drift time cuts were set using population of events which had S1’s outside of the 
WIMP signal search range, but with S2’s of a comparable size to lower S1 events in same 
population. This ensured that position reconstruction for sets were similar, and definition 
of fiducial was not biased.

oCuts also remove corner regions where ER event rates are proportionally very high.
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Fiducial
Volume

18 cm radius

40.3 cm
height

Total mass in the fiducial volume 118 kg
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Single Scatterer Efficiency For WIMP 
Detection

•S1 efficiency studied using
oCalibration with neutrons (241AmBe e 252Cf)
oTritium calibration
oFull MC simulation
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WIMP Detection Efficiency -
 True Recoil Energy

48
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Including analysis cuts:
Efficiency for S1+S2 identification 
( S1area>2 phe, S2area>200 phe )

True Recoil Energy equivalence based on LUX 2013 Neutron Calibration/NEST Model

S1area ~2.0 phe
S2area ~230 phe (8.9 extracted electrons)

3 keVnr 17%

4.3 keVnr 50%

7.5 keVnr >95%

3 keVnr
Efficiency falls >18 keVnr due 
S1 [2,30] phe range
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S1 30 phe selected early 
in analysis in order to 
stay below 127Xe 5 keVee 
cosmogenic peak.

S1 2 phe selected as 
conservative lowest threshold 
for which S1 pulse 
identification showed >50% 
acceptance 
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Note cut is made in raw S2 area, rather than corrected 
S2 area. 

Additionally plots shows S2b signal measured by just 
bottom array of PMTs. Reduces any systematic 
associated with 2 PMT that are off in top array 

S2b > 200 phe: 
removes SE and small 
edge events
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160 events observed
1.9 events/day
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160 events observed
1.9 events/day
ER Calibration 99.6±0.1% leakage below NR mean, 
so expect 0.64 +/- 0.16 for 160 events
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•For 8.6 GeV WIMP at 2.0×10-41 cm2, CDMS 
II Si (2012) 90% CL:

oexpect 1550 WIMPs in LUX search

53Simulated response for hypothetical    
WIMP signals
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Note how WIMP distribution appear 
below the calibration NR mean ...

... the shift occurs because for a given S2 value 
the S1 is more likely to have up-fluctuated in 
order to appear above threshold

•For a 1000 GeV WIMP and cross section at the 
existing XENON100 90% CL Sensitivity 1.9x10-44 cm2

oexpect 9 WIMPs in LUX search
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10-90% Nuclear Recoil Band 

Probability Density Function (PDF) 
for WIMP Signal

PDF assumes Standard Milky Way Halo parameters as described in Savage, Freese, Gondolo 
(2006) v0=220 km/s, vescape = 544 km/s, ρ0 = 0.3 GeV/c2, vearth = 245 km/s.
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Setting the Limit

•Use of Profile Likelihood Ratio (PLR) 
owe don’t have to draw acceptance boxes avoiding potential bias in data analysis from 
selecting regions in S1,S2 signal-space.

•Generate pseudo-experiments for σtest, compare the value of test 
statistic in data with the value of qσ,i from each pseudo-experiment and 
from that get the p-value.

54

Value of maximum likelihood

Fixed point to test 

Nuisance parameters, 
not fixed

qσ ≡ −2 log
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Profile-Likelihood Analysis shows a p-value 
of 35% consistent with ER background and 
no WIMP signal
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56Spin-independent sensitivity plots
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>20x more sensitivity

CDMS II Si Favored

CoGeNT Favored

LUX (2013)-85 live days
LUX +/-1σ expected sensitivity

XENON100(2012)-225 live days

CRESST Favored

CDMS II Ge

x

DAMA/LIBRA Favored

Low-mass WIMPs fully excluded
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LUX 300 day run

•300 day run planned for 2014/2015
oStill not background limited and expect factor of ∼5 improvement in sensitivity → 
discovery possible

oPotential for improvements to E fields/calibrations /reconstruction 
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LUX (2013)-85 live days

LUX (2013)-300 live days
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Longer term: LUX-ZEPLIN (LZ)

•20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level
•Ultimate direct detection experiment - approaches coherent neutrino scattering 
backgrounds

•Proposal for US down-select process end of Nov., decision expected Jan 2014 
•If approved will be deployed Davis lab 2016+ 
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T. Shutt - LZ, Oct 30, 2013 9

LZ

Same water tank as LUX

T. Shutt - LZ, Oct 30, 2013

LZ sensitivity

15

LUX Today

LZ - 3 yearsx 1000

LUX
2015

atmospheric neutrino signal6 years

LZ approaches the final neutrino background

LZ 3 years
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Historical Progress in the Limits 61

LUX (2013)
LUX (final)

LZ
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CONCLUSION

•LUX has made a WIMP Search run of 86 live-days and released the 
analysis within 9 months of first cooling in Davis Lab

oBackgrounds as expected, inner fiducial ER rate <2 events/day in region of interest
oMajor advances in calibration techniques including 83mKr and Tritiated-CH4 injected 
directly into Xe target

oVery low energy threshold achieved 3 keVnr with no ambiguous/leakage events
oER rejection shown to be 99.6+/-0.1% in energy range of interest

•Intermediate and High Mass WIMPs
oExtended sensitivity over existing experiments by x3 at 35 GeV and x2 at 1000 GeV   

•Low Mass WIMP Favored Hypotheses ruled out
oLUX WIMP Sensitivity 20x better
oLUX does not observe 6-10 GeV WIMPs favored by earlier experiments
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Grazie!
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