Underground Iaboratories & science projects in Korea

Kang-Soon Park, Yeongduk Kim, Yong-Hamb Kim Center for Underground Physics Institute of Basic Science 양양수발전소 Dec. 03 2013 at LNGS

- 1. Introduction to CUP at IBS
- 2. Underground Labs
- 3. Dark Matter Search Project KIMS
- 4. Double Beta Decay Project AMoRE

Institute of Basic Science (IBS)

Benchmarked RIKEN & MAX-PLANK Institute.

Heavy-ion accelerator facility & IBS research centers

Center for Underground Physics (CUP)

- CUP began on July 2013
- Now, 17 Ph.Ds, 15 students, 3 technicians, 2 administrations.
- Director : Yeongduk Kim
- Group Leaders : Hong Joo Kim, Yong-Hamb Kim
- Research Area : Dark Matter, Double Beta Decay, Underground Nuclear Astrophysics, Sterile neutrino search at reactor, Low temperature Detector Development etc.
- Major Projects: 1. KIMS (ongoing dark matter search)
 2. AMoRE (planed 0vββ search)

YangYang(Y2L) Underground Laboratory

(Upper Dam)

(Power Plant)

YangYang Pumped Storage Power Plant

Lower Dan

KIMS (Dark Matter Search)양양양수발전소AMoRE (Double Beta Decay Experiment)Minimum depth : 700 m / Access to the lab by car (~2km)

Lab space in Y2L

New lab space will be ready by early 2014 at the unused tunnel

Current Lab. ~ 100m²

Can we go deeper?

final 3 candidates

No.	Mt.	Location	L of Tunnel (m)	overburden (m)	from IBS (km)	from Y2L (km)
1	Daeduk	Gimcheon, Kyungbuk	2400	1088	110	413
2	Jang	Yeongwol, Gangwon	1730	1066.6	230	167
3	Duta	Samcheok, Gangwon	2610	1416.2	330	117

Possible 1400m deep Underground Lab

New underground lab for CUP in Duta by 2016 CUPID !

KIMS (Korea Invisible Mass Search)

Advantages of CsI(Tl) for WIMP Search

Easy to get large mass with an affordable cost

➔ Good for AM study High light yield ~60,000/MeV Pulse shape discrimination

10

Moderate background rejection
 Cs-133, I-127 (SI cross section ~ A²)
 Both Cs-133, I-127 are sensitive to SD interaction

Isotope	J	Abun	<sp></sp>	<sn></sn>
¹³³ Cs	7/2	100%	-0.370	0.003
127	5/2	100%	0.309	0.075
⁷³ Ge	9/2	7.8%	0.03	0.38
¹²⁹ Xe	1/2	26%	0.028	0.359
¹³¹ Xe	3/2	21%	-0.009	-0.227

Recoil Energy Spectra

Quenching Effect, energy resolution are critical to compare experiments.

Data with 12 crystals

12

• 12 crystals (104.4kg) installed in the Cu shield.

- 2.5 year data (Sep. 2009 Feb. 2012)
- Background Level : 2~3 cpd/kg/keV
- Source calibration with ⁵⁵Fe & ²⁴¹Am
- 1 year of data (Sep. 2009 Aug. 2010) published with PSD analysis.
 - Backgrounds are well understood.

Energy spectra w/ efficiency correction

Analysis was done by 11 detector except DET10 because of higher background rate

- Annual modulation amplitude is obtained including the exponential decay of ¹³⁴Cs for 2.5 years of data.
- The mean amplitude from 3 keV to 6 keV is 0.0008±0.0068 cpd/kg/keV

M.C. Simulation & fitting

Cross Section Limit

Dark Matter status

Low mass WIMP signal vs null results from CDMS and XENON?

17

LUX (Large Underground Xenon) experiment

Total 370kg LXe, D=47cm, H=48cm → 250 kg. 118kg, 85.3 days run → 10065 kg days

18

Feedthroughs

Constantly circulate and purify Xe in gas phase

> Xenon recirculation and heat exchanger

PTFE reflector panels

Bottom thermosyphon

y 11-12, 2012, deployed in autumn of 2012

LUX contradicts all low mass claims !!

 \rightarrow Does this mean all the low mass signals are rejected?

SNOWMASS projection for Dark Matter: next decade

20

KIMS+ Projects @ CUP

21

I. KIMS-CsI : Upgrade of CsI(Tl) crystal detector

- Lower threshold ~ 1.5keV, <1dru, counts/(keV kg day).</p>
- This will help to clear issues about the modulation signals of DAMA.

II. KIMS-NaI : new NaI(TI) detector

- Duplicate DAMA experiment with ultra-low background NaI(TI) crystals.
- 200kg run in 2015-2016

III. KIMS-LT

- ^{nat}Ca^{nat}MoO₄ crystals ~ 200 kg year.
- High sensitivity in low mass WIMP.

2019-2022

KIMS-NaI

NaI(TI) detector R&D

- New low-K NaI crystal is under R&D (ANAIS, DM-ICE, KIMS-NaI, SABRE).
- Alpha Spectra (AS) crystal to KIMS now installed.
- BH will grow 5 crystals with Sigma-Aldrich powder.
- SICCAS is beginning to grow NaI crystals.

Crystal delivered to KIMS

Samples	Measurements	^{nat} K (ppb)
Sigma Aldrich - crystal grade	HPGe(KIMS)	<266
Sigma Aldrich - Astro grade	HPGe(KIMS)	<183
Alpha Spectra, C	HPGe(KIMS)	<262
Sigma Aldrich – Astro grade	HPGe(DM-ICE)	<126
Sigma Aldrich – Astro grade	ICP-MS (SA)	~4

It's difficult to reach 10 ppb level measurements with powder ! Current plan is to grow crystals and measure K.

Powder Measurements

KIMS-Nal Experiment

13.3 +/- 0.3 photoelectrons /keV

Cf. DAMA/LIBRA 6-10 photoelectrons/keV DAMA ~ 1dru

Purification \rightarrow <1 dru

- Direct confirmation for DAMA.
- NaI(Tl) 200kg exp at CUP.
- 2013 : 2 crystals are installed.

Summary & Sensitivities of KIMS+

24

WIMP Mass (GeV/c²)

The AMoRE Project

(Advanced Mo-based Rare process Experiment) to search for neutrinoless double decay of ¹⁰⁰Mo using cryogenic CaMoO₄ detectors

Neutrinoless double beta decay (0vββ)

It may answer

- Mass of neutrinos $(1/T_{1/2}^{0\nu} \propto m_{\nu}^2)$
- Majorana ($v = \overline{v}$), or Dirac particles ($v \neq \overline{v}$)
- Lepton number conservation

Experimental Sensitivity on 0vββ search

For sizeable background case;

¹⁰⁰Mo is chosen for $0\nu\beta\beta$ experiment

■ ¹⁰⁰Mo

- ✓ High Q-value ($\beta\beta$) of 3034.40 (12) keV.
- ✓ High natural abundance of 9.7%
- ✓ Relatively short half life $(0\nu\beta\beta)$ expected from theoretical calculation

Candidate	Q (MeV)	Abund. (%)	
⁴⁸ Ca	4.271	0.19	
⁷⁶ Ge	2.040	7.8	
⁸² Se	2.995	8.7	
¹⁰⁰ Mo	3.034	9.7	
¹¹⁶ Cd	2.802	7.5	
¹²⁴ Sn	2.228	5.8	
¹³⁰ Te	2.533	34.1	
¹³⁶ Xe	2.479	8.9	
¹⁵⁰ Nd	3.367	5.6	

AMoRE detector technology

$^{40}Ca^{100}MoO_4 + MMC$

Low Temp. Detector Source = Detector

CaMoO₄ - Scintillating crystal - High Debye temperature: $T_D = 438$ K, $C \sim (T/T_D)^3$ - ⁴⁸Ca, ¹⁰⁰Mo 0v $\beta\beta$ candidates - AMoRE uses ⁴⁰Ca¹⁰⁰MoO₄ w. enriched ¹⁰⁰Mo and depleted ⁴⁸Ca

MMC (Metallic Magnetic Calorimeter)

- Magnetic temperature sensor (Au:Er) + SQUID
- Sensitive low temperature detector with highest resolution
- Wide operating temperature
- Relatively fast signals
- Adjustable parameters in design and operation stages

CaMoO₄ crystal development

CaMoO₄ characterization

NIMA 584, 334 (2008)

Temperature dependent scintillation

→ Largest light yield among Mo contained crystals.

¹⁰⁰Mo, ⁴⁰Ca enriched materials

Mo-100 isotope production:

ECP (Electrochemical plant) Zelenogorsk, Krasnoyarsky kray, Siberia

¹⁰⁰MoO₃

- Enrichment: $^{100}Mo = 97\%$
- Impurities

ICP-MS measurement: U ≤ 0.2 ppb, Th ≤ 0.1 ppb HPGe At Baksan: ²²⁶Ra < 2.3 mBq/kg, ²²⁸Ac < 3.8 mBq/kg

• Ca-40 isotope production:

ELEKTROCHIMPRIBOR, Lesnoy, Sverdlovky region

⁴⁰CaCO₃

- ${}^{48}Ca < 0.001\%$
- Impurities: U \leq 0.1 ppb, Th \leq 0.1 ppb, Sr = 1 ppm, Ba = 1 ppm ²²⁶Ra = 51 mBq/kg ²²⁸Ac(²²⁸Th) = 1 mBq/kg

⁴⁰Ca¹⁰⁰MoO₄ crystals from Russia

• SB28 weight 196 g

• SB29 weight 390 g

• S35 weight ~300 g

Internal backgrounds of ⁴⁰Ca¹⁰⁰MoO₄ crystals

 4π CsI(Tl) active setup with Pb shielding at Y2L

 4π gamma veto system

β-α decay in ²³⁸U ²¹⁴Bi (Q-value : 3.27-MeV) → ²¹⁴Po (Q-value : 7.83-MeV)→ ²¹⁰Pb

50cm

 α - α decay in ²³²Th ²²⁰Rn (Q-value : 6.41-MeV) \rightarrow ²¹⁶Po (Q-value : 6.91-MeV) \rightarrow ²¹²Pb

Low temperature detectors (Calorimeters)

Choice of thermometers

- Thermistors (NTD Ge, doped Si)
- TES (Transition Edge Sensor)
- MMC (Metallic Magnetic Calorimeter)
- etc.

Metallic Magnetic Calorimeter (MMC)

Magnetic material Au:Er(10~1000ppm)

- weakly-interacting paramagnetic system
- metallic host: fast thermalization ($\sim 1 \mu s$)

$$\delta E \to \delta T \to \delta M \to \delta \phi$$

 $5 \text{ mT} \rightarrow \Delta \epsilon = 1.5 \ \mu eV$ 1 keV $\rightarrow 10^9 \text{ spin flips}$

Alpha spectrometer using MMC

Phonon sensor for AMoRE

<Heat flow optimization>

Detector R&D in an over-ground lab

Pulse Shape Discrimination

α and β events show different pulse shapes in phonon signals.

Energy calibration

- Alpha/Beta events show different energy scale ($\sim 7\%$ @ 2.6 MeV).
- The detector shows good linearity for both of alpha and gamma signals.

Photon Detector Measurement

- We measured small photon signals because of small covering area (~20 mm²).
- α and β particle events show different light yields.
- Now we are developing photon detectors with 1-2 inch Ge wafers.

Low energy signals at lower temperatures

- 10 mK \rightarrow larger but slower signals.
- One point (511 keV) linear calibration.
- 8 keV x-ray peak resolved.
- 1.5 keV signals can be clearly triggered.
- Further studies should be done in low background environment

Now and Future AMoRE

216 g <Now, 2013>

CMO: ~ 300g 5 layers-7 columns <AMoRE10, 2015~6> In Y2L

Each Cell : D=70 mm, H=80 mm. CMO (D=50mm, H=60mm, 506g) 30 layers(2.4 m height)-13 columns or 20 layers(1.6 m height)-19 columns <AMoRE200, 2018~9> In CUPID?

Summary of the AMoRE project

- Crystal: ⁴⁰Ca¹⁰⁰MoO₄, doubly enriched scintillating crystals
- 100 Mo enrichment = 97%
- Temperature: 10-50 mK
- Energy Resolution: 5 keV @ 3 MeV

(Now ~9keV w. one phonon only in over-ground)

- Single Detector Mass: 300-500g
- Location: AMoRE10 at Y2L, AMoRE200 at CUPID?

Mass	10 kg	200 kg
Background (keV kg year) ⁻¹	10-2	3×10^{-4}
Sensitivity(m _{ee}) (meV)	80-250	20-50
Schedule	in 3 years	in 8 years

Thank you

Kick-off started for the CUP !

Major backgrounds from radionuclides

Background source	Activity (µBq/kg)	Background (10 ⁻⁴ cnt/keV/kg/yr)	Bkg reduced by PSD (10 ⁻⁴ cnt/keV/kg/yr)
Tl-208, internal	10 (²³² Th)	0.36	
Tl-208, in Cu	16 (²³² Th)	0.22	
BiPo-214, internal	10	0.11 1)	≤ 0.01
BiPo-214, in Cu	60	1.8 ^{1) 2)}	≤ 0.18
BiPo-212, internal	10 (²³² Th)	0.08 1)	≤ 0.01
BiPo-212, in Cu	16 (²³² Th)	0.36 1) 2)	≤ 0.04
Y-88, internal	20	0.19	
Σ int. (w/o 2 β 2 ν)		0.74	≤ 0.57
ΣCu		2.40	≤ 0.44
Rand. coinc. from 2β2v decays of ¹⁰⁰ Mo	8.7×10 ³ (single events)	3.1	1.2 ³⁾
Total		6.2	≤ 2.2

1) Can be reduced $\times 0.1$ by alpha/beta PSD.

2) Can be reduced by Teflon coating of Cu (to remove surface alphas).

3) Can be reduced further by the leading edge separation with $\Delta t=0.5$ ms. Muon background : 1.36×10^{-4} counts/(keV kg year)

AMoRE Sensitivity

Before & Now

2009 CMO + Susceptometer

 ϕ 2 cm phonon collector

MMC sensor

2013 CMO + Meander MMC Heat flow optimization