MYRRHA

Multipurpose hYbrid Research Reactor for High-tech Applications

MYRRHA: a polyvalent research project around an ADS nuclear reactor

The MYRRHA project and its broad spectrum of applications

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE Roberto Salemme ADT - SCK•CEN Sapienza Università di Roma Francesco Belloni NSP - SCK•CEN

Copyright © 2014 SCK•CEN MYRRHA: a polyvalent research project around an ADS nuclear reactor – INFN Roma, Italy – February 24th 2014

SCK•CEN: background

Studiecentrum voor Kernenergie -Centre d'Étude de l'énergie Nucléaire

Highest performing material testing reactor in Europe (BR2)

Copyright © 2014 SCK•CEN World premiere

project for

transmutation of

nuclear waste

What is an ADS?

An Accelerator-Driven-System is:

- a subcritical neutron multiplication assembly (nuclear reactor, k_{eff}<1),
- driven by an external neutron source,
- obtained through the spallation mechanism with high energy (~ 1GeV) protons,
- impinging on massive (high Z) target nuclei (Pb, W).

MYRRHA - Accelerator Driven System

Accelerator			
particles	protons		
beam energy	600 MeV		
beam current	2.4 to 4 mA		
mode	CW		
MTBF	> 250 h		

Reactor		
power	~85 MW _{th}	
k _{eff}	0.955	
spectrum	fast (flexible)	
fuel	high-enriched MOX	
coolant	LBE	

Demonstrate the ADS concept (coupling accelerator + spallation source + power

reactor)

- Demonstrate Transmutation (experimental fuel assemblies)
- Fast neutron source: Multipurpose and flexible Irradiaton facility

Target			
main reaction	spallation		
output	2·10 ¹⁷ n/s		
material	LBE (coolant)		
power	2.4 MW		

Partitioning & Transmutation

Composition of spent nuclear fuel (standard PWR 33 GW/t, 10-year cooling)

<u>1 tonne of SNF contains</u>: 955.4 kg U 8.5 kg Pu

<u>Minor actinides (MAs)</u> 0.5 kg ²³⁷Np 0.6 kg Am 0.02 kg Cm

Long-lived fission products (LLFPs) 0.2 kg ¹²⁹I 0.8 kg ⁹⁹Tc 0.7 kg ⁹³Zr 0.3 kg ¹³⁵Cs

Short-lived fission products (SLFPs) 1 kg¹³⁷Cs 0.7 kg⁹⁰Sr

<u>Stable isotopes</u> 10.1 kg lanthanides 21.8 kg other stable

- Spent nuclear fuel current EU strategy is:
 - Onsite in-pool cooling (up to 10yrs)
 - Reprocessing in (few) centralized and dedicated plants (1yr): here U&Pu is removed from the spent fuel
 - Disposal:
 - Superficial for LLW and ILW (half lives ~10³ yrs)
 - Geological for HLW (half lives ~ 10⁶ yrs)

- Storage ("to wait") vs. treatment ("to use nature against nature"):
- To reduce radiotoxicity of MAs, we can to fission them
- The ratio Fission/Capture is more favorable with fast neutrons
- To reduce radiotoxicity of LLFPs, they should undergo several neutron captures

Copyright © 2014 SCK•CEN

Nuclear waste: transmutation impact

MYRRHA: applications

	Challenge	Solution	MYRRHA contribution
Fission	High radiotoxic level waste	Transmutation	ADS demo
Fission GEN IV	Demonstrate concept	Build demonstrators	LFR technology demo Fast spectrum irradiation facility
Fusion	Extreme operating conditions	Material testing & development	Fast spectrum irradiation facility
Fundamental research	Pushing the limits of knowledge	Access to proton beam	Long term experiments with radioactive ion beams (RIB)
Renewable energies	Efficient power electronics	High efficiency transistors (Neutron Transmutation Doped NTD-Si)	Securing NTD-Silicon production
Healthcare	Ageing population	A long term source of medical radioisotopes	Securing radioisotopes production (existing and new ones)

MYRRHA as part of the ESNII

European Sustainable Nuclear Industrial Initiative

MYRRHA within EURATOM: 2010-2014

Project Timeline

Project budget

Copyright © 2014 - SCK•CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a "personal communication. By courtesy of SCK•CEN".

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

> Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL

Copyright © 2014 SCK•CEN MYRRHA: a polyvalent research project around an ADS nuclear reactor – INFN Roma, Italy – February 24th 2014