

Atom interferometry gyroscopes

F. Sorrentino Dipartimento di Fisica & LENS, Università di Firenze & INFN

- AI inertial sensors: basic principles and state of the art
- The MAGIA experiment
- Performance of current AI gyroscopes
- Future of AI inertial sensors
 - transportable systems
 - new methods and applications
 - combination with "classical" sensors

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

- Virtual sensitivity improvement of several orders of magnitude over optical interferometers.
- However, such advantage is currently reduced by
 - small particle flux (10¹⁰ for alkali, 10¹⁸ for H)
 - small separation of matter-wave paths (few photon recoils).
- Nevertheless, AI sensors already compete with optical counterparts.
- Already achieved: inertial sensing (acceleration, gravity gradient, rotations) measurement of fundamental constants (G, α).
- In progress / proposed: tests of GR (EP, Lense-Thirring, limits on PPN parameters); test of Newton's 1/r² law at short length scale; atom neutrality; GW detection.

Large progress are foreseen in the next future (LMT beam splitters, high flux atomic sources, sub-shot noise detection schemes, etc.)
 F. Sorrentino, Napoli 25/11/13
 Atom interferometry gyroscopes

- AI inertial sensors feature very good long term stability and control over systematic effects
 - Differential configurations allow for very large CMRR of vibrations
 - Based on quantum atom-light interaction, which can be precisely modeled
 - The possible choice of different internal/external quantum states, as well as of different isotopic species, provides "knobs" to isolate, model and minimize several possible noise sources

Raman pulse atom interferometer

INFN

Light-pulse AI inertial sensors

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

First AI sensors @ Stanford: gravimeter

resolution: 8×10^{-9} g in 1 second accuracy: $\Delta g/g \leq 3 \times 10^{-9}$ limited by tidal models

A. Peters, K.Y. Chung and S. Chu, Nature <u>400</u>, 849 (1999) H. Müller et al., Phys. Rev. Lett <u>100</u>, 031101 (2008) Atom interferometry gyroscopes

12 noor

12/8/96

12 mn

12 noor

12/9/96

12 mn

INFN

F. Sorrentino, Napoli 25/11/13

First AI sensors @ Stanford: gradiometer

 $\tilde{U}^{10^{1}}$ $\tilde{U}^{10^{2}}$ 10^{3} 10^{3} 10^{3} 10^{3} 10^{3} 10^{4} 10^{3} 10^{4} T(s)

Demonstrated diffential acceleration sensitivity:

4x10⁻⁹ g/Hz^{1/2}

(2.8x10⁻⁹ g/Hz^{1/2} per accelerometer)

limited by QPN

J. M. McGuirk et al., Phys. Rev. A <u>65</u>, 033608 (2002)

Atom interferometry gyroscopes

INFN

Distinguish gravity induced accelerations from those due to platform motion with differential acceleration measurements.

Monday, November 25, 13

F. Sorrentino, Napoli 25/11/13

First AI sensors @ Stanford: gyroscope

Other AI sensors

• SYRTE (FR)

- absolute gravimeter
- gyroscope
- six-axis inertial sensor
- I.C.E. AI differential accelerometer in parabolic flight
- IQO (D)
 - CASI gyroscope
 - QUANTUS drop-tower experiment ⁵
- JPL (USA)
 - gradiometer
- STANFORD (U.S.A)
 - transportable multi-axis sensors
 - 10 m tower for WEP test
- UNIFI (IT)
 - MAGIA
- CANBERRA
- Bragg gravimeter F. Sorrentino, Napoli 25/11/13

Misura Accurata di G mediante Interferometria Atomica

- Measure g by atom interferometry
- Add source masses
- Measure change of g

http://www.fi.infn.it/sezione/esperimenti/MAGIA/home.html

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Using atomic probes

- Point-like test masses in free fall
- virtually insensitive to stray fields
- well know and reproducible properties
- different states, isotopes
- precision measurements by atom interferometry

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Monday, November 25, 13

STUDIORL

ENTINA

Atom gradiometer + source masses

Differential gravity measurement

MAGIA: short term sensitivity

Current sensitivity to differential acceleration: 3x10⁻⁹ g @ 1s (=QPN for 4x10⁵ atoms)

[1] G. Lamporesi et al., Phys. Rev. Lett 100, 050801 (2008)

[2] F. Sorrentino et al., New J. Phys. 12, 095009 (2010)

F. Sorrentino, Napoli 25/11/13 [3] F. Sorrentino et al., to be published Atom interferometry gyroscopes

MAGIA: long term stability

- Active intensity control of cooling and probe laser beams; tilt stabilization of Raman • retro-reflecting mirror
- Coriolis compensation with tip-tilt mirror 0
- Allan variance on gravity gradient measurement ~0.2 mrad @ 10000 s, corresponding to $5x10^{-11}$ g (5x improvement from 2011) •

vroscopes

MAGIA current status

MAGIA: G measurement

Statistical error 1×10^{-4} with 100 hrs integration time

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

MAGIA: error budget

Source	Uncertainty	$\Delta G/G(10^{-4})$	
Cylinders radial position	$10\mu{ m m}$	0.5	
Cylinders vertical position	$10\mu{ m m}$	0.5	
Cylinder mass	$10\mathrm{mg}$	0.05	
Radial density homogeneity	$2 imes 10^{-3}$	0.01	
Axial density homogeneity	$0.5 imes10^{-3}$	0.2	
Support platforms' mass	10 g	0.1	
Atomic vertical barycenter position	0.2 mm	0.1	
Atomic horizontal barycenter position	0.5 mm	0.5	
Atomic clouds vertical size	0.1 mm	0.7	
Atomic clouds horizontal size	0.5 mm	0.9	
Launch direction change C/F	$6\mu rad$	0.3	
Raman mirror tilt C/F	100 nrad	0.005	
Gravity gradient	$0.7 imes 10^{-8} { m s}^{-2}$	0.1	
Total		1.5	

Total

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Uncertainty on *G* measurements

INFN

Monday, November 25, 13

STUDIORUAN MILINARO

AI gyroscopes: long term stability

Cold atoms AI gyroscopes (I)

- Vertical @ SYRTE (Paris)
- Tilted @ Stanford & IQO (Hannover)
- four Raman pulses
- no acceleration sensitivity
- Scale factor ~ $k_{\rm eff}T^3$
- larger area w.r.t. thermal beams
- large dynamic range

A. Gauguet et al., PRA 80, 063604 (2009)
J. J. Stockton et al., PRL 107 (2011)

Atom interferometry gyroscopes

F. Sorrentino, Napoli 25/11/13

Cold atoms AI gyroscopes (II)

 Joint Raman Ramsey gyroscope @ SYRTE

- improved sampling frequency
- 1/t scaling
- sensitivity ~10 nrad/s/ \sqrt{Hz} with T~300 ms

F. Sorrentino, Napoli 25/11/13

Monday, November 25, 13

Integration time in s

Cold atoms AI gyroscopes (III)

- simultaneous determination of latitude, azimuth (true North) and Earth's rotation rate
- operating up to above 100 mrad/s
- sensitivity ~60 nrad/s/ \sqrt{Hz} with T~50 ms
- scalable to ~1 prad/s/ \sqrt{Hz} on a 10 m tower

- Measuring rotation rate and azimuth via the Coriolis effect
- sensitivity to rotation rate \sim 200 nrad/s/ \sqrt{Hz}
 - accuracy on North determination ~0.1 mrad

S. Dickerson et al., arXiv:1305.1700 (2013)

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Future of AI inertial sensors

- Compact and transportable system without performance degradation
 - ground applications (geophysics)
 - space applications (satellite geodesy, inertial navigation, tests of fundamental physics): $\Delta \phi = kgT^2$
- Novel schemes to improve sensitivity / accuracy
 - high-momentum beam spitters
 - coherent/squeezed atomic states to surpass QPN detection
 - large size AI
 - interferometry on trapped atoms
- New applications

• GW, quantum gravity, etc. F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Portable AI sensors

STANFORD

μ -QUANS (SYRTE-CNRS)

Atom interferometry gyroscopes

Monday, November 25, 13

F. Sorrentino, Napoli 25/11/13

Future compact AI: iSense

7th Framework Programme - Theme 3 "Information and Communication Technologies" Call identifier: FP7-ICT-2009- C FET-Open

Scheme	State-of-the Art	iSense Technology Platform	Goals integrated Sensor	Participant no. *	Participant organisation name	Part. short name	Country
Control Control Demonstrate Backpack-Siz	177 Dista 711	040	1 (Coordinator)	The University of Birmingham	Bham	UK	
	Demonstrator:	2	QinetiQ	QinetiQ	UK		
	Backpack-Size	3	University of Hamburg	UHH	D		
A	1m ² , 100kg, 500W/ 0.05m ² , 10kg, 40W	4	Centre National de la Recherche Scientifique ¹	CNRS	F		
integrated Optics		5	University of Florence	UNIFI	1		
Laser	ALC: PARTY OF	-		6	Leibniz University Hannover	LUH	D
System	2m ³ , 200kg, 100/V	0.001 m², 2kg, 5W	10	7	Institute for quantum optics and quantum information - Austrian Academy of Sciences	IQOQI- OEAW	A
Alomic Probe			0.1m ⁵ , 20kg, SOVV Sensitivity: 1µgaVHz ¹⁰	8	Ferdinand-Braun-Institut für Höchstfrequenztechnik im Forschungsverbung Berlin e.V.	FBH	D
	0.1m ² , 50kg, 1kW	0.01m ³ , Skg, 1W	virtually drift-free	9	University of Nottingham	Nham	UK

berSwitch

LEONI

Atom interferometry gyroscopes

esa

The HYPER project

Differential measurement between two atom gyroscopes and a star tracker orbiting around the Earth

Resolution: 3x10⁻¹²rad/s /√Hz

 Expected Overall Performance: 3x10⁻¹⁶rad/s over one year of integration i.e. a S/N~100 at twice the orbital frequency

F. Sorrentino, Napoli 25/11/13

Mapping Lense-Thirring effect close to the Earth

Improving knowledge of fine-structure constant

Testing EP with microscopic bodies

Atomic gyroscope control of a satellite

ESA-SCI (2000) 10 July 2000

http://sci.esa.int/home/hyper/index.cfm

Atom interferometry gyroscopes

Space Atom Interferometers

• Main goals:

- ground demonstrator to test technology readiness of atom interferometry sensors for space applications
- Investigation of novel schemes based on quantum degenerate gases
- Space-based geodesy, inertial navigation, fundamental physics

Cesa

ESA Cosmic Vision: STE-QUEST

Monday, November 25, 13

Atom interferometry gyroscopes

INF

LMT beam splitters

H. Müller et al., PRL 102, 240403 (2009)
S.-W. Chiow et al., PRL 107, 130403 (2011)
G. D. McDonald et al., PRA 88, 053620 (2013)

Free falling vs trapped atoms

- Light-pulse (Raman or Bragg) atom interferometry
 - highest precision and highest accuracy so far demonstrated
 - atomic wave-function evolves in the absence of external fields

AI in optical traps

- No free fall or free expansion
- Small intrinsic size of the sensor
- but... perturbation by laser field
- 1D optical lattice for acceleration measurements
- toroidal traps for gyroscopes (see talk by G. Gori)
 F. Sorrentino, Napoli 25/11/13
 Atom inter

atoms \vec{g} \vec{g} standing-wave dipole trap

mirro

Atom interferometry gyroscopes

- Optical gyro to improve AI sensors
 - Using optical gyro for high frequency noise cancellations in AI sensor
- AI to improve optical gyro
 - Using AI gyrocompass for absolute orientation of optical gyro
- Combination of AI and optical devices
 - optimal detection bands

Monday, November 25, 13

Red-shift measure with atomic probes

nature

Vol 463 18 February 2010 doi:10.1038/nature08776

LETTERS

A precision measurement of the gravitational redshift by the interference of matter waves

Holger Müller^{1,2}, Achim Peters³ & Steven Chu^{1,2,4}

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

- Novel quantum inertial sensors have been developed using ultracold atoms and atom optics
- Particularly promising for long term stability and accuracy
 - MAGIA: *G* measured at 10⁻⁴ level
 - highly sensitive gyroscopes with thermal atoms, improved devices based on ultracold atoms still to reach ultimate performance
- Transportable systems have been already demonstrated, space-compatible ones are being developed
- Expected large improvements in next future, exp. in microgravity
- Combination / comparison with classical sensors may give rise to new schemes for applications of tests of fundamental physics

F. Sorrentino, Napoli 25/11/13

Atom interferometry gyroscopes

Our team

Post-doc, LENS

Post-doc, LENS

Researcher, Università di Firenze

Post-doc, CNR and Università di Firenze

Post-doc, Università di Firenze/ICTP

Post-doc, Università di Firenze/ICTP

PhD student, Università di Firenze

PhD student, Università di Pisa

PhD student, Università di Pisa

Long term guest, CNR

Long term guest, ESA-Noordwijk

Long term guest, Università di Bologna

G.M. Tino team members

Previous members and visitors

Support and funding

F. Sorrentino, Napoli 25/11/13

Andrea Alberti, PhD student Andrea Bertoldi, Post-doc Sergei Chepurov, Institute of Laser Physics, Novosibirsk, visitor Robert Drullinger, NIST, Long term guest Marco Fattori, PhD student Gabriele Ferrari, Researcher, INFM/CNR Vladyslav Ivanov, Post-doc Marion Jacquey, Post-doc Giacomo Lamporesi, PhD student Chris Oates, NIST, visitor Torsten Petelski, PhD student Juergen Stuhler, Post-doc

- Istituto Nazionale di Fisica Nucleare (INFN) European Commission (EC)
- ENI
- Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
- European Laboratory for Non-linear Spectroscopy (LENS)
- Ente Cassa di Risparmio di Firenze (CRF)
- European Space Agency (ESA)

Nicola Poli

Fiodor Sorrentino

Yu-Hung Lien Antonio Giorgini

Marco Tarallo

Fu-Yuan Wang

Gabriele Rosi

Denis Sutyrin

Marco Schioppo

Luigi Cacciapuoti

Marella de Angelis

Marco Prevedelli

- Agenzia Spaziale Italiana (ASI)
- Istituto Nazionale per la Fisica della Materia (INFM)
- Istituto Nazionale Geofisica e Vulcanologia (INGV)

http://coldatoms.lens.unifi.it/

Atom interferometry gyroscopes