Ring Laser Gyroscopes

• Large Size: (5-10 m) Geodesy, Astronomy,

G.R. Tests.

- Medium Size: (1-5 m) Geophysics, Sismology, metrology.
- Small Size: (5-50 cm) Inertial Guidance.

Sagnac Effect

Ring Laser Equations: Complex Form

Dynamics expressed using complex field amplitudes

2 coupled Stuart-Landau Oscillators (SLO)

$$\dot{E}_1(t) = (\mathcal{A}_1 - \mathcal{B}_1 | E_1(t) |^2 - \mathcal{C}_{21} | E_2(t) |^2) E_1(t) + \mathcal{R}_2 E_2 + q_1 \dot{E}_2(t) = (\mathcal{A}_2 - \mathcal{B}_2 | E_2(t) |^2 - \mathcal{C}_{12} | E_1(t) |^2) E_2(t) + \mathcal{R}_1 E_1 + q_2$$

in matrix formalism separation of linear and non-linear parts

$$\dot{\mathbf{E}} = \left[\mathbf{A} - \mathscr{D}(\mathbf{E}) \cdot \mathbf{B} \cdot \mathscr{D}(\mathbf{E}^*)\right] \mathbf{E}$$

$$\mathbf{A} \equiv \begin{pmatrix} \mathcal{A}_1 & \mathcal{R}_2 \\ \mathcal{R}_1 & \mathcal{A}_2 \end{pmatrix} \quad \mathbf{B} \equiv \begin{pmatrix} \mathcal{B}_1 & \mathcal{C}_{21} \\ \mathcal{C}_{12} & \mathcal{B}_2 \end{pmatrix} \quad \mathscr{D}(\mathbf{E}) \equiv \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}$$

Operation conditions of large rings (G-PISA, G-WETTZELL, etc.) biased by Earth rotation

$$egin{aligned} \mathcal{B}_1 &\simeq \mathcal{B}_2 &= \mathcal{B} \ \mathcal{C}_{21} &\simeq \mathcal{C}_{12} &= \mathcal{C} \end{aligned}$$

Split of parameters: «passive cavity»/«active medium»

$$\mathbf{A} \equiv \frac{c}{L} \mathbf{P}^{(0)} - \mathbf{M}$$

LINEAR in the fields E_{1,2}

$$\mathbf{B} \equiv \frac{c}{L} \mathbf{P}^{(2)}$$
 NON-LINEAR in the fields E_{1,2}

$$A = \begin{pmatrix} \alpha_1 + i \omega_s & r_2 e^{i\epsilon} \\ r_1 e^{i\epsilon} & \alpha_2 - i \omega_s \end{pmatrix} \xrightarrow{\rho(E_{12})} B = \begin{pmatrix} \beta & \theta + i\tau \\ \theta + i\tau & \beta \end{pmatrix}$$

$$P^{(3)}(E_{1,2}) = \frac{-2i\,\mu_{ab}^2}{\gamma_{ab}} \int_{-\infty}^{\infty} \chi_{1,2}(v) \rho^{(2)}(v, E_{1,2}) \, dv$$

Polarizability of active medium (isotopic mixture He-Ne) predictable but hard to be identified (non linear and ill-posed) (single pass gain G and plasma dispersion function $Z(\xi)$)

$$\mathbf{P}^{(0)} = \frac{G}{2} \begin{pmatrix} z^{(0)}(\xi_1) & 0\\ 0 & z^{(0)}(\xi_2) \end{pmatrix}$$

$$\mathbf{P}^{(2)} = G \begin{pmatrix} z_s^{(2)}(\xi_1) & z_c^{(2)}(\xi_{1,2}) \\ z_c^{(2)}(\xi_{1,2}) & z_s^{(2)}(\xi_2) \end{pmatrix}$$

Dissipative phenomena (M Matrix) are not predictable but they can be IDENTIFIED (if polarizability P is given!) (mirror losses, backscattering,etc.)

$$\mathbf{M} = \begin{pmatrix} \frac{c}{L} \frac{\mu_1}{2} + i\omega_1 & -\frac{c}{L}r_2e^{i\epsilon_2} \\ -\frac{c}{L}r_1e^{i\epsilon_1} & \frac{c}{L}\frac{\mu_2}{2} + i\omega_2 \end{pmatrix}$$

Lamb parameters & Lamb units

$\alpha_{1,2} = \frac{G}{Z_{I}(\xi_{1,2})} [kZ_{I}(\xi_{1,2}) + k'Z_{I}(\xi_{1,2}')] - \mu_{1,2},$	Plasma dispersion function $Z_I(\xi) \simeq \sqrt{\pi}e^{-\xi^2} - 2\eta,$ $Z_R(\xi) \simeq -2\xi e^{-\xi^2},$ $\xi_{1,2} = (\omega_{1,2} - \omega_0)/\Gamma_D$	
$\begin{split} & \beta_{1,2} = \alpha_{1,2} + \mu_{1,2}, \\ & \sigma_{1,2} = \frac{f_0}{2} \frac{G}{Z_I(0)} [k Z_R(\xi_{1,2}) + k' Z_R(\xi_{1,2}')], \end{split}$		
$\theta_{12} = \frac{\Gamma G}{Z_I(0)} \left[k \frac{Z_I(\xi_{1,2})}{1 + (\xi_m/\eta)^2} + k' \frac{Z_I(\xi'_{1,2})}{1 + (\xi'_m/\eta)^2} \right],$	s _b	$18 \cdot 10^{-6} \text{ m}^2$
$\tau_{12} = \frac{\Gamma f_0}{2} \frac{G}{Z_I(0)} \left[k \frac{Z_I(\xi_{1,2})\xi_m/\eta}{1 + (\xi_m/\eta)^2} + k' \frac{Z_I(\xi'_{1,2})\xi'_m/\eta}{1 + (\xi'_m/\eta)^2} \right]$	P_{out} p γ_a γ_b	1–10 HW 5.25 mbar 12 MHz 127 MHz
	${T_p \atop \mu_{ab}}$	450 K $3.2 \cdot 10^{-30} \text{ Cm}$

Note: Lamb parameters scale with the laser (single pass) gain G

$$I_{1,2} = \frac{|\mu_{ab}|^2 (\gamma_a + \gamma_b)}{4\hbar^2 \gamma_a \gamma_b \gamma_{ab}} \quad E_{1,2}^2 = \frac{|\mu_{ab}|^2 (\gamma_a + \gamma_b)}{4\hbar^2 \gamma_a \gamma_b \gamma_{ab}} \cdot \frac{P_{\text{out}1,2}}{2c\epsilon_0 s_b T} \equiv c_{\text{Lamb}} P_{\text{out}1,2}$$

Experimental calibration: the multimode threshold allows one to estimate c_{Lamb}

Ring Laser equations in terms of ring observables

Ē

$$\begin{split} \dot{I}_{1} &= \alpha_{1} I_{1} - \beta I_{1}^{2} - \theta_{2} I_{2} I_{1} + r_{2} \sqrt{I_{1} I_{2}} \cos(\psi - \epsilon_{2}), \\ \dot{I}_{2} &= \alpha_{2} I_{2} - \beta I_{2}^{2} - \theta_{1} I_{2} I_{1} + r_{1} \sqrt{I_{1} I_{2}} \cos(\psi + \epsilon_{2}), \\ \dot{\psi} &= \omega_{s} + \tau_{1} I_{1} - \tau_{2} I_{2} - r_{2} \sqrt{\frac{I_{2}}{I_{1}}} \sin(\psi - \epsilon_{2}) - r_{1} \sqrt{\frac{I_{1}}{I_{2}}} \sin(\psi + \epsilon_{1}) \end{split}$$

Real Coordinates For System Study

Parameters Positions

Asymptotic stationarity solutions

- Reciprocal rings exhibit the symmetry $(E_1, E_2, \Omega_1, \Omega_2) \longrightarrow (E_2, E_1, \Omega_2, \Omega_1)$
- Topology of phase space is a «clifford torus»
- Slightly different parameters for beams 1 and 2 preserve topology
 - Two kinds of orbits (depending on average values of $I_1 e I_2$)
 - Orbits that can't be shrunk to a point (Sagnac)

 $\mathcal{I}_1(t)$

• Orbits shrinkable to a point (constant I_1 , $I_2 \in \psi$: laser locked-in or switched off)

Stable limit cycles as:

 $\psi(t)$

Losses can be identified while system goes through the limit cycle

Power spectrum of G-Wettzell data

Interferogram

CW Intensity

Power spectrum of G-Wettzell Interferogram (and around Sagnac Frequency)

Low Frequency

Around Sagnac Frequency

Limit Cycle of G-Pisa

Identification of Lamb parameters associated to losses of optical cavity

Limit cycle of the system described by an ellipse (5 numbers)

Statistics of the 5 Lamb parameters associated to cavity losses

$$\widehat{\varepsilon} = \frac{\phi_1 - \phi_2}{2}$$

$$\begin{cases} \hat{\mu}_{1,2} &= \alpha_0 - \beta \left(I_{1,2} + \frac{i_{1,2}^2}{I_{1,2}} \right) - \frac{i_1 i_2 I_{2,1} (L\omega/c) \cos \widehat{\epsilon}}{4I_{1,2}^2} - \\ &- \theta \left(\frac{i_{2,1}^2 + 4I_{2,1}^2}{4I_{1,2}} - \frac{i_{1,2}^2 I_{2,1}^2}{2I_{1,2}^3} + \frac{i_1 i_2 I_{2,1} \cos \widehat{\epsilon}}{I_{1,2}^2} + \frac{i_{2,1}^2 \cos 2\widehat{\epsilon}}{4I_{1,2}} \right) \\ \hat{r}_{1,2} &= \frac{i_{2,1} (L\omega/c)}{2\sqrt{I_1 I_2}} \mp i_{1,2} \sqrt{\frac{I_{1,2}}{I_{2,1}}} \theta \sin \widehat{\epsilon} \end{cases}$$

<u>Self- and cross-saturation parameters β and θ must be measured</u> <u>Intensity I_{1,2} must be calibrated in Lamb units</u>

Key points of losses identification and Kalman estimation scheme:

- Cavity losses are unpredictable \rightarrow their variations in time must be identified
- Contribution to Sagnac frequency due to losses drift can be removed by Kaman filter
- The aim is improving the Allan variance of the rotation estimate for long times (ring time stability)
- Accuracy depends on non-linear laser parameters

Schematic of the identification of Lamb parameters associated to losses of optical cavity

Identification of Lamb Parameters of G-WETTZELL and G-PISA

Ring down time: losses measurements with G=0

Problem: how to fix the single pass gain G at the begining of the run From ring laser Eqs. \rightarrow We must estimate losses independently from G Switch off the RF excitation \rightarrow put G=0 in ring Eqs.

Plasma Dispersion Function Fit (Voigth Curve)

Natural Ne mixture 90-10

$$z^{(0)}(\xi_{1,2}) = k' z^{(0)}(\xi'_{1,2}) + k'' z^{(0)}(\xi''_{1,2})$$

ForAronowitz $\eta < 0.1$ per G-PISA $\eta = 0.4 \rightarrow z(\xi)$ without approximations

Standard Isotopic Mixture 50-50 di G-PISA k'/k" = sqrt(20/22)

Calibration of Gain Monitor (monomode to multimode transition)

Transition caused by increasing gain, to measure gain and monobeams at the multimode thresold

OLD: The new mode exists but dosent have enough energy to balance losses

NEW: increasing H the new curve permits the birth of a new mode for μ =G

Afterwards the Gain Monitor channel is itself calibrated by means of steps of the input power

Analysis of the system stability \rightarrow theorical prediction of (I_{th}, G_{th}) :

Calibration of I from volt to Lamb units
Gain at multimode (µ from RDT)

G-PISA as an inertial rotation sensor

Error Source	Freq. error
Back-scattering $\mathcal{R}_2 e^{-X} + \mathcal{R}_1 e^X + \text{c.c.}$	0.4695 Hz
Null Shift $\tau (I_1 - I_2)$	$-8.7 \times 10^{-4} \text{ Hz}$
Atomic Scale Factor $\sigma_1 - \sigma_2$	$5.56 \times 10^{-6} \text{ Hz}$
Cross Dispersion $I(\tau_{21} - \tau_{12})$	$1.75 \times 10^{-6} \text{ Hz}$

Preliminary Results LNGS

Currently working on G-Wettzell...

Simulation Tolerances of G-Wettzell

Simulation Tolerances of G-Wettzell

x 10⁻⁰

Simulation Tolerances of G-Wettzell

