6 December 2013

XVI Roma Tre Topical Seminar on Subnuclear Physics: 'From the Higgs to Dark Matter'

evidences properties,

Marco Cirelli (CNRS IPhT Saclay)

6 December 2013

XVI Roma Tre Topical Seminar on Subnuclear Physics: 'From the Higgs to Dark Matter'

evidences properties,

Marco Cirelli (CNRS IPhT Saclay)

Executive summary

Executive summary

© DM exists

Executive summary

© DM exists
© it's a new, unknown particle
no SM particle
can fulfil
dilutes as $1 / a^{3}$ with universe expansion

Executive summary

© DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80\% of total matter

no SM particle can fulfil
dilutes as $1 / a^{3}$ with universe expansion

$$
\Omega_{\mathrm{DM}} h^{2}=0.1199 \underset{\text { (notice error!) }}{ \pm 0.0027}
$$

Executive summary

© DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80\% of total matter
© neutral particle 'dark'..

no SM particle can fulfil
dilutes as $1 / a^{3}$ with universe expansion

Executive summary

© DM exists

- it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\quad \Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.0027$
© neutral particle 'dark'..
$\begin{array}{cc}\text { no SM particle } & \begin{array}{c}\text { dilutes as } 1 / a^{3} \text { with } \\ \text { can fulfil } \\ \text { universe expansion }\end{array}\end{array}$

$$
\Omega_{\mathrm{DM}} h^{2}=0.1199 \underset{\text { (notice error!) }}{ \pm 0.0027}
$$

Executive summary

© DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.0027$
© neutral particle 'dark'..
no SM particle dilutes as $1 / a^{3}$ with can fulfil universe expansion
© cold or not too warm p/m <<1 at CMB formation
© very feebly interacting $\begin{gathered}\text {-with iself } \\ - \text { with ordin }\end{gathered}$
-with ordinary matter
('collisionless')

Executive summary

© DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80\% of total matter
no SM particle dilutes as $1 / a^{3}$ with can fulfil universe expansion

$$
\Omega_{\mathrm{DM}} h^{2}=0.1199 \underset{\text { (notice error!) }}{ \pm 0.0027}
$$

© neutral particle 'dark'..
© cold or not too warm p/m <<1 at CMB formation
© very feebly interacting $\begin{gathered}\text {-with itseff } \\ - \text { with ordin }\end{gathered}$
-with ordinary matter ('collisionless')
© stable or very long lived $\tau_{\mathrm{DM}} \gg 10^{17} \mathrm{sec}$

Executive summary

- DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.0027$
© neutral particle 'dark'..
no SM particle dilutes as $1 / a^{3}$ with can fulfil
universe expansion
© cold or not too warm p/m <<1 at CMB formation
© very feebly interacting $\begin{gathered}- \text {-wititiself } \\ \text {-with } \\ \text { (coolifisimenless matter }\end{gathered}$
© stable or very long lived ${ }^{\tau} \mathrm{DM} \gg 10^{17} \mathrm{sec}$
© possibly a relic from the EU

Executive summary

- DM exists
- it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.00027$
© neutral particle 'dark'..
no SM particle dilutes as $1 / a^{3}$ with can fulfil
universe expansion
© cold or not too warm p/m <<1 at CMB formation
© very feebly interacting $\begin{gathered}- \text {-wititiself } \\ \text {-witiflifary matter } \\ \text { (coolisisiliess) }\end{gathered}$
© stable or very long lived $\tau_{\mathrm{DM}} \gg 10^{17} \mathrm{sec}$
© possibly a relic from the EU
© searched for by

Executive summary

- DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.00027$
© neutral particle 'dark'...
no SM particle dilutes as $1 / a^{3}$ with can fulfil
universe expansion
© cold or not too warm p/m <<1 at CMB formation
© very feebly interacting $\begin{gathered}- \text { wititiself } \\ \text {-with iffinery matter } \\ \text { (coolisionless) }\end{gathered}$
© stable or very long lived $\tau_{\mathrm{DM}} \gg 10^{17} \mathrm{sec}$
© possibly a relic from the EU
© searched for by

Executive summary

- DM exists
© it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.0027$
© neutral particle 'dark'..
no SM particle dilutes as $1 / a^{3}$ with can fulfil universe expansion
© cold or not too warm p/m<<1 at CMB formation
© very feebly interacting $\quad \begin{gathered}\text {-with hiself } \\ \text {-with } \\ \text { ondina }\end{gathered}$
-with ordinary matter ('collisionless')
© stable or very long lived $\tau_{\mathrm{DM}} \gg 10^{17} \mathrm{sec}$
© possibly a relic from the EU
© searched for by

Executive summary

© DM exists

- it's a new, unknown particle
© makes up 23% of total energy 80% of total matter $\Omega_{\mathrm{DM}} h^{2}=0.1199 \pm 0.0027$
© neutral particle 'dark'..
© cold or not too warm p/m<<1 at CMB formation
© very feebly interacting -with hiseff
-with ordinary matter ('collisionless')
© stable or very long lived $\tau_{\mathrm{DM}} \gg 10^{17} \mathrm{sec}$
© possibly a relic from the EU
© searched for by

Most of the Universe is Dark

$$
\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ; \text { CMB first peak } \Rightarrow \Omega_{\text {tot }}=1 \text { (flat); HST } h=0.71 \pm 0.07\right)
$$

Most of the Universe is Dark

FAvgQ: what's the difference between DM and DE?

DM behaves like matter

- overall it dilutes as volume expands
- clusters gravitationally on small scales
- $w=P / \rho=0$ (NR matter)
(radiation has $w=-1 / 3$)

DE behaves like a constant

- it does not dilute
- does not cluster, it is prob homogeneous
- $w=P / \rho \simeq-1$
- pulls the acceleration, FRW eq. $\frac{\ddot{a}}{a}=-\frac{4 \pi G_{N}}{3}(1-3 w) \rho$

Most of the Universe is Dark

$\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ;\right.$ CMB first peak $\Rightarrow \Omega_{\text {tot }}=1$ (flat); HST $\left.h=0.71 \pm 0.07\right)$

63\%

At the time of CMB formation (380 Ky)

How do we know that

 Dark Matter is out there?1) galaxy rotation curves

$$
m \frac{v_{c}^{2}(r)}{r}=\frac{G_{N} m M(r)}{r^{2}}
$$

'centrifugal' 'centripetal'

$$
v_{c}(r)=\sqrt{\frac{G_{N} M(r)}{r}}
$$

with $M(r)=4 \pi \int \rho(r) r^{2} d r$

$$
v_{c}(r) \sim \text { const } \Rightarrow \rho_{M}(r) \sim \frac{1}{r^{2}}
$$

1) galaxy rotation curves

$$
m \frac{v_{c}^{2}(r)}{r}=\frac{G_{N} m M(r)}{r^{2}}
$$

'centrifugal' 'centripetal'

$$
v_{c}(r)=\sqrt{\frac{G_{N} M(r)}{r}}
$$

with $M(r)=4 \pi \int \rho(r) r^{2} d r$

$$
v_{c}(r) \sim \text { const } \Rightarrow \rho_{M}(r) \sim \frac{1}{r^{2}}
$$

$\Omega_{\mathrm{M}} \gtrsim 0.1$

2) clusters of galaxies

- "rotation curves"
- gravitational lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824y

2) clusters of galaxies

- "rotation curves"
- gravitational lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824y

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r
[further developments]

2) clusters of galaxies

- "rotation curves"
- gravitational lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r
[further developments]

2) clusters of galaxies

- "rotation curves"
- gravitational lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824y

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

Dark Matter Ring in Cl 0024+17 (ZwCl 0024+1652) HST • ACS/WFC

2) clusters of galaxies

- "rotation curves"
- gravitational lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

Dark Matter Ring in Cl 0024+17 (ZwCl 0024+1652) HST•ACS/WFC

The
 DIN

1) galaxy rotation curves

$\Omega_{\mathrm{M}} \gtrsim 0.1$
2) clusters of galaxies
3) CMB+LSS (+SNIa:)

M.Cirelli and A.Strumia, astro-ph/0607086
$210^{6} \mathrm{CDM}$ particles, 43 Mpc cubic box

210^{6} CDM particles, 43 Mpc cubic box

$$
Z=28.62
$$

Aquarius project of the VIRGO coll.: $1.510^{9} \mathrm{CDM}$ particles, single galactic halo

$$
z=48.4 \quad T=0.05 \mathrm{Gyr}
$$

$\mathrm{DM} \mathbb{N}$

2dF: 2.2 10^{5} galaxies SDSS: 10^{6} galaxies 2 billion lyr

Of course, you have to infer galaxies within the DM simulation

Springel, Frenk, White, Nature 440 (2006)

Millennium: 10^{10} particles, $500 \mathrm{~h}^{-1} \mathrm{Mpc}$

ucture

CMB

LSS matter power spectrum

ructure

CMB

LSS matter power spectrum

ucture

ISS

LSS matter power spectrum

CMB spectrum

Instead of adding matter, modify Newton or GR.

$$
\begin{aligned}
& H=m a H=m a(a) \quad \text { with } \mu(a)=\left\{\begin{array}{rl}
1 & a>a_{0} \\
a / a_{0} & a \sim a_{0} \\
F=m \frac{a^{2}}{a_{0}}=\frac{G M m}{r^{2}} \Rightarrow a=\frac{\sqrt{G M a_{0}}}{r}=\frac{v^{2}}{r} \Rightarrow v=\left(G M a_{0}\right)^{1 / 4}=\operatorname{const} \\
\text { force balance }
\end{array} \Rightarrow \begin{array}{l}
a_{0}=1.2 \cdot 10^{-10} m / s^{2}
\end{array}\right. \\
& \begin{array}{l}
\text { tangential }
\end{array} \\
& \text { acceleration }
\end{aligned}
$$

fits rotation curves very well

can fit (bullet) cluster if adding 2 eV neutrinos...

How would the power spectra be in MOND/TeVeS, without DM?

(in particular: no $\mathrm{DM}=>$ no $3^{\text {rd }}$ peak!)

(here you can make it)

DM

$\Omega_{\mathrm{M}} \gtrsim 0.1$

2) clusters of galaxies

3) CMB+LSS(+SNLa:)

WMAP-3yr ACbar
CBI

Boomerang
DASI
VSA
SDSS, 2dFRGS
LyA Forest Croft
LyA Forest SDSS

$\Omega_{\mathrm{M}} \approx 0.275 \pm 0.02$

$\Omega_{\mathrm{M}} \gtrsim 0.1$

¿) clusters of galaxies

3) CMB+LSS (+SNIa:)

$\Omega_{\mathrm{M}} \approx 0.275 \pm 0.02$

What is the DM ??
It consists of a particle. Permeates galactic haloes.

What do we know of the

 particle physics properties of Dark Matter?an astro je ne sais pas quoi:

an astro je ne sais pas quoi:

- neutrons
- gas
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neiturons

- gas
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neitrons

- gis
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neitrons

- gris
- Black Holcs
- brown dwarves
strong lensing

an astro je ne sais pas quoi:
- nertrons
- gos
- Black Holcs
- browin dwarves

an astro je ne sais pas quoi:
- newtrons
- gos
- Black Holes
- browñ dwarves

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons:
too much baryons => Universe full of Helium
- CMB says baryons are 4% max

an astro je ne sais pas quoi:
- newtrons
- gos
- Black Holcs
- brown dwarves

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons:
too much baryons => Universe full of Helium
- CMB says baryons are 4% max

neutrinos:

an astro je ne sais pas quoi:

- nerstrons
- gas
- Blarek Holcs
- brown dwarves

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4% max

neutrinos:

 too light! $\quad m_{\nu} \lesssim 1 \mathrm{eV}$do not have enough mass to act as gravitational attractors in galaxy collapse
no HDM
$\sum m_{\nu}=0$

some HDM

$\sum m_{\nu}=6.9 \mathrm{eV}$
Λ CDM - Gadgetz - r68 Mpc ${ }^{3}$

$$
\mathrm{Z}=32.33
$$

no HDM
$\sum m_{\nu}=0$

some HDM
 $\sum m_{\nu}=6.9 \mathrm{eV}$

$\Lambda \mathrm{CDM}$ - Gadget\% - 768 Mpc 3

Recap: DM factsheet

Recap: DM factsheet

Recap: DM factsheet

DM exists

Recap: DM factsheet

DM exists

Galactic Bulge

perseus arii
$\because O$
Sagittarius Arm
O

Recap: DM factsheet

DM exists

Recap: DM factsheet

DM exists

Galactic Bulge

How heavy?

DM
10-1000 GeV
arius Arm
Local Arm
Sun

Recap: DM factsheet

DM exists

Galactic Bulge

How heavy?

DM
10-1000 GeV

Recap: DM factsheet

DM exists

Galactic Bulge

They do not interact with normal matter nor with themselves, they fly freely thru matter

How heavy?

DM 10-1000 GeV

Recap: DM factsheet

DM exists

Galactic Bulge

They do not interact with normal matter nor with themselves, they fly freely thru matter

How heavy?

DM 10-1000 GeV
arius Arm

How was
 Dark Matter produced?

Consider a particle χ :

- subject to $\chi \bar{\chi} \rightarrow \ldots$
- 'heavy' (e.g. 100 GeV)
- 'stable'
- in an expanding Universe
- symmetric abundance

from

Consider a particle χ :

- subject to $\chi \bar{\chi} \rightarrow \ldots$
- 'heavy' (e.g. 100 GeV)
- 'stable'
- in an expanding Universe
- symmetric abundance

from

Consider a particle χ :

- subject to $\chi \bar{\chi} \rightarrow \ldots$
- 'heavy' (e.g. 100 GeV)
- 'stable'
- in an expanding Universe
- symmetric abundance

Consider a particle χ :

- subject to $\chi \bar{\chi} \rightarrow \ldots$
- 'heavy' (e.g. 100 GeV)
- 'stable'
- in an expanding Universe
- symmetric abundance

Consider a particle χ :

- subject to $\chi \bar{\chi} \rightarrow \ldots$
- 'heavy' (e.g. 100 GeV)
- 'stable'
- in an expanding Universe
- symmetric abundance

from

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:

$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\left(g_{w}^{2} / 4 \pi\right)^{2}}{M^{2}} \approx 3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$
WIMP miracle!

How do we search for Dark Matter?

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
from annihil in galactic halo or center
PAMELA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
ν, ν from annihil in massive bodies

direct detection

production at colliders

LHC

γ from annihil in galactic center or halo and from synchrotron emission
from annihil in galactic halo or center
PAMELA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
from annihil in massive bodies

Indirect Detection: basics \bar{p} and e^{+}from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Are these signals of Dark Matter?

YFS: few TeV, leptophilic DM

with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$

electrons + positrons

Are these signals of Dark Matter?

KㅍF: few TeV, leptophilic DM with huge $\langle\sigma v\rangle \approx 10^{-23} \mathrm{~cm}^{3} / \mathrm{sec}$

INO: a formidable 'background' for future searches

Dark Matter exists.

Dark Matter exists.

It's most probably a new, unknown particle, neutral, very feebly interacting, cold, essentially stable.

Dark Matter exists.

It's most probably a new, unknown particle,
neutral, very feebly interacting, cold, essentially stable.
(Other than that,)
we have (almost) no clue of what it is, but many hints and many ideas.

Dark Matter exists.

It's most probably a new, unknown particle, neutral, very feebly interacting, cold, essentially stable.

(Other than that,)
we have (almost) no clue of what it is, but many hints and many ideas.

The 'era of data' is now.

