Strange Neutron Stars

M. Baldo & G.F. Burgio & H. Chen & U. Lombardo & H.-J. S. : Catania
T. Maruyama & S. Chiba & T. Tatsumi & N. Yasutake : Japan
A. Li & Z.H. Li & H.Q. Song & X.R. Zhou & W. Zuo : China
A. Polls & A. Ramos & I. Vidaña : Barcelona
M. Buballa & M. Oertel : Darmstadt
J. Cugnon & A. Lejeune : Liège
V. Ferrari & L. Gualtieri : Rome
F. Weber : San Diego
T. Rijken : Nijmegen
PRC 61, 055801 (PRC 64, 044301 (PRC 66, 025802 (PLB 562, 153 (20 A&A 408, 675 (20 PRC 69, 018801 (PRD 70, 043010 (PRD 74, 047304 (PRD 74, 123001 (PR

- BHF approach of hypernuclear matter
- Hypernuclei
- Neutron star properties
- Quark matter and hybrid stars

PRC 61, 055801 (2000) PRC 64. 044301 (2001) PRC 66, 025802 (2002) PLB 562, 153 (2003) A&A 408, 675 (2003) PRC 69, 018801 (2004) PRD 70, 043010 (2004) A&A 451, 213 (2006) PRC 73. 058801 (2006) PRC 74, 047304 (2006) PRD 74. 123001 (2006) PRD 76, 123015 (2007) PRC 77, 034316 (2008) PRC 78, 028801 (2008) A&A 518, A17 (2010) PRC 83. 025804 (2011) PRC 84. 035801 (2011) PRD 84. 044017 (2011) PRD 84, 105023 (2011) PRD 86, 045006 (2012) A&A 551, A13 (2013) PRC 88, 024322 (2013)

http://chandra.harvard.edu

http://chandra.harvard.edu

http://chandra.harvard.edu

Crab Nebula: Remnant of a supernova Observed AD 1054 by Chinese astronomers Distance 6300 ly Size \approx 10 ly

Crab Nebula: Remnant of a supernova Observed AD 1054 by Chinese astronomers Distance 6300 ly Size \approx 10 ly

Pulsar PSR 0

HST data

Pulsar PSR 0531+21 ($P \approx 33 \, \text{ms}$)

Neutron Star Structure from Brueckner Theory:

The only "laboratory" for $\rho_B \sim 10\rho_0$ in the Universe Need EOS of nuclear matter including hyperons

Catania

Etna Volcano

I'm a neutron star!

Hypernuclear Matter:

 $N = qqq: {h p} (939 \text{ MeV})$ $Y = qqs: {\Lambda^0 (1116 \text{ MeV}) \over \Sigma^{+0-} (1193 \text{ MeV})}$

 V_{NN} : Argonne, Bonn, Paris, ... V_{NY} : Nijmegen (NSC89, NSC97, ...) V_{YY} : ? (no scattering data)

In free space weak decay: $Y \rightarrow N + \pi$ etc. ($c\tau \approx 8$ cm) In dense nucleonic medium the decay is Pauli-blocked !

Brueckner Theory of Nuclear Matter:

• Effective in-medium interaction G from potential V:

Results: binding energy $\epsilon(\rho_n, \rho_p, \rho_\Lambda, \rho_\Sigma) = \sum_{i} \sum_{k < k_F^{(i)}} \left[e_k^{(i)} - \frac{U_i(k)}{2} \right]$ s.p. properties, cross sections, ...

K.A. Brueckner and J.L. Gammel; PR 109, 1023 (1958) for nuclear matter Extension to hypernuclear matter ... **Include Hyperons:**

• Technical difficulty: coupled channels:

Include Hyperons:

• Technical difficulty: coupled channels:

NY Cross Section Data:

Polinder & Haidenbauer & Meissner, NPA 779, 244 (2006)

Data from the 1960's ! Need more and better data

Lambda Hypernuclear Chart:

PTEP **2012**, 02B012

H. Tamura

Lambda Hypernuclear Chart:

PTEP **2012**, 02B012

H. Tamura

Hypernuclei: Typical Example: ⁴⁰Ca:

• Theoretical model:

- Skyrme-Hartree-Fock (SHF) [Vautherin & Brink, PRC 5, 626 (1972)]
- Standard NN force: SIII, SGII, SkI4, SLy4, ...
- Effective microscopic NA force from BHF results ...

Extended SHF Model for Hypernuclei:

• Total energy of the hypernucleus:

$$E = \int d^3 r \, \epsilon(r)$$

Energy density functional:

 $\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{N}[\boldsymbol{\tau}_{n}, \boldsymbol{\tau}_{p}, \boldsymbol{\rho}_{n}, \boldsymbol{\rho}_{p}, \boldsymbol{J}_{n}, \boldsymbol{J}_{p}] + \boldsymbol{\epsilon}_{\wedge}[\boldsymbol{\tau}_{\wedge}, \boldsymbol{\rho}_{\wedge}, \boldsymbol{\rho}_{N}]$

Local densities:

$$\rho_q = \sum_{i=1}^{N_q} |\phi_q^i|^2, \quad \tau_q = \sum_{i=1}^{N_q} |\nabla \phi_q^i|^2, \quad \boldsymbol{J}_q = \sum_{i=1}^{N_q} \phi_q^{i^*} (\nabla \phi_q^i \times \boldsymbol{\sigma})/i$$

i: occupied states, N_q : number of particles $q = n, p, \Lambda$

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(r)} \nabla + V_q(r) - i \nabla W_q(r) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_q^i(r) = -e_q^i \phi_q^i(r)$$

- SHF mean fields: $V_N = V_N^{\text{SHF}} + \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_N}$, $V_{\Lambda} = \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$
- Effective mass $m_{\Lambda}^{*}(\rho_{N}, \rho_{\Lambda})$ and Energy density due to NA interaction: no free parameters $\epsilon_{N\Lambda}(\rho_{N}, \rho_{\Lambda}) =$ $(\rho_{N}+\rho_{\Lambda})\frac{B}{A}(\rho_{N}, \rho_{\Lambda}) - \rho_{N}\frac{B}{A}(\rho_{N}, 0) - \frac{3(3\pi^{2})^{2/3}}{5}\rho_{\Lambda}^{5/3}$

• Coupled equations for eigenvalues e_{a}^{i}

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(r)} \nabla + V_q(r) - i \nabla W_q(r) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_q^i(r) = -e_q^i \phi_q^i(r)$$

- SHF mean fields: $V_N = V_N^{SHF} + \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_N}$, $V_{\Lambda} = \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$
- Effective mass $m_{\Lambda}^{*}(\rho_{N},\rho_{\Lambda})$ and from BHF Energy density due to NA interaction: no free parameters $\epsilon_{N\Lambda}(\rho_{N},\rho_{\Lambda}) = (\rho_{N}+\rho_{\Lambda})\frac{B}{A}(\rho_{N},\rho_{\Lambda}) - \rho_{N}\frac{B}{A}(\rho_{N},0) - \frac{3(3\pi^{2})^{2/3}}{5}\rho_{\Lambda}^{5/3}$

• Coupled equations for eigenvalues e_{α}^{i}

Results: Single-A Hypernuclei:

• Lambda single-particle levels:

Best agreement with NSC89 and NSC97f potentials No indication of strong hyperon TBF

• Single-particle potentials in nuclear matter ($\rho_N = \rho_0$):

V18+UIX' NN & NSC89 YN , $\rho_N = 0.17 \text{ fm}^{-3}$, $\rho_{\Lambda} = \rho_{\Sigma} = 0$

← Hyperons are weaker bound than nucleons Only slight dependence on proton fraction $x_p = \rho_p / \rho_N$

• Results with ESC08b NY potential:

 $\hookrightarrow \Sigma^- N$ interaction is repulsive

Three-Nucleon Forces:

- Only small effect required [$\delta(B/A) \approx 1 \text{ MeV}$ at ρ_0]
- Model dependent, no final theory yet
- Use and compare microscopic and phenomenological TBF...
 - Microscopic TBF of P. Grangé et al., PRC 40, 1040 (1989): Exchange of π, ρ, σ, ω via Δ(1232), R(1440), NN
 Parameters compatible with two-nucleon potential (Paris, V₁₈,...)
 - Urbana IX phenomenological TBF: Only 2π -TBF + phenomenological repulsion Fit saturation point

«Recipe» for Neutron Star Structure Calculation:

 $\epsilon(\rho, x_e, x_p, x_\Lambda, x_\Sigma, ...); x_i = \frac{\rho_i}{\rho_i}$ Brueckner results: $\mu_i = \frac{\partial \epsilon}{\partial \rho_i}$ Chemical potentials: **Beta-equilibrium:** $\mu_i = b_i \mu_n - q_i \mu_e$ Charge neutrality: $\sum_i x_i q_i = 0$ **Composition:** $x_i(\rho)$ $p(\rho) = \rho^2 \frac{d(\epsilon/\rho)}{d\rho}(\rho, x_i(\rho))$ Equation of state: $\frac{dp}{dr} = -\frac{Gm}{r^2} \frac{(\epsilon + p)(1 + 4\pi r^3 p/m)}{1 - 2Gm/r}$ **TOV equations:** $\frac{dm}{dr} = 4\pi r^2 \epsilon$

Structure of the star: $\rho(r)$, M(R) etc.

«Recipe» for Neutron Star Structure Calculation:

 $\epsilon(\rho, \mathbf{x}_e, \mathbf{x}_p, \mathbf{x}_{\Lambda}, \mathbf{x}_{\Sigma}, \dots); x_i = \frac{\rho_i}{\rho}$ **Brueckner results:** $\mu_i = \frac{\partial \epsilon}{\partial \rho_i}$ Chemical potentials: $\mu_e = \mu_\mu = \mu_n - \mu_p$ $\mu_{\Sigma^-} = 2\mu_n - \mu_p$ **Beta-equilibrium:** $\mu_i = b_i \mu_n - q_i \mu_e$ $\mu_{\Sigma^0} = \mu_{\Lambda} = \mu_n$ Charge neutrality: $\sum_i x_i q_i = 0$ $\mu_{\Sigma^+} = \mu_D$ **Composition:** $x_i(\rho)$ $p(\rho) = \rho^2 \frac{d(\epsilon/\rho)}{d\rho}(\rho, x_i(\rho))$ Equation of state: $\frac{dp}{dr} = -\frac{Gm}{r^2} \frac{(\epsilon + p)(1 + 4\pi r^3 p/m)}{1 - 2Gm/r}$ **TOV equations:** $\frac{dm}{dr} = 4\pi r^2 \epsilon$

Structure of the star: $\rho(r)$, M(R) etc.

• Typical results:

• NS structure including hyperons ... and including quark matter

Observational Data: Masses

Two candidates for $\sim 1.7 M_{\odot}$ Recent: ~ $1.97M_{\odot}$ (Nature 09466) !?

Need accurate data of "high-mass" neutron stars

No combined (*M*, *R*) measurements (Would practically fix the EOS)

Observational Data: Radii

The Best Measured Neutron Star Radii						
Name	R _∞ (km/D)	D (kpc)	kT _{eff,∞} (eV)	N _H (10 ²⁰ cm ⁻²)	Ref.	$R_{\infty} < 5\%$
omega Cen (Chandra)	13.5 ± 2.1	5.36 ±6%	66 ⁺⁴ -5	(9)	Rutledge et al (2002)	Caveats:
omega Cen** (XMM)	13.6 ± 0.3	5.36 ±6%	67 ±2	9 ± 2.5	Gendre et al (2002)	• All IDd by X-ray spectrum (47 Tuc,
M13** (XMM)	12.6 ± 0.4	7.80 ±2%	76 ±3	(1.1)	Gendre et al (2002)	Omega Cen now have optical
47 Tuc X7 (Chandra)	34 ₋₁₃ +22	5.13 ±4%	84 ⁺¹³ ₋₁₂	0.13 ^{+0.06} -0.04	Heinke et al (2006)	counterparts)calibration
M28** (Chandra)	14.5 _{-3.8} +6.9	5.5 ±10%	90 ₋₁₀ +30	26 ± 4	Becker et al (2003)	uncertainties
M30 (Chandra)	16.9 _{-4.3} +5.4		94 ₋₁₂ +17	2.9 ^{+1.7} _{-1.2}	Lugger et al (2006)	Distances
NGC 2808 (XMM)	??	9.6 (?)	103 ₋₃₃ +18	18 ⁺¹¹ -7	Webb et al (2007)	Carretta et al (2000), Thompson et al (2001)

Courtesy of R. Rutledge, NFQCD 2010 meeting

Mass-Radius Constraints:

Courtesy of R. Rutledge, NFQCD 2010 meeting

• Composition of neutron star matter:

• EOS of neutron star matter:

Strong softening due to hyperons ! (More Fermi seas available)

• Mass-radius relations with different nucleonic TBF:

Large variation of M_{max} with nucleonic TBF Self-regulating softening due to hyperon appearance (stiffer nucleonic EOS → earlier hyperon onset)

• Mass-radius relations with different nucleonic TBF:

Large variation of M_{max} with nucleonic TBF Self-regulating softening due to hyperon appearance (stiffer nucleonic EOS → earlier hyperon onset)

• Using different *NY*,*YY* potentials:

Maximum mass independent of potentials !Maximum mass too low (< 1.4 M_{\odot}) !Proof for "quark" matter inside neutron stars **?**!

• Using different *NY*,*YY* potentials:

Maximum mass independent of potentials Maximum mass too low (< 1.4 M_{\odot}) Proof for "quark" matter inside neutron stars **?**!

• . . . in spite of different compositions:

Inclusion of Quark Matter:

• Problem:

Large theoretical uncertainties, limited predictive power

• Strategy:

Use available eff. quark models (MIT, NJL, CDM, DSM, ...) in combination with the hadronic EOS

• Important constraint: In symmetric matter phase transition not below $\approx 3\rho_0$

 $\bullet \text{ MIT model requires density dependent bag "constant":} \\ \epsilon_Q = B + \sum_{f=u,d,s} \frac{3m_f^4}{8\pi^2} \left[\sqrt{x_f^2 + 1} \left(2x_f^3 + x_f \right) - \operatorname{arsinh}(x_f) \right] + \alpha_s \times \dots \\ B(\rho) = B_{\infty} + (B_0 - B_{\infty}) \exp \left[-\beta \left(\rho / \rho_0 \right)^2 \right]$

• Different quark EOS: bag models, color dielectric model:

NJL, Dyson-Schwinger models: hyperons prevent phase transition \longrightarrow Maximum masses: 1.5...1.9 M_{\odot} , Radii are different !

• Neutron star profiles:

Bulk Gibbs

Screened Gibbs

Maxwell

• Hyperons replaced by strange quark matter

- Very different possible internal structures
- Surface tension + screening enforce 'quasi' Maxwell construction (exact for $\sigma \gtrsim 70 \text{ MeV/fm}^2$)

Mass-radius relations with different hadron-quark phase transition constructions:

e.m. interaction vs. surface tension :

- Screened Gibbs constr.
 very close to Maxwell construction
- Maximum mass independent of phase transition

Summary:

- Neutron star physics probes the 4 fundamental interactions:
 - Gravitation: Densest object in the Universe
 - Strong: Nuclear EOS
 - Weak: Beta-equilibrium of matter, Neutrino physics
 - EM: Charge-neutrality, Mixed-phase structures

Conclusions:

- Hyperons cannot be ignored !
- BHF EOS with hyperons predicts $M_{\rm max}$ not above ~ 1.4 M_{\odot}
- Need "quark matter" to reach higher masses
- Currently $M_{\text{max}} \approx 1.9 M_{\odot}$ for hybrid stars in this approach

We do not know dark matter.

We do not know dark matter.

We do not know dark energy.

We do not know dark matter. We do not know dark energy. Do we know GR at 10 ρ_0 ?