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• Reaction processes: 
need for the wave function of the projectile (target very stable)

• From reaction theory:
can we test the wave function of the projectile with reactions?

• Various types of structure models (stable and exotic nuclei)

Ab initio, shell model

microscopic Non-microscopic

RGM:

Resonating 

Group Method

Ϯ,ϯ,… Đlusteƌs

2 clusters: Optical

3 clusters: hyperspherical

Non cluster

cluster

Nucleon-nucleon 

interaction Nucleus-nucleus 

interaction

1. Introduction
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Hamiltonian of the nucleus:ܪ =   ܶ + > ܸ +  >> ܸ ڮ+
withܶ = kinetic energy of nucleon iܸ = two-body nucleon-nucleon interaction

 Contains a nuclear part ܸே: short range

 Contains a coulomb part ܸ: long range ∼ ݁ଶ/ݎܸ=three-body interaction (often neglected)

Question: how to solve the Schrödinger equation?

Several techniques:

• Ab initio calculations: provide « exact » solutions

• Shell model

• Cluster approximation

1. Introduction
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• Clustering: well known effect in light nuclei

• NuĐleoŶs aƌe gƌouped iŶ ͞Đlusteƌs͟

Best candidate: a particle (high binding energy, almost elementary particle)

 Ikeda diagram: cluster states near a threshold (8Be, 20Ne, etc.)

• Halo nuclei: special case of cluster states

• Beyond the nucleon level: hypernuclei

quarks

• Well adapted to reactions (not true for the shell model, ab initio models, etc.)

• PossiďilitǇ to have ϯ,ϰ,… Đlusteƌs ;eǆaŵple: 12C=a+a+a)

Cluster approximation

2. Cluster models
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r

Two clusters

3. Non-microscopic models

• Structure of the clusters is neglected

• Pauli principle: approximated (appropriate choice of the potential)

• Low relative energies: real potentials (in general)

High relative energies: complex potentials (simulate absorption)

 Simple

 Widely used for the description of projectiles

 Ex: 7Li=a+t, 6Li=a+d, 17F=16O+p

 Potential ܸሺݎሻ in general not known

Fitted on data (binding energies, phase shifts)

Obtained from folding

 Sometimes not adapted to the structure of the nucleus

Hamiltonian: ܪ = ܶ + ܸሺݎሻ
Wave function: Ȳℓ = ݃ℓ ݎ ℓܻሺȳሻ



Many nuclei have a 3-body structure Three-body problem must be solved

Hamiltonian: ܪ = ଵܶ + ଶܶ + ଷܶ + ଵܸଶሺ �ଵ − �ଶ ሻ + ଵܸଷሺ �ଵ − �ଷ ሻ + ଶܸଷሺ �ଶ − �ଷ ሻ

� �
�

Jacobi coordinates

(c.m. removed)

࢞ = � − �࢟ = � − ሺ� + �ሻ/ʹ
࢞࢟

Absolute coordinates Hyperspherical coordinates

• ȳ௫, ȳ௬
• ߩ = ଶݔ + ଶݕ
• taΩ� = ௬௫ߩ =hyperradius�= hyperangle

In hyperspherical coordinates: ܪ = ఘܶ + ܸ ,ߩ �, ȳ௫, ȳ௬
Eigenstates of ఘܶ: hypersphercial functions �ೣ �, ȳ௫, ȳ௬ = �ఊ ȳହ

known functions (analytical)

extension of spherical harmonics ܻ ȳ in 2-body problems

K=hypermoment 99

3. Non-microscopic models



• Schrödinger equation Ȳெܪ: = Ȳெܧ
• The wave function is expanded in hyperspherical harmonicsȲெ ,ߩ ȳହ =  =∞  ఊ �ఊ ȳହ ߯ఊ ሺߩሻ
• The radial functions are obtained from a set of coupled differential equations

− ℏଶʹΨே �ଶ�ߩଶ − ܭ ܭ + Ͷߩଶ ߯ఊ ሺߩሻ +  ′,ఊ′ ܸఊ,′ఊ′ ߩ ߯ఊ ߩ = ఊ߯ܧ ሺߩሻ
• Potentials ܸఊ,′ఊ′ ߩ are determined from ଵܸଶ + ଵܸଷ + ଶܸଷ
• Two-body potentials ܸ contains spurious Pauli forbidden states  must be removed

• Equivalent to a standard coupled-channel problem (up to ~100-200 channels)

• In practice: summation over K is limited to ܭ௫߯ఊ ߩ are expanded over a basis (Lagrange basis here)

• General form of the system: identical to all coupled-channel problems

Known functions To be determined
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3. Non-microscopic models



Number of channels in 3-body problems

example:  11Li=9Li+n+n (spin of the core neglected, ܵ = Ͳ ݎ ͳ)
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Kmax J = 0+ Kmax J = 1-

8 15 7 26

12 28 11 57

16 45 15 100

20 66 19 155

24 91 23 222

28 120

32 153

3. Non-microscopic models
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• Van: Kanada et al., Prog. Theor. Phys. 61 (1979) 1327

fits the experimental a-p phase shifts (gaussians)

6He Theor. Exp

Energy -0.78 MeV -0.97 MeV

<r2> 2.42 fm 2.33±0.04 fm

Example: 6He=a+n+n

• Vnn: Minnesota, Nucl. Phys. A286 (1977) 53

 3 body effects?

 ͞effeĐtive͟ iŶteƌaĐtioŶs?

3. Non-microscopic models
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6He wave functions (S=0)

͞DiŶeutƌoŶ͟ ͞Cigaƌ͟

3. Non-microscopic models



Specific problems of 3-body scattering states ܧ) > Ͳሻ
− ℏଶʹΨே �ଶ�ߩଶ − ܭ ܭ + Ͷߩଶ ߯ఊ ሺߩሻ +  ′,ఊ′ ܸఊ,′ఊ′ ߩ ߯ఊ ߩ = ఊ߯ܧ ሺߩሻ

• Many hypermomenta (K-values) large set for large Kmax (slow convergence)

• Long range of the potentials: behave as ∼ ͳ/ߩଷ
 the asymptotic coulomb behaviour is not reached before (~500-1000 fm!)

 propagation methods are necessary

R-matrix application to 3-body systems: P. D., E. Tursunov, D. Baye, Nucl. Phys. A 765 (2006) 370
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Break-up cross sections:

D. Baye, P. Capel, P. D., and Y. Suzuki: Phys. 

Rev. C 79 (2009) 024607
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3. Non-microscopic models



Recent work on 11Li 

• Ref: E.C.Pinilla, P.D., D. Baye, Phys. Rev. C 85 (2012) 054610

• 11Li described by a 9Li+n+n structure (spin of 9Li is neglected)

three-body phase shifts

105

11Li
Narrow 1- resonance near 0.5 MeV

3. Non-microscopic models



1. Overview of different models

2. Cluster models

106

4. Microscopic models: overview
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Definition of a microscopic model

• Wave functions

• fully antisymmetric

• Depend on all nucleon coordinates  complicated many-body problem!

• Exchange of particles i and j

Pauli principle ܲȲ ͳ,ʹ, … ݅, … ݆, ܣ… = −Ȳ ͳ,ʹ, … ݆, … ݅, ܣ…
• Hamiltonian

• given by ܪ =   ܶ + > ܸ +  >> ܸ ڮ+
withܶ = kinetic energy of nucleon iܸ = two-body nucleon-nucleon interaction

 Contains a nuclear part ܸே: short range

 Contains a coulomb part ܸ: long range ∼ ݁ଶ/ݎܸ=three-body interaction (often neglected)

4. Microscopic models: overview
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Main advantages

• Predictive power: in principle there is no parameter

• Coherent description of different processes: 

• spectroscopy (energies, radii, electromagnetic transitions, etc.)

• scattering (elastic, transfer, radiative capture, etc. )

Main problems

• ܸே is not exactly known

 approximations, effective NN interactions (adapted to the model)

• The Schrödinger equation may involve many terms (A(A-1)/2) 

 cannot be solved exactly

• Difficult to apply to scattering states

 various models

• Shell model (and extensions: No-core shell model)

• Fermionic Molecular Dynamics (FMD), Antisymmetrized Molecular Dynamics (AMD)

• Cluster models: Resonating Group Method (RGM), Generator Coordinate Method (GCM)

4. Microscopic models: overview



Cluster models

• the A nucleons form « clusters » inside the nucleus

• origin: the a particle is strongly bound  keeps its own identity in the nucleus

• typical clusters: strongly bound nuclei (alpha particle)

• example : 8Be=a+a - formed of 4 neutrons and 4 protons grouped in 2 a

• Cluster approximation Ȳ = ��ଵ�ଶ݃ሺߩሻ
with�ଵ, �ଶ = internal wave functions (input, shell-model)݃ሺߩሻ =relative wave function (output)� = antisymmetrization operator

=Resonating Group Method (RGM)

• Describes spectroscopy and reactions

 easy access to unbound states (+widths)

109

4. Microscopic models: overview



12C described by 3 alphas

20Ne described by 16O+a

6He described by a+n+n

nucleon=« particular » cluster, numerical techniques 

identical

110

4. Microscopic models: overview



Extensions

• 3 clusters (or more)

projection more complicated (multidimension)

• p, sd orbitals: many Slater determinants

 analytical calculations not possible

• Multichannel calculations: Ȳ = ��ଵ�ଶ݃ ߩ +��ଵכ�ଶכ݃כ ߩ ڮ+
 core excitations (important in many nuclei)

 better wave functions

 inelastic scattering, transfer

R1

R2

111

4. Microscopic models: cluster models



5. Applications of microscopic cluster models

2-cluster models

• 17C/17Na  (recent  exotic nuclei)

3-cluster models

• 6He=a+n+n

• 12C=a+a+a

112



The 17C and 17Na mirror nuclei

• Ref: N. Timofeyuk, P.D. , Phys. Rev. C81 (2010) 051301

• 17Na unstable (no experimental data but 19Na unstable)

• The mirror 17C nucleus is well known  test with charge symmetry

• Two-cluster systems: 16C+n, 16Ne+p

• 16C/16Ne wave functions: 6 protons (ݏଶସሻ, 10 neutrons (ݏଶ, , ଶሻ�ݏ 15x66=990 SD

16C/16Ne
n/p

Two NN interactions: MN and V2

113

5. Applications of microscopic cluster models: 17C / 17Na



17C spectrum (positive parity)

Two NN interaction V2 and MN (+spin-orbit)

114

16C+n threshold

5. Applications of microscopic cluster models: 17C / 17Na



17Na spectrum

J E ȞሺͲ+ሻ Ȟሺʹ+ሻ
1/2+ 2.40 1.36

3/2+ 2.57 0.001 0.024

5/2+ 2.97 0.123 0.021

7/2+ 4.35 8x10-8 0.025

• all states are unbound  importance of continuum

• ground state: broad (ℓ = Ͳ) resonance

• excited states: narrow (ℓ = ʹ), important decay to the 16Ne(2+)+p channel

 3 proton emittors 115

14O+p+p

5. Applications of microscopic cluster models: 17C / 17Na
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S. Korennov, P.D., Nucl. Phys. A740 (2004) 249

R
1

R
2

Hypershperical coordinate:

2

2

2

1 RRR +~

6He 6Li, p=+
6Li, p=-

5. Applications of microscopic cluster models: 6He and 6Li
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Energy convergence, 0+

- 0.975 MeV

5. Applications of microscopic cluster models: 6He and 6Li



Applications
CDCC

• 2-body: 11Be+64Zn

• 3-body: 9Be+208Pb

• Microsopic CDCC: 7Li+208Pb

Eikonal:

• Three-body breakup

• Microscopic eikonal (elastic scattering)

118



9,10,11Be+64Zn  at 25 MeV: 

A. Di Pietro et al., Phys. Rev. Lett. 105, 022701 (2010)

A. Di Pietro et al., Phys. Rev. C85, 054607 (2012)

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN

11Be

9,10Be

Important difference between 9,10Be and 11Be: role of the halo structure
119



Recent work: T. Druet, P.D., Eur. J. Phys. 48 (2012) 1

Main goal: to analyse the convergence of the cross sections (elastic, inelastic, breakup)

Conditions of the calculations: 3 potentials

• 10Be+64Zn: optical potential from experiment

• n+64Zn:  global parametrization of Koning-Delaroche

• n+10Be: P. Capel et al., PRC 70 (2004) 064605: reproduces bound states and 5/2+ resonance

120

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN
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Elastic cross section (data contain inelastic components)

First calculation : no spin-orbit force  reduces the size of the system by a factor 2

convergence with ℓ (n+10Be angular momentum)

 slow convergence 

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN
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Convergence with the pseudostates

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN
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Comparison with experiment

Calculation with lmax=2 (small inacurracy near ߠ ∼ ͶͲל)

 importance of break-up channels!

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN
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Influence of the collision energy

Ecm=20.5 MeV

Ecm=44 MeV

Slow convergence

lmax=5 not sufficient

Fast convergence

lmax=2 sufficient

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN



125

Influence of the binding energy of the projectile (numerical simulation)

Original (experimental) energy: EB=0.5 MeV

 faster convergence when the binding energy increases

EB=2 MeV EB=4 MeV

1. CDCC METHOD WITH 2-BODY PROJECTILES: 11BE+64ZN
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2. CDCC METHOD WITH 3-BODY PROJECTILES: 9BE+208PB

target: 208Pb 
R

9Be

Description of 9Be=a+a+n (preliminary results!)

• a+a potential: Buck et al. 

• a+n: Kanada et al. 

Both reproduce the experimental phase shifts

a

a
n
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2. CDCC METHOD WITH 3-BODY PROJECTILES: 9BE+208PB

Discretization of the three-body a+a+n continuum

Ground-state of 9Be J=3/2-

Fitted by renormalizing the a-a potential by 0.94

rms radius:

• theory: 2.41 fm

• exp: ʹ.Ͷͷ ± Ͳ.Ͳͳ fm

many pseudostates!
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2. CDCC METHOD WITH 3-BODY PROJECTILES: 9BE+208PB

Elastic scattering 9Be+208Pb

• a+208Pb and n+208Pb optical potentials taken from literature

• Convergence with

• Kmax (typical of 3-body problems)

• jmax

• discretization

convergence with Kmax

Binding energy readjusted
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2. CDCC METHOD WITH 3-BODY PROJECTILES: 9BE+208PB

discretization: number of pseudostates

nps

convergence with jmax



Comparison between both variants

Non-microscopic CDCC

ܪ• = ሻݎሺܪ − ℏమଶఓ ȟோ + ܸ௧ − � ݎ + ܴ +
ܸ௧  ݎ + ܴ

•Depends on nucleus-target interactions 

between the core/fragment and the target

•Approximate wave functions of the projectile

•Core excitations difficult (definition of the 

potentials?)

Microscopic CDCC

• ܪ = ሻݎ…ଵݎሺܪ − ℏమଶఓ ȟோ +   ݎሺݒ − ܴሻ
• Depends on a nucleon-target

interactions (in general well known)

• Accurate wave functions of the 

projectile

• Core excitations « automatic »

ܴ ܴ
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3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB



First step: wave functions of the projectile

Solve Φܪ = Φܧ for several ground-state but also :ܬ additional ܬ values

with ܧ < Ͳ: physical statesܧ > Ͳ: pseudostates (approximation of the continuum)

RGM: Φ= �ΦଵΦଶ݃ሺݎሻ : combination of Slater determinants

RGM=Resonating Group Method (cluster approximation)

• 2 or 3 cluster models

• Core excitations: Φ=  �ΦଵΦଶ݃ሺݎሻ, with Φଵ = excited states of cluster 1

Example: 10Be+n

• Well adapted to halo nuclei

• Many RGM wave functions are available

3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB



ܪ = ܪ − ℏଶʹߤ ȟோ +  ݎሺݒ − ܴሻ
Expansion over projectile states: Ȳ ݎ , ܴ =  Φ ݎ ߯ሺܴሻ
 Set of coupled equations − ℏమଶఓ ȟோ + ܧ − ܧ ߯ሺܴሻ +  ′′ ܸ,′′ ܴ ߯′′ሺܴሻ = Ͳ

ܸ,′′ ܴ =< Φ ݎ   ݎሺݒ − ܴሻ Φ′′ ݎ >
• Matrix elements between Slater determinants: standard techniques

• Can be also computed with the densities and folding procedures  tests are possible

Second step: wave function for projectile + target

3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB



• Data: Elab=27 to 60 MeV (Coulomb barrier ~ 35 MeV)

• Non-microscopic calculation at 27 MeV: 

• Parkar et al, PRC78 (2008) 021601

• uses α−ଶ଼�b and t−ଶ଼�b potentials renormalized by 0.6!
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• Microscopic calculation

• Ref.: P.D., M. Hussein, Phys. Rev. Lett. 111 (2013) 082701

• �i wave functions: include gs,1/2-,7/2-,5/2- and pseudostates (E>0)

Nucleon-nucleon potential: Minnesota interaction

Reproduces 7Li/7Be, a+3He scattering, 3He(a,g)7Be cross section

• Q(3/2-Ϳ=−37.0 e.mb (GCM), −ͶͲ. ± Ͳ.ͺ e.mb (exp.)

B(E2, 3/2− → ϭ/Ϯ−)=7.5 e2fm4 (GCM), Ͳ.͵ ± Ͳ.ͷ e2fm4 (exp)

• n−ଶ଼�b potential: 

local potential of Koning-Delaroche (Nucl. Phys. A 713 (2003) 231)

• p−ଶ଼�b potential: 

only Coulomb (Ep=27/7 ~4 MeV, Coulomb barrier ~12 MeV)

NO PARAMETER

3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB



Elastic scattering at Elab=27 MeV

Inelastic scattering

134

• Convergence test: single-channel: �iሺ͵/ʹ−ሻ + ଶ଼�b
two channels: �iሺ͵/ʹ−, ͳ/ʹ−ሻ + ଶ଼�b
multichannel: �iሺ͵/ʹ−, ͳ/ʹ−, … ሻ + ଶ଼�b
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3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB



135

0.001

0.01

0.1

1

10

0 60 120 180

s/s
R

q (deg.)

35 MeV

1v

2v

j=1,3

j=1,3,5

j=1,3,5,7Elastic 7Li+208Pb

Elab=35 MeV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 60 120 180

s/s
R

q (deg.)

35 MeV

1v

2v

j=1,3

j=1,3,5

j=1,3,5,7Elastic 7Li+208Pb

Elab=35 MeV

Elab=35 MeV

3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB
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3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB
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Underestimation at large angles and high energies.

N. Timofeuyk and R. Johnson 

• Phys. Rev. Lett. 110, 112501 

• suggest that the nucleon energy in A(d,p) reaction mush be larger than Ed/2

 Similar effect here?

3. CDCC METHOD WITH MICROSCOPIC PROJECTILES: 7LI+208PB
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Applications of the eikonal method



Three-body breakup cross sections: D. Baye et al., Phys. Rev. C79 (2009) 024607

target

Rx

y

projectile

Φܪ �, ,࢞ ࢟ = ,�Φሺܧ ,࢞ ሻ࢟
with ܪ = ,࢞ሺܪ ሻ࢟ + ோܶ + ்ܸሺ�, ,࢞ �ሻ࢟ = ሺ�, ܼሻ, b=impact parameter

Eikonal approximation Φ �, ,࢞ ࢟ = ݁  Φ ሺ�, ,࢞ ሻ࢟
with  Φ �, ,࢞ ࢟ ≈ Ȳ ,࢞ ࢟ exp[− ℏ� ∫−∞ ்ܸ �, �′, ,࢞ ࢟ �ܼ′]
Then: eikonal amplitudeܶ =< ݁ࡷ′.� Ȳ− ,࢞ ࢟ ∣ ்ܸ ∣  Φ �, ,࢞ ࢟ >

3-body scattering wave function

(expanded in ߨܬ) heavy calculations

From the eikonal amplitude  cross sections (breakup, elastic)

4. APPLICATION OF THE EIKONAL METHOD
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Slow!

4. APPLICATION OF THE EIKONAL METHOD



4. APPLICATIONS OF THE EIKONAL METHOD

Recent work on 11Li 

• Ref: E.C.Pinilla, P.D., D. Baye, Phys. Rev. C 85 (2012) 054610

• 11Li described by a 9Li+n+n structure (spin of 9Li is neglected)

First step: three-body phase shifts and wave functions

141

11Li
Narrow 1- resonance near 0.5 MeV

x

y



4. APPLICATIONS OF THE EIKONAL METHOD

Second step : Breakup of 11Li on 208Pb @ 70 MeV/A

• E.C.Pinilla, P.D., D. Baye, Phys. Rev. C 85 (2012) 054610

• Exp. data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).
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• Direct calculation of the BU cross section (no E1 distribution is needed)

• Heavy calculation

• E1 contribution strongly dominant



Microscopic description of the projectile using the eikonal method
E. C. Pinilla and P. Descouvemont, Phys. Lett. B 686 , 124 (2010)

Projectile

Target

a

n

P

P

n R

ri

Total Hamiltonian ܪ = ܪ � + ோܶ +   �ሺݒ − �ሻ
Hamiltonian of the projectileܪΦ � = Φሺ�ሻܧ
Eikonal approximationȲ = Φ � ݁  Φሺ� , �, ܼሻ
Then Φ � , �, ܼ = expሺ− ℏ݅   −∞ ݒ � − � �ܼ′ ሻ
(symmetricȲ remains antisymmetric)

Nucleon-target interaction

b

Z

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal



General definition of the scattering amplitude

݂ ߠ = ݅݇ ∞�ܾ ܾ ܬ ܾݍ ݁��  [ͳ −< Φ| expሺ− ℏ݅  ݒ∞∞−  � − � �ܼ ሻ Φ > + ݂ሺߠሻ
a particle: simple wave function (angular momentum 0+, all orbitals ߮ ݎ centred at the 

origin)

With

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal

Cluster wave functions: angular momentum projection of Φ is necessary  multiple 

integrals



Elastic cross section of  a +208Pb at 288 MeV for different oscillator parameters B

Nucleon-nucleus optical potentials: Koning and Delaroche, Nucl. Phys. A 713, 231 (2003).

• Strong dependence on the oscillator parameter.

• The form for B = 0.1 fm is far from the experimental data.

• A good B is 0.95 fm.

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal



Elastic cross section of a+58Ni at 288 MeV for different oscillator parameters B 

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal
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4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal

Future projects: 

• cluster calculations Φ = �ΦଵΦଶ݃ሺߩሻ
• Must be projected on angular momentum

• ܵ ܾ =< Φ| expሺ− ℏ  ∫−∞∞ ݒ � − � �ܼ ሻ|Φ > is more complicated



Nuclear astrophysics: brief overview
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Types of reactions: general definitions valid for all models

Nuclear astrophysics: brief overview

Type Example Origin

Transfer 3He(3He,2p)a Strong

Radiative capture 2H(p,g)3He Electromagnetic

Weak capture p+p  d+ e+ + n Weak

cross section

decreases
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• Transfer: A+B  C+D (st, strong interaction, example: 3He(d,p)4He)

�௧,→′ ሺܧሻ = ଶ గߨ݇ ܬʹ + ͳʹܫଵ + ͳ ଶܫʹ + ͳ ܷ′గ ܧ ଶ
ܷ′గ ܧ =collision matrix (obtained from scattering theory  various models)ܿ, ܿ’ =entrance and exit channels

Transfer reaction:

Nucleons are transfered

Scattering energy ܧ
A+B threshold, ex: 3He+d

C+D threshold, ex: 4He+p

Compound nucleus, ex: 5Li

Nuclear astrophysics: brief overview



• Radiative capture : A+B  C+g (sC, electromagnetic interaction, example: 12C(p,g)13N) 

��గ� ܧ ∼  ఒ  �గ� ݇ఊଶఒ+ଵ < Ȳ�గ�‖ℳఒ‖Ȳ�గ� ܧ ଶ
�=final state of the compound nucleus CȲ�గߨܬ ܧ =initial scattering state of the system (A+B)ℳఒఓ=electromagnetic operator (electric or magnetic): ℳఒఓ ∼ ݁ ఒݎ ఒܻఓሺȳሻ

Capture reaction:

A photon is emitted
g
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Long wavelength approximation:

Wave number ݇ఊ = ఊ/ℏܿܧ , wavelength: ߣఊ = ఊ݇/ߨʹ
Typical value: ܧఊ = ͳ ,ܸ݁ܯ ఊߣ ≈ ͳʹͲͲ fm >> typical dimensions of the system (R)

 ݇ఊܴ ا ͳ= Long wavelength approximation

Nuclear astrophysics: brief overview
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initial state ܧ>Ϭ , c�ΩtaiΩs all  ,ߨܬ
final statesܧ <0, specific ߨܬ

��గ� ܧ ∼  �గ� ఒ ݇ఊଶఒ+ଵ < Ȳ�గ� ℳఒ Ȳ�గ� ܧ > ଶ
• ݇ఊ = ܧ − ܧ /ℏܿ = photon wave number

• In practice

o Summation over ߣ limited to 1 term (often E1, or E2/M1 if E1 is forbidden)ாଶாଵ ∼ ݇ఊܴ ا ͳ (from the long wavelength approximation)

o Summation over ܬߨ limited by selection rulesܬ − ܬ  ߣ  ܬ + ߨߨܬ = −ͳ ఒ for electric, ߨߨ = −ͳ ఒ+ଵ for magnetic

A+B threshold, ex: 12C+p

Nuclear astrophysics: brief overview
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• Weak capture (p+p d+n+e-): tiny cross section  no measurement (only calc.)

�ௐ�గ� ܧ ∼  �గ� < Ȳ�గ� ఉܱ Ȳ�గ� ܧ > ଶ
o Calculations similar to radiative capture

o ఉܱ= Fermi ሺ  ±ሻݐ and Gamow-Teller ሺ  ±�ሻݐ operators

• Fusion: similar to transfer, but with many output channels

 statistical treatment

 optical potentials

Nuclear astrophysics: brief overview



General properties

Reaction threshold

Scattering energy E: wave function Ȳ ܧ
common to all processes

E

• Cross sections dominated by Coulomb effects

Sommerfeld parameter ߟ = ܼͳܼʹ݁ʹ/ℏݒ
• Coulomb functions at low energiesܨℓ ,ߟ ݔ → exp ߟߨ− ℱℓ ݔ ℓܩ, ,ߟ ݔ → exp ߟߨ �ℓ ݔ ,
• Coulomb effect: strong ܧ dependence : exp ߟߨʹ

neutrons: � ܧ ∼ ͳ/ݒ
• Strong ℓ dependence

Centrifugal term: ∼ ℏమଶఓ ℓ ℓ+ଵమ stronger for nucleons ߤ) ≈ ͳ) than for a ߤ) ≈ Ͷ)
154

V(r)

r

E astro

ℓ > Ͳ

ℓ = Ͳ

Nuclear astrophysics: brief overview
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General properties: specificities of the entrance channel  common to all reactions

• All cross sections (capture, transfer) involve a summation over ℓ: � ܧ =  ℓ�ℓሺܧሻ
• The partial cross sections �ℓሺܧሻ are proportional to the penetration factorℓܲ ܧ = ிℓ  మ+ீℓ  మ (ܽ =typical radius)

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 2 4

ℓ=Ͷ
ℓ=Ͳ

ℓ=ʹ
d+d

ܧ ሺMeVሻ

ℓܲ Consequences

• ℓ > Ͳ are often negligible at low energies

• ℓ = ℓ is dominant (often ℓ = Ͳ)

• For ℓ = Ͳ, ܲ ܧ ∼ exp ߟߨʹ−

Astrophysical S factor: ܵሺܧሻ = �ሺܧሻܧexpሺʹߟߨሻ (Units: E*L2: MeV-barn)

• removes the coulomb dependence  only nuclear effects

• weakly depends on energy � ܧ ≈ ܵ exp ߟߨʹ− ܧ/ (any reaction at low E)

Nuclear astrophysics: brief overview



non resonant:ܵ ܧ = �ሺܧሻܧexpሺʹߟߨሻ
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Example: 3He(a,g)7Be reaction

• Cross section s(E) Strongly

depends on energy

• Logarithmic scale

S factor

• Coulomb effects removed

• Weak energy dependence

• Linear scale

Nuclear astrophysics: brief overview
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Resonant cross sections: Breit-Wigner form�ோ ܧ ≈ ଶߨ݇ ோܬʹ + ͳʹܫଵ + ͳ ଶܫʹ + ͳ ȞଵሺܧሻȞଶሺܧሻܧோ − ܧ ଶ + Ȟଶ/Ͷ
• ோ=spin, energyܧ ,ோܬ of the resonance

• Valid for any process (capture, transfer)

• Valid for a single resonance  several resonances need to be added (if necessary)

• Ȟଵ=Partial width in the entrance channel (strongly depends on ܧ, ℓ)Ȟଵ ܧ = ଵଶߛʹ ℓܲሺܧሻ with ଵଶ=reducedߛ width (does not depend on ܧ)ℓܲ ܧ ∼ exp ߟߨʹ−
A resonance at low energies is always narrow (role of ℓܲ ܧ )

• Ȟଶ=Partial width in the exit channel (weakly depends on ܧ, ℓ)

o Transfer: Ȟଶ ܧ = ଶଶߛʹ ℓܲ�ሺܧ + ܳሻ (in general ܳ ب ܧ  ℓܲ�ሺܧ + ܳሻ almost constant)

o Capture: Ȟଶ ܧ ∼ ܧ − ܧ ଶఒ+ଵܤሺߣܧሻ  weak energy dependence

• S factor near a resonance ܵሺܧሻ = �ሺܧሻܧexpሺʹߟߨሻܵோ ܧ ∼ ఊభమΓమா�−ா మ+Γమ/ସ ℓܲ ܧ exp ߟߨʹ
 Simple estimate at low E (at the Breit-Wigner approximation)

Almost constant

Nuclear astrophysics: brief overview



1

10

100

1000

0 0.2 0.4 0.6

S
-f

a
c
to

r 
(k

e
V

-b
) 12C(p,g)13N

1/2-

1/2+

3/2-
5/2+

12C+p

13N

158

ܵோ ܧ ∼ ோܧଵଶȞଶߛ − ܧ ଶ + Ȟଶ/Ͷ ℓܲ ܧ exp ∽ߟߨʹ ோܧଵଶȞଶߛ − ܧ ଶ + Ȟଶ/Ͷ
• For ℓ = Ͳ : ܲ ܧ exp ߟߨʹ ∼ constant

• For ℓ > Ͳ, ℓܲ ܧ ا ܲ ܧ
 ℓ > Ͳ resonances are suppressed

In 12C(p,g)13N: 

• Resonance 1/2+: ℓ = Ͳ
• Resonances 3/2- , 5/2+ ℓ = ͳ,ʹ negligible

Note: BW is an approximation

• Neglects background, external capture

• Assumes an isolated resonance

• Is more accurate near the resonance energy

Nuclear astrophysics: brief overview
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3He(d,p)4He: isolated resonance in a transfer reaction

a+p

3He+d

3/2-

3/2+

1/2-

3
He(d,p)

4
He
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3/2+ resonance:

• Entrance channel: spin S=1/2,3/2, parity +  ℓ = Ͳ,ʹ
• Exit channel: spin S=1/2, parity +  ℓ = ͳ

Q=18.4 MeV
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Breit Wigner approximation 

�ௗ� ܧ ≈ ଶߨ݇ ோܬʹ + ͳʹܫଵ + ͳ ଶܫʹ + ͳ ȞௗሺܧሻȞ�ሺܧሻܧோ − ܧ ଶ + Ȟଶ/Ͷ

3
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Width at half maximum=total width G
Amplitude: ∼ Ȟௗ Ȟ�/Ȟଶ

S(E) constant for ℓ = Ͳ

Nuclear astrophysics: brief overview
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11C(p,g)12N (spin 11C=3/2-)

• Resonance 2-: ℓ = Ͳ, E1

• Resonance 2+: ℓ = ͳ, E2/M1

 negligible

18F(p,a)15O  (spin 18F=1+)

• Many resonances

• Only ℓ = Ͳ resonances are important

 ܬ = ͳ/ʹ+, ͵/ʹ+ only

 In general a small number of resonances play a role

Selection of the main resonances

Nuclear astrophysics: brief overview



Many different situations

• Transfer cross sections (strong interaction)

– Non resonant: 6Li(p,a)3He

– Resonant, with lR=lmin:  3He(d,p)a
– Resonant, with lR>lmin:  11B(p,a)8Be

– Multiresonance: 22Ne(a,n)25Mg

• Capture cross sections (electromagnetic interaction)

– Non resonant: 6Li(p,g)7Be

– Resonant, with lR=lmin:  12C(p,g)13N

– Resonant, with lR>lmin:  7Be(p,g)8B

– Multiresonance: 22Ne(a,g)26Mg

– Subthreshold state: 12C(a,g)16O

• Weak capture cross sections (weak interaction)

– Non resonant p(p,e+n)2H
3He(p,e+n)4He
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Theoretical methods: Many different cases  Ŷo ͞uŶiƋue͟ ŵodel!

Model Applicable to Comments

Light 

systems

Low level 

densities

Potential/optical 

model

Capture

Fusion

• Internal structure neglected

• Antisymetrization approximated

R-matrix Capture

Transfer

• No explicit wave functions

• Physics simulated by some parameters

DWBA Transfer • Perturbation method

• Wave functions in the entrance and exit 

channels

Microscopic 

models

Capture

Transfer

• Based on a nucleon-nucleon interaction

• A-nucleon problems

• Predictive power

Hauser-Feshbach

Shell model

Capture

Transfer

Capture

• Statistical model

• Only gamma widths

Heavy 

systems

Nuclear astrophysics: brief overview
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Conclusion

Reactions with exotic nuclei require

• Accurate scattering theory: CDCC / eikonal

• Accurate description of the projectile microscopic models

Open questions/outlook

• Predictive power?

• Reducing the number of channels in CDCC  stochastic methods?

• Excitations of the target?

• Choice of nucleus-target or nucleon-target interaction?

• Absorption?

• Probably many others!

Nuclear astrophysics

• Many reaction rates are needed

• Many different types of reactions!

 No systematics!


