Description of the projectile

- 1. Introduction
- 2. Clustering in nuclei
- 3. Non-microscopic models
- 4. Microscopic cluster models
- 5. Applications of microscopic cluster models

1. Introduction

- Reaction processes:
 - need for the wave function of the projectile (target very stable)
- From reaction theory: can we test the wave function of the projectile with reactions?
- Various types of structure models (stable and exotic nuclei)

1. Introduction

Hamiltonian of the nucleus:

$$H = \sum_i T_i + \sum_{j>i} V_{ij} + \sum_{k>j>i} V_{ijk} + \cdots$$

with

 T_i = kinetic energy of nucleon *i*

 V_{ij} = two-body nucleon-nucleon interaction

- Contains a nuclear part V^N_{ij}: short range
- Contains a coulomb part V_{ij}^C : long range $\sim e^2/r$

 V_{ijk} =three-body interaction (often neglected)

Question: how to solve the Schrödinger equation?

Several techniques:

- Ab initio calculations: provide « exact » solutions
- Shell model
- Cluster approximation

2. Cluster models

- Clustering: well known effect in light nuclei
- Nucleons are grouped in "clusters"

Best candidate: α particle (high binding energy, almost elementary particle) \rightarrow Ikeda diagram: cluster states near a threshold (⁸Be, ²⁰Ne, etc.)

- Halo nuclei: special case of cluster states
- Beyond the nucleon level: hypernuclei quarks
- Well adapted to reactions (not true for the shell model, ab initio models, etc.)
- Possibility to have 3,4,... clusters (example: ${}^{12}C=\alpha+\alpha+\alpha)$)

Two clusters

Hamiltonian: $H = T_r + V(r)$ Wave function: $\Psi^{\ell m} = g^{\ell}(r)Y_{\ell}^m(\Omega)$

- Structure of the clusters is neglected
- Pauli principle: approximated (appropriate choice of the potential)
- Low relative energies: real potentials (in general)
 High relative energies: complex potentials (simulate absorption)

③ Simple

ightarrow Widely used for the description of projectiles

 \odot Ex: ⁷Li= α +t, ⁶Li= α +d, ¹⁷F=¹⁶O+p

```
    Potential V(r) in general not known
    Fitted on data (binding energies, phase shifts)
    Obtained from folding
```

⊖ Sometimes not adapted to the structure of the nucleus

Many nuclei have a 3-body structure \rightarrow Three-body problem must be solved Hamiltonian: $H = T_1 + T_2 + T_3 + V_{12}(|\mathbf{r}_1 - \mathbf{r}_2|) + V_{13}(|\mathbf{r}_1 - \mathbf{r}_3|) + V_{23}(|\mathbf{r}_2 - \mathbf{r}_3|)$

In hyperspherical coordinates: $H = T_{\rho} + V(\rho, \alpha, \Omega_x, \Omega_y)$ Eigenstates of T_{ρ} : hypersphercial functions $\mathcal{Y}_{Kl_xl_y}^L(\alpha, \Omega_x, \Omega_y) = \mathcal{Y}_{K\gamma}^L(\Omega_5)$ known functions (analytical) extension of spherical harmonics $Y_l^m(\Omega)$ in 2-body problems K=hypermoment

- Schrödinger equation : $H\Psi^{LM} = E\Psi^{LM}$
- The wave function is expanded in hyperspherical harmonics

$$\Psi^{LM}(\rho, \Omega_5) = \sum_{K=0}^{\infty} \sum_{\gamma} \mathcal{Y}^L_{K\gamma}(\Omega_5) \chi^L_{K\gamma}(\rho)$$
Known functions
To be determined

• The radial functions are obtained from a set of coupled differential equations

$$-\frac{\hbar^2}{2m_N}\left(\frac{d^2}{d\rho^2} - \frac{K(K+4)}{\rho^2}\right)\chi^L_{K\gamma}(\rho) + \sum_{K',\gamma'}V_{K\gamma,K'\gamma'}(\rho)\chi^L_{K\gamma}(\rho) = E\chi^L_{K\gamma}(\rho)$$

- Potentials $V_{K\gamma,K'\gamma'}(\rho)$ are determined from $V_{12} + V_{13} + V_{23}$
- Two-body potentials V_{ij} contains spurious Pauli forbidden states \rightarrow must be removed
- Equivalent to a standard coupled-channel problem (up to ~100-200 channels)
- In practice: summation over K is limited to K_{max}

 $\chi^L_{K\gamma}(\rho)$ are expanded over a basis (Lagrange basis here)

• General form of the system: identical to all coupled-channel problems

Number of channels in 3-body problems

example: ¹¹Li=⁹Li+n+n (spin of the core neglected, $S_{nn} = 0 \text{ or } 1$)

K _{max}	$J = O^+$	K _{max}	$J = 1^{-1}$
8	15	7	26
12	28	11	57
16	45	15	100
20	66	19	155
24	91	23	222
28	120		
32	153		

Example: ⁶He= α +n+n

V_{αn}: Kanada et al., Prog. Theor. Phys. 61 (1979) 1327

fits the experimental α -p phase shifts (gaussians)

• V_{nn}: Minnesota, Nucl. Phys. A286 (1977) 53

⁶ He	Theor.	Exp
Energy	-0.78 MeV	-0.97 MeV
√ <r²></r²>	2.42 fm	2.33±0.04 fm

⁶He wave functions (S=0)

Specific problems of 3-body scattering states (E > 0)

$$-\frac{\hbar^2}{2m_N}\left(\frac{d^2}{d\rho^2} - \frac{K(K+4)}{\rho^2}\right)\chi^L_{K\gamma}(\rho) + \sum_{K',\gamma'}V_{K\gamma,K'\gamma'}(\rho)\chi^L_{K\gamma}(\rho) = E\chi^L_{K\gamma}(\rho)$$

- Many hypermomenta (K-values) → large set for large Kmax (slow convergence)
- Long range of the potentials: behave as $\sim 1/
 ho^3$
 - \rightarrow the asymptotic coulomb behaviour is not reached before (~500-1000 fm!)
 - \rightarrow propagation methods are necessary

R-matrix application to 3-body systems: P. D., E. Tursunov, D. Baye, Nucl. Phys. A 765 (2006) 370

⁶He

3-body α+n+n phase shifts (+wave functions)
2⁺ well known narrow resonance
0⁺,1⁻: « broad structures »

Break-up cross sections: D. Baye, P. Capel, P. D., and Y. Suzuki: *Phys. Rev. C 79 (2009) 024607*

Recent work on ¹¹Li

- Ref: E.C.Pinilla, P.D., D. Baye, Phys. Rev. C 85 (2012) 054610
- ¹¹Li described by a ⁹Li+n+n structure (spin of ⁹Li is neglected)

three-body phase shifts

¹¹Li

Narrow 1- resonance near 0.5 MeV

- 1. Overview of different models
- 2. Cluster models

Definition of a microscopic model

- Wave functions
 - fully antisymmetric
 - Depend on all nucleon coordinates \rightarrow complicated many-body problem!
 - Exchange of particles i and j Pauli principle

$$P_{ij}\Psi(1,2,...i,...i,...A) = -\Psi(1,2,...j,...A)$$

- Hamiltonian
 - given by

$$H = \sum_i T_i + \sum_{j>i} V_{ij} + \sum_{k>j>i} V_{ijk} + \cdots$$

with

 T_i = kinetic energy of nucleon *i*

 V_{ij} = two-body nucleon-nucleon interaction

- Contains a nuclear part V_{ij}^N : short range
- Contains a coulomb part V_{ij}^C : long range $\sim e^2/r$

V_{ijk}=three-body interaction (often neglected)

Main advantages

- Predictive power: in principle there is no parameter
- Coherent description of different processes:
 - spectroscopy (energies, radii, electromagnetic transitions, etc.)
 - scattering (elastic, transfer, radiative capture, etc.)

Main problems

- V_{ij}^N is not exactly known
 - → approximations, effective NN interactions (adapted to the model)
- The Schrödinger equation may involve many terms (A(A-1)/2)
 → cannot be solved exactly
- Difficult to apply to scattering states

ightarrow various models

- Shell model (and extensions: No-core shell model)
- Fermionic Molecular Dynamics (FMD), Antisymmetrized Molecular Dynamics (AMD)
- Cluster models: Resonating Group Method (RGM), Generator Coordinate Method (GCM)

Cluster models

- the A nucleons form « clusters » inside the nucleus
- origin: the α particle is strongly bound \rightarrow keeps its own identity in the nucleus
- typical clusters: strongly bound nuclei (alpha particle)
- example : ⁸Be= α + α formed of 4 neutrons and 4 protons grouped in 2 α

- **Cluster** approximation $\Psi = \mathcal{A}\phi_1\phi_2g(\rho)$ with
- ϕ_1, ϕ_2 = internal wave functions (**input, shell-model**)

 $g(\rho)$ =relative wave function (**output**)

- \mathcal{A} = antisymmetrization operator
- =Resonating Group Method (RGM)
- Describes spectroscopy and reactions

 \rightarrow easy access to unbound states (+widths)

¹²C described by 3 alphas

 ^{20}Ne described by $^{16}\text{O+}\alpha$

 $^{6}\mbox{He}$ described by $\alpha\mbox{+n+n}$ nucleon=« particular » cluster, numerical techniques identical

4. Microscopic models: cluster models

Extensions

- 3 clusters (or more) projection more complicated (multidimension)
- p, sd orbitals: many Slater determinants
 → analytical calculations not possible

- Multichannel calculations: $\Psi = \mathcal{A}\phi_1\phi_2g(\rho) + \mathcal{A}\phi_1^*\phi_2^*g^*(\rho) + \cdots$
 - \rightarrow core excitations (important in many nuclei)
 - \rightarrow better wave functions
 - ightarrow inelastic scattering, transfer

5. Applications of microscopic cluster models

2-cluster models

• ${}^{17}C/{}^{17}Na$ (recent \rightarrow exotic nuclei)

3-cluster models

- ⁶He= α +n+n
- ¹²C= α + α + α

5. Applications of microscopic cluster models: ¹⁷C / ¹⁷Na

The ¹⁷C and ¹⁷Na mirror nuclei

- Ref: N. Timofeyuk, P.D., Phys. Rev. C81 (2010) 051301
- ¹⁷Na unstable (no experimental data but ¹⁹Na unstable)
- The mirror ¹⁷C nucleus is well known \rightarrow test with charge symmetry
- Two-cluster systems: ¹⁶C+n, ¹⁶Ne+p

• ${}^{16}C/{}^{16}Ne$ wave functions: 6 protons (s^2p^4), 10 neutrons (s^2, p^6, sd^2) \rightarrow 15x66=990 SD

Two NN interactions: MN and V2

5. Applications of microscopic cluster models: ¹⁷C / ¹⁷Na

¹⁷C spectrum (positive parity) Two NN interaction V2 and MN (+spin-orbit)

5. Applications of microscopic cluster models: ¹⁷C / ¹⁷Na

¹⁷Na spectrum

- all states are unbound \rightarrow importance of continuum
- ground state: broad ($\ell = 0$) resonance
- excited states: narrow ($\ell = 2$), important decay to the ¹⁶Ne(2⁺)+p channel

➔ 3 proton emittors

5. Applications of microscopic cluster models: ⁶He and ⁶Li

S. Korennov, P.D., Nucl. Phys. A740 (2004) 249

⁶He

⁶Li, π=+

⁶Li, π=-

Energy convergence, 0⁺

Applications

CDCC

- 2-body: ¹¹Be+⁶⁴Zn
- 3-body: ⁹Be+²⁰⁸Pb
- Microsopic CDCC: ⁷Li+²⁰⁸Pb

Eikonal:

- Three-body breakup
- Microscopic eikonal (elastic scattering)

^{9,10,11}Be+⁶⁴Zn at 25 MeV:

A. Di Pietro et al., Phys. Rev. Lett. 105, 022701 (2010)

A. Di Pietro et al., Phys. Rev. C85, 054607 (2012)

Important difference between ^{9,10}Be and ¹¹Be: role of the halo structure

Recent work: T. Druet, P.D., Eur. J. Phys. 48 (2012) 1

Main goal: to analyse the convergence of the cross sections (elastic, inelastic, breakup)

Conditions of the calculations: 3 potentials

- ¹⁰Be+⁶⁴Zn: optical potential from experiment
- n+⁶⁴Zn: global parametrization of Koning-Delaroche
- n+¹⁰Be: P. Capel et al., PRC 70 (2004) 064605: reproduces bound states and 5/2⁺ resonance

Elastic cross section (data contain inelastic components)

First calculation : no spin-orbit force \rightarrow reduces the size of the system by a factor 2

convergence with ℓ (n+¹⁰Be angular momentum)

→ slow convergence

Convergence with the pseudostates

Comparison with experiment Calculation with Imax=2 (small inacurracy near $\theta \sim 40^{\circ}$)

Influence of the collision energy

Slow convergence I_{max}=5 not sufficient

Influence of the binding energy of the projectile (numerical simulation) Original (experimental) energy: $E_B = 0.5$ MeV

→ faster convergence when the binding energy increases

Description of ${}^{9}Be=\alpha+\alpha+n$ (preliminary results!)

- $\alpha + \alpha$ potential: Buck et al.
- α +n: Kanada et al.

Both reproduce the experimental phase shifts

Discretization of the three-body α + α +n continuum

many pseudostates!

Ground-state of ⁹Be J=3/2-

Fitted by renormalizing the $\alpha{-}\alpha$ potential by 0.94 rms radius:

- theory: 2.41 fm
- exp: 2.45 ± 0.01 fm

Elastic scattering ⁹Be+²⁰⁸Pb

- α +²⁰⁸Pb and n+²⁰⁸Pb optical potentials taken from literature
- Convergence with
 - Kmax (typical of 3-body problems)
 - jmax
 - discretization

convergence with Kmax Binding energy readjusted

discretization: number of pseudostates nps

convergence with jmax
Comparison between both variants

- •Depends on **nucleus-target** interactions between the core/fragment and the target
- •Approximate wave functions of the projectile
- •Core excitations **difficult** (definition of the potentials?)

- Depends on a nucleon-target interactions (in general well known)
- Accurate wave functions of the projectile
- Core excitations « automatic »

First step: wave functions of the projectile

Solve $H_0 \Phi_k^J = E_k \Phi_k^J$ for several *J*: ground-state but also additional *J* values

with $E_k < 0$: physical states $E_k > 0$: pseudostates (approximation of the continuum) RGM: $\Phi_k^J = \mathcal{A} \Phi_1 \Phi_2 g_k^J(r)$: combination of Slater determinants

RGM=Resonating Group Method (cluster approximation)

- 2 or 3 cluster models
- Core excitations: $\Phi^{J} = \sum_{i} A \Phi_{1}^{i} \Phi_{2} g^{J}(r)$, with $\Phi_{1}^{i} =$ excited states of cluster 1 Example: ¹⁰Be+n
- Well adapted to halo nuclei
- Many RGM wave functions are available

Second step: wave function for projectile + target

$$H = H_0 - \frac{\hbar^2}{2\mu} \Delta_R + \sum_i \nu(r_i - R)$$

Expansion over projectile states: $\Psi(r_i, R) = \sum_{Jk} \Phi_k^J(r_i) \chi_k^J(R)$

→ Set of coupled equations
$$\left(-\frac{\hbar^2}{2\mu}\Delta_R + E_k^J - E\right)\chi_k^J(R) + \sum_{J'k'}V_{Jk,J'k'}(R)\chi_{k'}^{J'}(R) = 0$$

 $V_{Jk,J'k'}(R) = \langle \Phi_k^J(r_i) \left|\sum_i v(r_i - R)\right|\Phi_{k'}^{J'}(r_i) >$

- Matrix elements between Slater determinants: standard techniques
- Can be also computed with the densities and folding procedures \rightarrow tests are possible

- Data: E_{lab}=27 to 60 MeV (Coulomb barrier ~ 35 MeV)
- Non-microscopic calculation at 27 MeV:
 - Parkar et al, PRC78 (2008) 021601
 - uses $\alpha {}^{208}$ Pb and t 208 Pb potentials renormalized by 0.6!

• Convergence test: single-channel: ${}^{7}\text{Li}(3/2^{-}) + {}^{208}\text{Pb}$ two channels: ${}^{7}\text{Li}(3/2^{-}, 1/2^{-}) + {}^{208}\text{Pb}$ multichannel:

 $^{7}\text{Li}(3/2^{-}, 1/2^{-}, ...) + {}^{208}\text{Pb}$

Elastic scattering at Elab=27 MeV

Elab=35 MeV

Elab=39 MeV

Elab=44 MeV

Underestimation at large angles and high energies.

N. Timofeuyk and R. Johnson

- Phys. Rev. Lett. **110**, 112501
- suggest that the nucleon energy in A(d,p) reaction mush be larger than Ed/2

 \rightarrow Similar effect here?

Applications of the eikonal method

4. APPLICATION OF THE EIKONAL METHOD

Three-body breakup cross sections: D. Baye et al., Phys. Rev. C79 (2009) 024607

 $H\Phi(\mathbf{R}, \mathbf{x}, \mathbf{y}) = E\Phi(\mathbf{R}, \mathbf{x}, \mathbf{y})$ with $H = H_0(\mathbf{x}, \mathbf{y}) + T_R + V_{PT}(\mathbf{R}, \mathbf{x}, \mathbf{y})$

 $\mathbf{R} = (\mathbf{b}, Z)$, b=impact parameter

projectile

Eikonal approximation $\Phi(\mathbf{R}, \mathbf{x}, \mathbf{y}) = e^{iKZ} \widehat{\Phi}(\mathbf{R}, \mathbf{x}, \mathbf{y})$ with $\widehat{\Phi}(\mathbf{R}, \mathbf{x}, \mathbf{y}) \approx \Psi_0(\mathbf{x}, \mathbf{y}) \exp[-\frac{i}{\hbar v} \int_{-\infty}^Z V_{PT}(\mathbf{b}, \mathbf{Z}', \mathbf{x}, \mathbf{y}) dZ']$

Then: eikonal amplitude

$$T_{fi} = \langle e^{iK'.R} \Psi^{-}(x, y) | V_{PT} | \widehat{\Phi}(R, x, y) \rangle$$

$$1$$
3-body scattering wave function
(expanded in $J\pi$) \rightarrow heavy calculations

From the eikonal amplitude \rightarrow cross sections (breakup, elastic)

4. APPLICATION OF THE EIKONAL METHOD

Results for ⁶He: D. Baye et al., Phys. Rev. C79 (2009) 024607

⁶He+²⁰⁸Pb breakup at 240 MeV/A Data from T. Aumann et al., PRC59 (1999) 1252

E1 dominant (2⁺ narrow resonance near 0.9 MeV)

Convergence with Kmax: Slow!

Recent work on ¹¹Li

- Ref: E.C.Pinilla, P.D., D. Baye, *Phys. Rev. C* 85 (2012) 054610
- ¹¹Li described by a ⁹Li+n+n structure (spin of ⁹Li is neglected)

First step: three-body phase shifts and wave functions

¹¹Li

Narrow 1- resonance near 0.5 MeV

4. APPLICATIONS OF THE EIKONAL METHOD

Second step : Breakup of ¹¹Li on ²⁰⁸Pb @ 70 MeV/A

- E.C.Pinilla, P.D., D. Baye, Phys. Rev. C 85 (2012) 054610
- Exp. data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).

- Direct calculation of the BU cross section (no E1 distribution is needed)
- Heavy calculation
- E1 contribution strongly dominant

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal

Microscopic description of the projectile using the eikonal method E. C. Pinilla and P. Descouvemont, Phys. Lett. B 686 , 124 (2010)

Total Hamiltonian $H = H_0(\mathbf{r}_i) + T_R + \sum_i v(\mathbf{r}_i - \mathbf{R})$

Nucleon-target interaction

Hamiltonian of the projectile $H_0\Phi_0(\mathbf{r}_i) = E_0\Phi_0(\mathbf{r}_i)$

Eikonal approximation $\Psi = \Phi_0(\mathbf{r}_i)e^{ikZ}\widehat{\Phi}(\mathbf{r}_i, \mathbf{b}, Z)$

Then

$$\widehat{\Phi}(\boldsymbol{r}_i, \boldsymbol{b}, Z) = \exp(-\frac{i}{\hbar} \sum_i \int_{-\infty}^Z v(\boldsymbol{r}_i - \boldsymbol{R}) dZ')$$

(symmetric $\rightarrow \Psi$ remains antisymmetric)

General definition of the scattering amplitude

$$f(\theta) = ik \int_0^\infty db \ b \ J_0(qb) e^{i\chi_c(b)} [1 - \langle \Phi_0 | \exp(-\frac{i}{\hbar} \sum_i \int_{-\infty}^\infty v(r_i - \mathbf{R}) dZ) |\Phi_0 \rangle] + f_c(\theta)$$

 α particle: simple wave function (angular momentum 0+, all orbitals $\varphi_0(r_i)$ centred at the origin)

$$S(b) = \prod_{i=1}^{4} S_j(b) \qquad S_i(b) = \langle \varphi_0 | \exp(-\frac{i}{\hbar v} \int_{-\infty}^{\infty} dZ V_{iT}^{N}(b, Z, \mathbf{r_i}) | \varphi_0 \rangle$$

With

$$S_i(b) = (B^3 \pi^{3/2})^{-1} \int_{-\infty}^{\infty} dx_i \int_{-\infty}^{\infty} dy_i \int_{-\infty}^{\infty} dz_i \ e^{-\frac{1}{B^2}(x_i^2 + y_i^2 + z_i^2)} e^{-\frac{i}{\hbar v} \int_{-\infty}^{\infty} dZ V_{iT}^{N}(b, Z, \mathbf{r}_i)}$$

Cluster wave functions: angular momentum projection of Φ_0 is necessary \rightarrow multiple integrals

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal

Elastic cross section of α +²⁰⁸Pb at 288 MeV for different oscillator parameters B Nucleon-nucleus optical potentials: Koning and Delaroche, Nucl. Phys. A 713, 231 (2003).

- Strong dependence on the oscillator parameter.
- The form for B = 0.1 fm is far from the experimental data.
- A good *B* is 0.95 fm.

4. APPLICATIONS OF THE EIKONAL METHOD: microscopic eikonal

Elastic cross section of α +⁵⁸Ni at 288 MeV for different oscillator parameters B

Future projects:

- cluster calculations $\Phi_0 = \mathcal{A}\Phi_1\Phi_2g(\rho)$
- Must be projected on angular momentum
- $S(b) = \langle \Phi_0 | \exp(-\frac{i}{\hbar} \sum_i \int_{-\infty}^{\infty} v(\mathbf{r}_i \mathbf{R}) dZ) | \Phi_0 \rangle$ is more complicated

Types of reactions: general definitions valid for all models

Туре	Example	Origin
Transfer	3 He(3 He,2p) $lpha$	Strong
Radiative capture	² H(p,γ) ³ He	Electromagnetic
Weak capture	$p+p \rightarrow d+e^+ + v$	Weak

• Transfer: A+B \rightarrow C+D (σ_t , strong interaction, example: ³He(d,p)⁴He)

$$\sigma_{t,c \to c'}(E) = \frac{\pi}{k^2} \sum_{J\pi} \frac{2J+1}{(2I_1+1)(2I_2+1)} \left| U_{cc'}^{J\pi}(E) \right|^2$$

 $U_{cc'}^{J\pi}(E) =$ collision matrix (obtained from scattering theory \rightarrow various models) c, c' = entrance and exit channels

Compound nucleus, ex: ⁵Li

• Radiative capture : A+B \rightarrow C+ γ (σ_c , electromagnetic interaction, example: ¹²C(p, γ)¹³N)

$$\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{\lambda} \sum_{J_{i}\pi_{i}} k_{\gamma}^{2\lambda+1} \big| < \Psi^{J_{f}\pi_{f}} \|\mathcal{M}_{\lambda}\| \Psi^{J_{i}\pi_{i}}(E) \big|^{2}$$

 $J_f \pi_f$ =final state of the compound nucleus C $\Psi^{J_i \pi_i}(E)$ =initial scattering state of the system (A+B) $\mathcal{M}_{\lambda\mu}$ =electromagnetic operator (electric or magnetic): $\mathcal{M}_{\lambda\mu} \sim e r^{\lambda} Y^{\mu}_{\lambda}(\Omega_r)$

Long wavelength approximation:

Wave number $k_{\gamma} = E_{\gamma}/\hbar c$, wavelength: $\lambda_{\gamma} = 2\pi/k_{\gamma}$ Typical value: $E_{\gamma} = 1 MeV$, $\lambda_{\gamma} \approx 1200 \text{ fm} >> \text{typical dimensions of the system (R)}$ $\rightarrow k_{\gamma}R \ll 1 = \text{Long wavelength approximation}$

 $\sigma_{C}^{J_{f}\pi_{f}}(E) \sim \sum_{J_{i}\pi_{i}} \sum_{\lambda} k_{\gamma}^{2\lambda+1} \left| < \Psi^{J_{f}\pi_{f}} \| \mathcal{M}_{\lambda} \| \Psi^{J_{i}\pi_{i}}(E) > \right|^{2}$

•
$$k_{\gamma} = (E - E_f)/\hbar c$$
 = photon wave number

- In practice
 - Summation over λ limited to 1 term (often E1, or E2/M1 if E1 is forbidden)

 $\frac{E2}{E1} \sim (k_{\gamma}R) \ll 1$ (from the long wavelength approximation)

 \circ Summation over $J_i \pi_i$ limited by selection rules

$$\left|J_i - J_f\right| \le \lambda \le J_i + J_f$$

$$\pi_i \pi_f = (-1)^{\lambda}$$
 for electric, $\pi_i \pi_f = (-1)^{\lambda+1}$ for magnetic

• Weak capture (p+p \rightarrow d+v+e⁻): tiny cross section \rightarrow no measurement (only calc.)

$$\sigma_{W}^{J_{f}\pi_{f}}(E) \sim \sum_{J_{i}\pi_{i}} \left| < \Psi^{J_{f}\pi_{f}} \right| \left| O_{\beta} \right| \left| \Psi^{J_{i}\pi_{i}}(E) > \right|^{2}$$

- Calculations similar to radiative capture
- O_{β} = Fermi ($\sum_{i} t_{i\pm}$) and Gamow-Teller ($\sum_{i} t_{i\pm} \sigma_{i}$) operators

- Fusion: similar to transfer, but with many output channels
 → statistical treatment
 - \rightarrow optical potentials

General properties

Scattering energy E: wave function $\Psi_i(E)$

common to all processes

Reaction threshold

- Cross sections dominated by Coulomb effects Sommerfeld parameter $\eta = Z_1 Z_2 e^2 / \hbar v$
 - Coulomb functions at low energies $F_{\ell}(\eta, x) \rightarrow \exp(-\pi\eta) \mathcal{F}_{\ell}(x),$ $G_{\ell}(\eta, x) \rightarrow \exp(\pi\eta) \mathcal{G}_{\ell}(x),$
- Coulomb effect: strong *E* dependence : $\exp(2\pi\eta)$ neutrons: $\sigma(E) \sim 1/v$
- Strong ℓ dependence Centrifugal term: $\sim \frac{\hbar^2}{2\mu} \frac{\ell(\ell+1)}{r^2}$ \rightarrow stronger for nucleons ($\mu \approx 1$) than for α ($\mu \approx 4$)

General properties: specificities of the entrance channel \rightarrow common to all reactions

- All cross sections (capture, transfer) involve a summation over ℓ : $\sigma(E) = \sum_{\ell} \sigma_{\ell}(E)$
- The partial cross sections $\sigma_{\ell}(E)$ are proportional to the penetration factor

$$P_{\ell}(E) = \frac{ka}{F_{\ell}(ka)^2 + G_{\ell}(ka)^2}$$
 (a =typical radius)

Astrophysical S factor: $S(E) = \sigma(E)E\exp(2\pi\eta)$ (Units: E*L²: MeV-barn)

- removes the coulomb dependence \rightarrow only nuclear effects
- weakly depends on energy $\rightarrow \sigma(E) \approx S_0 \exp(-2\pi\eta) / E$ (any reaction at low E)

non resonant: $S(E) = \sigma(E)E\exp(2\pi\eta)$

Example: ³He(α , γ)⁷Be reaction

- Cross section σ(E) Strongly depends on energy
- Logarithmic scale

S factor

- Coulomb effects removed
- Weak energy dependence
- Linear scale

Resonant cross sections: Breit-Wigner form

$$\sigma_R(E) \approx \frac{\pi}{k^2} \frac{(2J_R + 1)}{(2I_1 + 1)(2I_2 + 1)} \frac{\Gamma_1(E)\Gamma_2(E)}{(E_R - E)^2 + \Gamma^2/4}$$

- J_R , E_R =spin, energy of the resonance
- Valid for any process (capture, transfer)
- Valid for a single resonance \rightarrow several resonances need to be added (if necessary)
- Γ_1 =Partial width in the entrance channel (strongly depends on E, ℓ) $\Gamma_1(E) = 2\gamma_1^2 P_\ell(E)$ with γ_1^2 =reduced width (does not depend on E) $P_\ell(E) \sim \exp(-2\pi\eta)$

A resonance at low energies is always narrow (role of $P_{\ell}(E)$)

• Γ_2 =Partial width in the exit channel (weakly depends on E, ℓ)

- Transfer: $\Gamma_2(E) = 2\gamma_2^2 P_{\ell_f}(E+Q)$ (in general $Q \gg E \rightarrow P_{\ell_f}(E+Q)$ almost constant)
- Capture: $\Gamma_2(E) \sim (E E_f)^{2\lambda+1} B(E\lambda) \rightarrow$ weak energy dependence
- S factor near a resonance $S(E) = \sigma(E)E\exp(2\pi\eta)$ $S_R(E) \sim \frac{\gamma_1^2\Gamma_2}{(E_R - E)^2 + \Gamma^2/4} P_\ell(E)\exp(2\pi\eta)$ Almost constant

 \rightarrow Simple estimate at low E (at the Breit-Wigner approximation)

$$S_R(E) \sim \frac{\gamma_1^2 \Gamma_2}{(E_R - E)^2 + \Gamma^2/4} P_{\ell}(E) \exp(2\pi\eta) \\ \sim \frac{\gamma_1^2 \Gamma_2}{(E_R - E)^2 + \Gamma^2/4}$$

- For $\ell = 0 : P_0(E) \exp(2\pi\eta) \sim \text{constant}$
- For $\ell > 0$, $P_{\ell}(E) \ll P_0(E)$ $\rightarrow \ell > 0$ resonances are suppressed

In ${}^{12}C(p,\gamma){}^{13}N$:

- Resonance $1/2^+$: $\ell = 0$
- Resonances $3/2^{-}$, $5/2^{+} \ell = 1, 2 \rightarrow$ negligible

Note: BW is an approximation

- Neglects background, external capture
- Assumes an isolated resonance
- Is more accurate near the resonance energy

3/2+ resonance:

- Entrance channel: spin S=1/2,3/2, parity + $\rightarrow \ell = 0,2$
- Exit channel: spin S=1/2, parity + $\rightarrow \ell = 1$

Breit Wigner approximation

$$\sigma_{dp}(E) \approx \frac{\pi}{k^2} \frac{(2J_R + 1)}{(2I_1 + 1)(2I_2 + 1)} \frac{\Gamma_d(E)\Gamma_p(E)}{(E_R - E)^2 + \Gamma^2/4}$$

Selection of the main resonances

$${}^{11}C(p,\gamma){}^{12}N$$
 (spin ${}^{11}C=3/2$)

• Resonance 2^{-} : $\ell = 0$, E1

• Resonance
$$2^+$$
: $\ell = 1$, E2/M1

 \rightarrow negligible

$$^{18}F(p,\alpha)^{15}O$$
 (spin $^{18}F=1^+$)

- Many resonances
- Only $\ell = 0$ resonances are important $\rightarrow J = 1/2^+, 3/2^+$ only

→ In general a small number of resonances play a role

- Transfer cross sections (strong interaction)
 - -Non resonant: ${}^{6}Li(p,\alpha)^{3}He$ -Resonant, with $\ell_{R} = \ell_{min}$: ${}^{3}He(d,p)\alpha$ -Resonant, with $\ell_{R} > \ell_{min}$: ${}^{11}B(p,\alpha)^{8}Be$ -Multiresonance: ${}^{22}Ne(\alpha,n)^{25}Mg$

• Capture cross sections (electromagnetic interaction)

- Non resonant:
- Resonant, with $\ell_{\rm R} = \ell_{\rm min}$:
- Resonant, with $\ell_{\rm R} > \ell_{\rm min}$:
- Multiresonance:
- Subthreshold state:
- Weak capture cross sections (weak interaction
 - Non resonant

Theoretical methods: Many different cases \rightarrow no "unique" model!

Model	Applicable to	Comments	
Potential/optical model	Capture Fusion	Internal structure neglectedAntisymetrization approximated	
<i>R</i> -matrix	Capture Transfer	No explicit wave functionsPhysics simulated by some parameters	Light systems
DWBA	Transfer	 Perturbation method Wave functions in the entrance and exit channels 	Low level densities
Microscopic models	Capture Transfer	 Based on a nucleon-nucleon interaction <i>A</i>-nucleon problems Predictive power 	
Hauser-Feshbach Shell model	Capture Transfer Capture	Statistical modelOnly gamma widths	Heavy systems
Conclusion

Reactions with exotic nuclei require

- Accurate scattering theory: CDCC / eikonal
- Accurate description of the projectile \rightarrow microscopic models
- Open questions/outlook
- Predictive power?
- Reducing the number of channels in CDCC \rightarrow stochastic methods?
- Excitations of the target?
- Choice of nucleus-target or nucleon-target interaction?
- Absorption?
- Probably many others!

Nuclear astrophysics

- Many reaction rates are needed
- Many different types of reactions!
- \rightarrow No systematics!