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2. Reaction models (advanced)

1.Overview of scattering theories

2.The CDCC method (Continuum Discretized Coupled Channel)

3.Technical aspects: R-matrix, Lagrange meshes

4.The Eikonal method



52

Main goal in nuclear physics:  understanding the structure of exotic nuclei

Available data:

• Elastic (inelastic) scattering, Breakup, Fusion, etc.

Role of the theory: how to interpret these scattering data?

Combination of two ingredients

1. Description of the scattering process

• Low energies (around the Coulomb barrier): optical model, CDCC

• High energies (typically ~50-100 MeV/u): eikonal (+variants) 

2. Description of the projectile 

• 2-body, 3-body, A-ďodǇ,….
• Microscopic, non-microscopic

• Need of bound states and scattering states (difficult for 3-body systems)

1. Introduction

target

• heavy nucleus

• considered as inert

projectile

 structure??



Schrödinger equation: ܪȲ ,࢏� � = ,࢏�Ȳሺܧ �ሻ�࢏: set of internal coordinates in the projectile� :describes the relative motion between the target and the projectile

Target (g.s. only)

Projectile

Internal coordinates: �i
Relative 

distance ܴ

General expression for the Hamiltonian H: common to all modelsܪ = ଴ܪ �௜ + ோܶ + ௜ ܸሺ�௜ , ܴሻ
projectile

Relative 

kinetic energy

Interaction between

target and projectile
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Projectile + heavy target

even at low energies: many open channels  absorption in ܸሺ�௜ , ܴሻ

2. Overview of scattering theories



Various scattering theories ܪ = ଴ܪ �௜ + ோܶ + ௜ ܸሺ�௜ , ܴሻ
1. Coupled-channel methods: 

• No internal coordinates ଴ܪ , �௜ = Ͳ
• Simple but limited (no halo structure, no continuum effects)

• Folding procedures:ܸ ܴ = ∫ ଵߩ ݎ ଶߩ ݏ ݒ ܴ − ݎ + ݏ ݏ݀ݎ݀
With ଵߩ ݎ , ଶߩ ݏ = densities of nuclei 1 and 2 (from experiment or from theory)ݒ ݔ =nucleon-nucleon interaction (M3Y, DDM3Y, JLM, etc.)

o Can be extended to multichannel calculations

o Example: S. Ohkuko, Y. Hirabayashi, Phys. Lett. B684 (2010) 127

investigate 16O condensate states in a multichannel model 

(� + ଵଶܥሺͲଵ+, Ͳଶ+, ʹଵ+, ʹଶ+, ͵−ሻ with 12C RGM densities (from M. Kamimura)
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2. Overview of scattering theories



2. CDCC: Continuum Discretized Coupled Channel

Valid at low energies (partial-wave expansion of Ȳሺ�࢏, �ሻ)
G. Rawitscher, Phys. Rev. C 9, 2210 (1974)

N. Austern et al., Phys. Rep. 154 (1987) 126 

• First step: solutions of ܪ଴ �௜ �௞ �௜ = ଴௞ܧ଴௞�௞ሺ�௜ሻܧ < Ͳ:physical state(s), ܧ଴௞ > Ͳ: pseudostates (=approximation of the continuum)

• Second step: expansion of the total wave functionȲሺ�࢏, �ሻ =  ௞ �଴௞ ࢏� ௞ሺ�ሻݑ
 system of coupled equations

• Third step : solving the system (positive energy E)

 phase shifts, scattering cross sections

• Two-body projectiles: (d=p+n, 7Li=a+t, 11Be=10Be+n, etc): relatively simple

• Three-body projectiles (6He=a+n+n, 9Be=a+a+n): more complicated!

• Recent developments: A-nucleon projectile (cluster approximation: 7Li)
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2. Overview of scattering theories



3. Eikonal method

• Valid at high energies (݇ large)

• Wave function factorized as Ȳ ,࢏� � = exp ܼ݅݇ ×  Ȳሺ�࢏, �ሻ
� = ሺܼ, ܾሻ

Z

Impact parameter b

• For ݇ large: the SE is simplified  allows more sophisticated descriptions of the projectile

• Standard eikonal method: only ground state of the projectile (=adiabatic approximation: 

excitation time long compared to the interaction time)

• Dynamic eikonal: excited states are included (D. Baye et al., PRL 95 (2005) 082502)

• Eikonal CDCC: the projectile is described over a basis (~dynamic eikonal) 

(Hashimoto et al., Phys. Rev. C 83, 054617 (2011))

• Extensions possible to relativistic energies (K. Ogata, C. Bertulani, PTP 123 (2010) 701)

• Microscopic eikonal (E.C. Pinilla, P. Descouvemont, Phys. Lett. B 686(2010) 124)
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2. Overview of scattering theories
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3. The CDCC method

CDCC=Continuum Discretized Coupled Channels



Goal of CDCC (Continuum Discretized Coupled Channels) theory

Solution of 3-body (4-body) scattering problem

G. Rawitscher, Phys. Rev. C 9, 2210 (1974)

M. Kamimura et al, Prog. Theor. Phys. Suppl. 89 (1986) 1

N. Austern et al., Phys. Rep. 154 (1987) 126

• Projectile assumed to be described by two clusters

• Introduced for deuteron-induced reactions (breakup important)

 well adapted to exotic nuclei

• Various cross sections:  elastic, breakup inelastic, fusion, etc. 

(Energy near the Coulomb barrier)

• Recently extended to 3-body projectiles (6He=a+n+n)
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Hamiltonian of the systemܪ = ଴ܪ � − ℏଶʹߤ ȟ� + ௧ܸଵ � + �ܣଶܣ � + ௧ܸଶ � − �ܣଵܣ �
Vt1, Vt2= optical potentials (typically: Woods-Saxon)

from elastic scattering between particules 1 or 2 and the target

 need for elastic-scattering data!

Two steps:

1. Diagonalize H0 : ܪ଴Φ௝௠ � = ௝Φ௝௠ሺ�ሻܧ wave function of the (2-body) projectile Φ௝௠ �
2. Expand the total wave function over this basis

 wave function of the system projectile+target Ȳ௃ெగሺ�, �ሻ
 system of coupled differential equations

1

2

t

Rr

projectile
target

3. The CDCC method



First step: diagonalization of the projectile hamiltonian H0

଴Φ௡௝௠ܪ � = ௡௝Φ௡௝௠ሺ�ሻ, withܧ Φ௡௝௠ � = ߮௡௝ ݎ ௝ܻ௠ሺȳ௥ሻ݆=spin of the projectile (ground-state + excited states + breakup channels)݊=excitation level in partial wave ݆
• Expand ߮௡௝ ݎ on a basis (N functions): ߮௡௝ ݎ =  ௞=ଵே ܿ௡௞ ௞݂ሺݎሻ

example: gaussians ௞݂ ݎ = expሺ− ௜ܽ/ݎ ଶሻ
• Solve the eigenvalue problem:  ௞′ < ௞݂ ܪ ݂௞′ > ௡௝ܧ− < ௞݂ ݂௞′ > ܿ௡௞′ = Ͳ

with < ௞݂ |݂௞′ >= ∫ ௞݂ ݎ ݂௞′ ݎ ݎଶ݀ݎ
• Solutions with >௡௝ܧ Ͳ: physical states

Solutions with ௡௝ܧ > Ͳ: pseudostates: simulate breakup effects
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Example: deuteron=p+n

• Pseudostates ௡>0ܧ:

• Simulate breakup effects

• Depend on the basis

• Ground state: ܧ௡<0

• Independent of the basis
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3. The CDCC method



2nd step:

1. Expand the total wave function (projectile + target)

Ȳ௃ெగሺ�, �ሻ = ௝௅௡ ௝௅௡௃గݑ ܴ Φ௡௝ � ⊗ ௅ܻ ȳோ ௃ெ

 Multichannel wave function:݆=spin of the projectile݊=excitation levelܮ=projectile-target angular momentum

Angular functions

2-body wave

functions

To be determined
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2. Expand the potential in multipoles (numerical integration over the angle)

௧ܸଵ � + �ܣଶܣ � + ௧ܸଶ � − �ܣଵܣ � =  ఒ ఒܸ ,ݎ ܴ ܲఒሺc�s ሻߠ
3. Insert both expansions in the Schrödinger associated with Hܪ = ଴ܪ � − ℏଶʹߤ ȟ� + ௧ܸଵ � + �ܣଶܣ � + ௧ܸଶ � − �ܣଵܣ �
 System of coupled equations: provide the radial functions− ℏଶʹߤ ݀ଶܴ݀ଶ − ܮ ܮ + ͳܴଶ + ௖ܧ − ܧ ௖௃గݑ ܴ + ௖′ ௖ܸ௖′௃గ ܴ ௖′௃గݑ ܴ = Ͳ
=standard coupled-channel system (general form common to most scattering theories)

In CDCC (2-body projectiles) the potentials are obtained from௖ܸ௖′௃గ ܴ ∼ ∫ ߮௡௝ ݎ ఒܸ ,ݎ ܴ ߮௡௝ ݎ ݎ݀ (factors: 6j, Clebsch-GoƌdaŶ, etĐ…Ϳ

Channel c= ݆: projectile quantum numbers݊: excitation level of the projectile [physical state (E<0) or PS (E>0)]ܮ ∶ orbital angular momentum between projectile and target

Number of c values: typically ~100-200

3. The CDCC method



Test case: d+58Ni at Elab=80 MeV 

• Standard benchmark in the literature

• p+n: gaussian potential (reproduces Ed=-2.22 MeV)

• p+58Ni, n+58Ni: optical potentials

• Elastic scattering and breakup
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 (
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)
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Ground state (l=0)

1st pseudostate (l=2)

 long range for PS

deuteron basis:݈ = Ͳ,ʹ,Ͷ,͸ d+58Ni potentials (nuclear)
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3. The CDCC method



Role of the continuum

Elastic scattering (entrance channel 1): element ଵܷଵ needed

Single channel: matrix 1x1   ଵܷଵ
Multichannel: matrix NxN

ଵܷଵ ڮ ଵܷேڭ ⋱ ேଵܷڭ ڮ ܷேே
Provides elastic cross sections in a single-

channel calculation

Provides elastic c.s. in a multi-channel

calculation

Couplings to the continuum: modify ࢁ૚૚
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s/s
R

q (deg.)

lmax=4

lmax=0

d+58Ni, Elab=80 MeV

101

100

10-1

10-2

10-3

no breakup (only deuteron gs)

Convergence with the p+n angular momentum

 importance of p+n breakup channels

3. The CDCC method
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Extension to three-body projectiles: ܪሺݔ, ,ݕ ܴሻ = ,ݔ଴ሺܪ ሻݕ + ோܶ + ௧ܸଵ + ௧ܸଶ + ௧ܸଷ
target

Rx

y

projectile

• Previous calculations

T. Matsumoto et al., Phys. Rev. C70 (2004) 061601

M. Rodriguez-Gallardo et al., Phys. Rev. C77 (2008) 064609

• Projectile can be described in the hyperspherical harmonics (ex:6He=a+n+n, 9Be=a+a+n)

• Same principle: 

• Eigenfunctions of the projectile Hamiltonian ,ݔ଴ሺܪ ሻݕ
• Expansion of the total wave function

• Coupling potentials more complicated

• Similar coupled-channel system

3. The CDCC method



Technical aspects associated with CDCC

• Solving the coupled-channel equations  R-matrix method

• Basis to expand the wave functions  Lagrange meshes
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• Goal: to solve a coupled-channel problem for positive energies

− ℏమଶఓ ௗమௗ௥మ − ℓ ℓ+ଵ௥మ ሻݎ௖௃గሺݑ + ௖′ ௖ܸ,௖′௃గ ݎ ௖′௃గݑ ሺݎሻ = ሺ� − ሻݎ௖௃గሺݑ௖ሻܧ
c= channelݑ௖௃గሺݎሻ= wave function in channel c

• Equation common to many problems (only the potentials ௖ܸ,௖′௃గ ݎ are different)

• In general many states to simulate the continuum  many coupled equations

• Negative energies � (bound states): variational methods

• Positive energies � (scattering states, resonances): more difficult

4. Technical aspects associated with CDCC: the R-matrix method
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Two options: 

1. discretization method (FRESCO)

2. R-matrix  (adopted here)

R-matrix or discretization method?

• Still aŶ opeŶ ƋuestioŶ…
• Should provide the same results  tests

• Obvious advantage of the R-matrix: treatment of closed channels

Threshold 1

Threshold 2

Threshold 3

Threshold 4

E

Channels 1,2,3: open

Channel 4: closed

Closed channels: ݑ௖௃గ ݎ → Ͳ,

• Unstable in discretization methods

• Automatic in the R-matrix

ሻݎ௖௃గሺݑ

ݎ

4. Technical aspects associated with CDCC: the R-matrix method



Introduction – framework

• Presented for 2 structureless particles

one channel (simple presentation)  

potential model  ࢀ + ࢂ − � � � = ૙
• ܰ basis functions �௜ ݎ : variational calculations: ݑ ݎ =  ௜=ଵே ܿ௜�௜ሺݎሻ

tend to zero at large distances

valid at short distances only

• Definition of 2 regions: radius a (channel radius)
a

internal region: ݎ ൑ ሻݎ௜௡௧ሺݑܽ =  ௜=ଵே ܿ௜�௜ሺݎሻ external region: ݎ ൒ ሻݎ௘௫௧ሺݑܽ = ℓܫ ݎ − ℓܷܱℓሺݎሻ

• Schrödinger equation + Matching at ݎ = ܽ
 collision matrix U (~phase shift) and  coefficients ܿ௜ (wave function)

!! Channel radius a  is not a parameter!! 71

4. Technical aspects associated with CDCC: the R-matrix method



Procedure

Step 1: Compute the matrix elements of the Hamiltonian over the internal regionܪ௜௝ =< �௜ ܪ �௝ >௜௡௧=  ଴௔�௜ ݎ ሺܶ + ܸሻ�௝ ݎ ݎ݀
௜ܰ௝ =< �௜|�௝ >௜௡௧=  ଴௔�௜ ݎ �௝ ݎ ݎ݀

Problem: the kinetic energy is not hermitian over a finite interval [0,a]  ଴௔�௜ ݎ ݀ଶ݀ݎଶ �௝ ݎ ݎ݀ ≠  ଴௔�௝ ݎ ݀ଶ݀ݎଶ �௜ ݎ ݎ݀
 Bloch operator ℒሺܮሻ = ℏଶʹܽߤ ߜ ݎ − ܽ ݎ݀݀ − ݎܮ ݎ
L=arbitrary constant (L=0 in most cases)
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4. Technical aspects associated with CDCC: the R-matrix method
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role of the surface operator ℒሺܮሻ = ℏమଶఓ௔ ߜ ݎ − ܽ ௗௗ௥ − ௅௥ ݎ
1. makes � + ℒሺܮሻ hermitian< �௜ ܶ + ℒሺܮሻ �௝ >௜௡௧=< �௝ ܶ + ℒሺܮሻ �௜ >௜௡௧
2. The Schrödinger equation ܪ − ܧ ℓݑ = Ͳ
is replaced by the Bloch-Schrödinger equationܪ − ܧ + ℒሺܮሻ ௜௡௧ݑ = ℒ ܮ ௜௡௧ݑ = ℒ ܮ ௘௫௧ݑ
the Bloch operator ensures ′௜௡௧ݑ ܽ = ′௘௫௧ݑ ܽ (for the exact solution)

« Old » use of the R-matrix theory

• No Bloch operator

• Basis states such that �௜′ ܽ = Ͳ
Hermiticity OK

but the total wave function has always a derivative =0

4. Technical aspects associated with CDCC: the R-matrix method



Step 2: Determine the matrix elementsܥ௜௝ሺܧሻ =< �௜ ܪ + ℒ ܮ − ܧ �௝ >௜௡௧
Step 3: Determine the R matrix (size 1x1 for single-channel problems) at energy E

ܴ ܧ = ℏଶܽʹߤ  ௜௝ �௜ ܽ ሺܥ−ଵሻ௜௝�௝ ܽ
Step 4: Determine the collision matrix from the R matrixܷ ܧ = ூ ௞௔ை ௞௔ ଵ−௅כோ ாଵ−௅ோ ா = exp ߜ݅ʹ = exp ுௌߜ݅ʹ expሺʹ݅ߜோሻ

• Hard-sphere phase shift: exp ுௌߜ݅ʹ = ூ ௞௔ை ௞௔ → ுௌߜ = −ataΩ ி ௞௔ீ ௞௔
• R-matrix phase shift: expሺʹ݅ߜோሻ = ଵ−௅כோ ாଵ−௅ோ ா → ோߜ = ataΩ ௉ோଵ−ௌோ
• Both depend on a but the sum should not depend on a

• ܮ = ݇ܽ ை′ ௞௔ை ௞௔ = ܵ ܧ + ݅ܲ ܧ ܮ) is complex
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4. Technical aspects associated with CDCC: the R-matrix method
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(a=5 fm, Coulomb barrier ~1 MeV)

4. Technical aspects associated with CDCC: the R-matrix method



Extension to multichannel

Single channel: ௜௝ܥ ܧ =< �௜ ܶ + ܸ + ℒ ܮ − ܧ �௝ >௜௡௧ܴ ܧ = ℏమ௔ଶఓ  ௜௝�௜ ܽ ሺܥ−ଵሻ௜௝�௝ ܽ
Multichannel: ௖௜,௖′௝ܥ ܧ =< �௜ ܶ + ℒ ܮ + ௖ܧ − ܧ ′௖௖ߜ + ௖ܸ௖′ �௝ >௜௡௧ܴ௖௖′ ܧ = ℏమ௔ଶఓ  ௜௝�௜ ܽ ሺܥ−ଵሻ௖௜,௖′௝�௝ ܽ
size of the R-matrix= number of channels ܿ (+angular momentum couplings)

• Typical number for CDCC ~100-200

• Typical number of basis states �௜: ~30-40

 inversion of matrix C requires long computer times (complex)

4. Technical aspects associated with CDCC: the R-matrix method
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The Lagrange-mesh method

•Ref: D. Baye, Phys. Stat. Sol. 243 (2006) 1095)

• used in many different fields (convenient variational basis)

• Gauss approximation: ∫଴௔ ݃ ݔ ݔ݀ ≈  ௞=ଵே ௞ሻݔ௞݃ሺߣ
o ܰ= order of the Gauss approximation

o ௞=weightsߣ ,௞=roots of an orthogonal polynomialݔ

o If interval [0,a]: Legendre polynomials

[0,]: Laguerre polynomials

• Lagrange functions for [0,1]:   ݂݅ሺݔሻ~ ேܲሺʹݔ − ͳሻ/ሺݔ − ሻ݅ݔ
o ݅ݔ are roots of ܲܰሺʹݔ௜ − ͳሻ = Ͳ
o with the Lagrange property: ௜݂ ௝ݔ = ௜௝ߜ௜−ଵ/ଶߣ

4. Technical aspects associated with CDCC: The Lagrange-mesh method
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• Matrix elements AT THE GAUSS APPROXIMATION

• Overlap < ௜݂| ௝݂ >= ∫ ௜݂ ݔ ௝݂ ݔ ݔ݀ ≈  ௞=ଵே ௞ߣ ௜݂ ௞ݔ ௝݂ ௞ݔ ≈ ௜௝ߜ (since ௜݂ ௝ݔ = (௜௝ߜ௜−ଵ/ଶߣ

• Kinetic energy < ௜݂|ܶ| ௝݂ >
• More complicated

• Analytical calculation

• Must be performed once (independent of the potential)

• Potential< ௜݂|ܸ| ௝݂ >= ∫ ௜݂ ݔ ܸሺݔሻ ௝݂ ݔ ݔ݀ ≈  ௞=ଵே ௞ߣ ௜݂ ௞ݔ ௝݂ ௞ݔ ܸሺݔ௞ሻ ≈ ܸሺݔ௜ሻߜ௜௝
 no integral needed

very simple!

• The Gauss approximation must be valid regularization for Coulomb, centrifugal௜݂ ݔ → ௫௫� ௡ ௜݂ሺݔሻ, with n=1/2, 1, etc.

4. Technical aspects associated with CDCC: The Lagrange-mesh method
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Application to the R-matrix: Matrix elementsܥ௖௜,௖′௝ ܧ =< �௜ ܶ + ℒ ܮ + ௖ܧ − ܧ ′௖௖ߜ + ௖ܸ௖′ �௝ >௜௡௧
• In general: integral over R (from R=0 to R=a)

Lagrange mesh: value of the potential at the mesh points  very fast

• Typical sizes: ~100-200 channels c, N~30-40

• Test: collision matrix U does not depend on N, a

• Choice of a: compromize (a too small: R-matrix not valid, a too large: N large)

• Some remarks

 Fast (no integral), accurate

 The basis is defined by N and a only : no further parameter ;≠ foƌ gaussians)

 Legendre functions: more zeros near R=0, and R=a  not optimal

4. Technical aspects associated with CDCC: The Lagrange-mesh method



4. Technical aspects associated with CDCC: The Lagrange-mesh method

Simple example: potential a+3He : gaussian: ேܸ ݎ = −͸͸.ͳ exp − ʹͷ.ʹ/ݎ ଶ
2 bases: 

• Lagrange functions

• sine functions   ݑ௜ℓ ݎ = siΩ గ௥௔ ሺ݅ − ଵଶሻ
• Matrix elements very simple

• Derivative ݑ௜′ ܽ = Ͳ
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݈ = Ͳ phase shifts a+3He

a=5 fm: too small ( ேܸ not negligible)

In general: ܽ too small  not in the R-matrix conditions ( ேܸ negligible)ܽ too large: needs many basis functions

 compromize

4. Technical aspects associated with CDCC: The Lagrange-mesh method
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4. Technical aspects associated with CDCC: The Lagrange-mesh method

very slow convergence 

of the phase shift
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Analysis of the wave functions (E=8 MeV, a=8fm)
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 accurate phase shift

poor matching at r=a

 inaccurate phase shift

4. Technical aspects associated with CDCC: The Lagrange-mesh method
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channel radius a (N=30)

Number of basis (Lagrange) 

functions N (a=15 fm)

Application of the R-matrix to CDCC: Test case: d+58Ni at Elab=80 MeV 

4. Technical aspects associated with CDCC: The Lagrange-mesh method



Computer time: 2 main parts

• Matrix elements: very fast with Lagrange functions

• Inversion of (complex) matrix C  R-matrix (long times for large matrices)

For reactions involving halo nuclei:

• Long range of the potentials (Coulomb)

• Radius a must be large

• Many basis functions (N large)


• Distorted Coulomb functions (FRESCO)

• Propagation techniques in the R-matrix  (well known in atomic physics)

Ref.: Baluja et al. Comp. Phys. Comm. 27 (1982) 299

85

Propagation techniques

Can be large (large quadrupole moments of PS)
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Without propagation

• Matrix elements integrated over [0,a]

• Inversion of a matrix  of dimension N x Nc

With propagation

• The interval [0,a] is split in NS subintervals

• In each subinterval N’~N/NS: 

• Interval 1: determine R(a1)

• Interval 2 : R(a2) from R(a1) (inversion of a matrix with size N’ ǆ Nc)

• Interval NS: R(a) from R(aNS-1)

 NS smaller calculations: 

Lagrange functions well adapted to matrix elements over [ai,ai+1]

N functions

N’ functions

R=0 R=a

R=0 R=a1 R=a2 R=a
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5. The eikonal method
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1 2

• The wave function is factorized as Ȳ ݎ = exp ݖ݇݅  Ȳሺݎሻ
• The main energy dependence (high E) is in exp ݖ݇݅  factorization

• Then

= Eikonal approximation (first-order equation) : valid at high energy

Ref: R.J. Glauber, Lect. Notes in Physics, Vol. 1 (1959)

Y. “uzuki et al., ͞“tructure and reactions with light exotic nuclei͟ ;Ϯ00ϯͿ
M. Yahiro et al. Prog. Theor. Phys. 126 (2011) 167

1. One-body projectile: very simple (elastic only)

2. Two and three-body projectile: 

more complicated

but: elastic, inelastic, breakup, etc.

5. The eikonal method
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One-body projectile: Only elastic scattering

b

z

With b=transverse part of r: r=(b,0,z)=impact parameter

 very simple: integral over z, and over b

 Only valid at high energies (and small angles)

r=(b2+z2)1/2

5. The eikonal method
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Ecm=129 MeV

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

0 10 20 30 40 50
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s/s
R

Experiment

Exact

Eikonal

Ecm=80 MeV

0.01

0.1

1
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0 20 40 60 80 100
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s/s
R

Exact 

Eikonal

Ecm=40 MeV

0.1

1
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s/s
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Eikonal

Ecm=10 MeV

0.001

0.01

0.1

1

10

0 20 40 60 80 100

q  (degrees)

s/s
R

Exact

Eikonal

 accurate at high energies, poor approximation at low energies

Coulomb barrier ~ 2 MeV

5. The eikonal method
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Two-body projectile:

2 coordinates: R,r

 elastic, breakup

Ex: 11Be+208Pb

With 11Be=10Be+n

R

r

R

r

b

z

• Wave function of the projectile Φ଴ ݎ
• Assume gs wave function (adiabatic approx.)

• Elastic cross sections: ܵ ܾ =< Φ଴ � ݁௜� ௕,� Φ଴ � >
• Breakup ܵ ݇, ܾ =< Ȳ଴ ݇, � ݁௜� ௕,� Φ଴ � >
• In practice: ݁௜� ௕,� is expanded in multipoles

• Ref: D. Baye, EJP, Spec. Topics 156 (2008)

potential: ܸ �, � = ௧ܸଵ � + ஺మ஺� � + ௧ܸଶ � − ஺భ஺� �
eikonal phase: ߯ ܾ, � = ߯ଵ ܾ, � + ߯ଶ ܾ, �

5. The eikonal method: two-body projectile
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Example: 11Be breakup on 208Pb at 68 MeV/u (RIKEN data)

D. Baye, EPJ ST156 (2008) 93

Elastic

breakup

0

1

2

0 1 2 3

E  (MeV)

d
s/d

E
 (

m
b
/M

e
V

)
5. The eikonal method: two-body projectile
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• Three-body projectiles
6He: D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki, Phys. Rev. C 79 (2009) 024607
11Li:E. C. Pinilla, P. Descouvemont, D. Baye, Phys. Rev. C 85 (2012) 054610

• Dynamic eikonal approximation (no adiabatic approximation)

D. Baye, P. Capel, G. Goldstein, Phys. Rev. Lett. 95 (2005) 082502

• Eikonal CDCC: the projectile is described over a basis  multichannel problems

K. Ogata et al., Phys. Rev. C 68, 064609 (2003)

• Extensions to relativistic energies

K. Ogata and C. Bertulani, PTP 123 (2010) 701)

• Neutron removal reactions

M. Yahiro, K. Ogata, K. Minomo, Prog. Theor. Phys. 126 (2011) 167

• Microscopic eikonal: projectile described by a microscopic model
7Li:E. C. Pinilla, P. Descouvemont, in progress…

5. The eikonal method: extensions


