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1. Introduction
Main goal in nuclear physics: understanding the structure of exotic nuclei

Available data:
* Elastic (inelastic) scattering, Breakup, Fusion, etc.

Role of the theory: how to interpret these scattering data?

projectile . tar
get
27
—> structure?: « heavy nucleus

* considered as inert

Combination of two ingredients
1. Description of the scattering process
* Low energies (around the Coulomb barrier): optical model, CDCC
* High energies (typically ~50-100 MeV/u): eikonal (+variants)
2. Description of the projectile
e 2-body, 3-body, A-body,....

* Microscopic, hon-microscopic

* Need of bound states and scattering states (difficult for 3-body systems)
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2. Overview of scattering theories

Schrodinger equation: H¥Y(&;, R) = E¥Y(§;, R)
¢;: set of internal coordinates in the projectile
R :describes the relative motion between the target and the projectile

Relative
distance R

Projectile
Internal coordinates: ¢;

Target (g.s. only)

projectile

General expression for the Hamiltonian H: common to all models

H = Hy(&) + T/ﬁ + Z VR

Relative

Interaction between
target and projectile

kinetic energy

Projectile + heavy target

even at low energies: many open channels = absorption in V(&;, R)
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2. Overview of scattering theories

Various scattering theories
H=HoE) +Te + ) VER)
i

1. Coupled-channel methods:
* Nointernal coordinates , Hy(¢;) = 0
* Simple but limited (no halo structure, no continuum effects)

* Folding procedures:
V(R) = | p1("p2(s)v(R — 1 + s)drds

With  p,(r), p, (s) = densities of nuclei 1 and 2 (from experiment or from theory)
v(x) =nucleon-nucleon interaction (M3Y, DDM3Y, JLM, etc.)

o Can be extended to multichannel calculations
o Example: S. Ohkuko, Y. Hirabayashi, Phys. Lett. B684 (2010) 127
investigate 10 condensate states in a multichannel model

(a + 12C(O+, 01,27,27,37) with 12C RGM densities (from M. Kamimura)



2. Overview of scattering theories

2. CDCC: Continuum Discretized Coupled Channel
Valid at low energies (partial-wave expansion of W(&;, R))
G. Rawitscher, Phys. Rev. C9, 2210 (1974)
N. Austern et al., Phys. Rep. 154 (1987) 126

First step: solutions of Hy(&;) @, (&) = Egr i (&)
Ey; < O:physical state(s), Ey; > 0: pseudostates (=approximation of the continuum)

e Second step: expansion of the total wave function
P(ER) = ) bor G (R)
K

- system of coupled equations

e Third step : solving the system (positive energy E)
—> phase shifts, scattering cross sections

* Two-body projectiles: (d=p+n, “Li=a+t, 1'Be=1%Be+n, etc): relatively simple
* Three-body projectiles (*He=a+n+n, °Be=a+a+n): more complicated!

* Recent developments: A-nucleon projectile (cluster approximation: “Li)



2. Overview of scattering theories

3. Eikonal method
» Valid at high energies (k large)
*  Wave function factorized as W(&;, R) = exp(ikZ) x P(&;, R)

Impact parameter b

* For k large: the SE is simplified = allows more sophisticated descriptions of the projectile

» Standard eikonal method: only ground state of the projectile (=adiabatic approximation:
excitation time long compared to the interaction time)

* Dynamic eikonal: excited states are included (D. Baye et al., PRL 95 (2005) 082502)

* Eikonal CDCC: the projectile is described over a basis (~dynamic eikonal)
(Hashimoto et al., Phys. Rev. C 83, 054617 (2011))

* Extensions possible to relativistic energies (K. Ogata, C. Bertulani, PTP 123 (2010) 701)
* Microscopic eikonal (E.C. Pinilla, P. Descouvemont, Phys. Lett. B 686(2010) 124)



3. The CDCC method

CDCC=Continuum Discretized Coupled Channels



3. The CDCC method

Goal of CDCC (Continuum Discretized Coupled Channels) theory
Solution of 3-body (4-body) scattering problem projectile
G. Rawitscher, Phys. Rev. C9, 2210 (1974)

M. Kamimura et al, Prog. Theor. Phys. Suppl. 89 (1986) 1
N. Austern et al., Phys. Rep. 154 (1987) 126

target

* Projectile assumed to be described by two clusters

* Introduced for deuteron-induced reactions (breakup important)
- well adapted to exotic nuclei

* Various cross sections: elastic, breakup inelastic, fusion, etc.
(Energy near the Coulomb barrier)

* Recently extended to 3-body projectiles (*He=a.+n+n)
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3. The CDCC method

projectile
target
f —O
o |

2

Hamiltonian of the system
h? A, Aq
H —_ Ho(r) - ZAR + th (R + A_pr) + VtZ (R —A_pr>
V,,, V,,= optical potentials (typically: Woods-Saxon)
from elastic scattering between particules 1 or 2 and the target
=>» need for elastic-scattering data!

Two steps:
1. Diagonalize H,:
Hy®'™(r) = EJ®/™(r) - wave function of the (2-body) projectile ®/™(r)

2. Expand the total wave function over this basis
- wave function of the system projectile+target W/M™ (R, 1)
- system of coupled differential equations
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3. The CDCC method

First step: diagonalization of the projectile hamiltonian H,

Ho®L"(r) = EL o)™ (1), with &) (1) = ¢}, ()Y™(Q,)

J=spin of the projectile (ground-state + excited states + breakup channels)
n=excitation level in partial wave j

* Expand ¢,£(r) on a basis (N functions):
N

oA = ) Cnie(r)

k=1
example: gaussians f;, (1) = exp(—(r/a;)?)

* Solve the eigenvalue problem:

z (< filHfr > —E} < fk|fk’ >) Cni’ =0

k’
with < fi |fir > = [ fir @) f e (r2dr

e Solutions with E,{< 0: physical states
Solutions with E} > 0: pseudostates: simulate breakup effects
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3. The CDCC method

Example: deuteron=p+n

60
50
40 -

30 F

E (MeV)

MITHTLT

205—
10

0'_

Pseudostates :E,>0
Simulate breakup effects
Depend on the basis

/3)

* Ground state: E,;<0
* Independent of the basis

-t MITHLET T
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3. The CDCC method

2 step:
1. Expand the total wave function (projectile + target)

WMT(R,r) = ) wll (R) [0 ® V()

jLn

To be determined Angular functions

2-body wave
functions

- Multichannel wave function:
J=spin of the projectile
n=excitation level
L=projectile-target angular momentum

Projectile

I

R Qt
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3. The CDCC method

2. Expand the potential in multipoles (numerical integration over the angle)

A, A,
Vit | R+ i + Vo | R — 1T = z Vi(r,R)P;(cos 8)
2

p p

3. Insert both expansions in the Schrédinger associated with H

B2 A, A
H=H0(r)—ZAR+Vt1 R+A—T +Vt2 R—A—T’
p p

=>» System of coupled equations: provide the radial functions

R ( d*> L(L+1)
[_ 2u (dRZ T >+Ec —E] u(R) +ZVCJC7€(R)u£ZT(R) —0
CI

=standard coupled-channel system (general form common to most scattering theories)

In CDCC (2-body projectiles) the potentials are obtained from
chg(R) ~ [ @l (Vi (r, R)@..(r)dr (factors: 6], Clebsch-Gordan, etc...)

Channel c=j: projectile quantum numbers
n: excitation level of the projectile [physical state (E<O) or PS (E>0)]

L : orbital angular momentum between projectile and target

Number of c values: typically ~100-200



3. The CDCC method

Test case: d+°8Ni at E,, =80 MeV

E (MeV)

Standard benchmark in the literature

p+n: gaussian potential (reproduces E =-2.22 MeV)

p+°8Ni, n+°8Ni: optical potentials

Elastic scattering and breakup

deuteron basis:
[=0,24,6

Vcc (MeV)

I
o

d+>8Ni potentials (nuclear)

R (fm)

10

Ground state (I=0)

_/

- long range for PS

20

1st pseudostate (I=2)
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3. The CDCC method

Role of the continuum

Elastic scattering (entrance channel 1): element U;; needed

Single channel: matrix 1x1 @

Multichannel: matrix NxN

Example: d+°8Ni, J=17

U]

channel calculation

calculation

Provides elastic cross sections in a single-

Provides elastic c.s. in a multi-channel

Couplings to the continuum: modify U4

0.65

0.64 | d-+58Ni
0.63
0.62 | 0

0.61
0.60 4

0.59

Eax (MeV)

40

30

g
v o



3. The CDCC method

Convergence with the p+n angular momentum

10!

100

6/0R

10°1

102

103

d+58Ni, E,,=80 MeV

0 (deg.)

=>» importance of p+n breakup channels
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3. The CDCC method
Extension to three-body projectiles: H(x,y,R) = Ho(x,y) + Tp + Vi1 + Viy + Vig

R Qtarge’[

projectile

* Previous calculations
T. Matsumoto et al., Phys. Rev. C70 (2004) 061601
M. Rodriguez-Gallardo et al., Phys. Rev. C77 (2008) 064609

* Projectile can be described in the hyperspherical harmonics (ex:?He=o+n+n, °Be=o+o+n)

e Same principle:
* Eigenfunctions of the projectile Hamiltonian Hy(x, y)
e Expansion of the total wave function

* Coupling potentials more complicated

. 67
e Similar coupled-channel system



Technical aspects associated with CDCC
* Solving the coupled-channel equations = R-matrix method
* Basis to expand the wave functions = Lagrange meshes
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4. Technical aspects associated with CDCC: the R-matrix method

* Goal: to solve a coupled-channel problem for positive energies

_h_z ( d? €(€+1))

2\ ")+ ), Vil () = (B~ Eoul"(r)

c= channel
T . .
ug ()= wave function in channel ¢

* Equation common to many problems (only the potentials chf, (r) are different)

* In general many states to simulate the continuum = many coupled equations
* Negative energies E (bound states): variational methods

* Positive energies E (scattering states, resonances): more difficult



4. Technical aspects associated with CDCC: the R-matrix method

Two options:
1. discretization method (FRESCO)
2. R-matrix (adopted here)

R-matrix or discretization method?

e Still an open guestion...

* Should provide the same results = tests

* Obvious advantage of the R-matrix: treatment of closed channels

Channels 1,2,3: open

Ch | 4: closed
Threshold 4 ugn(r) annet 4. close

Threshold 3

Threshold 2 F /\
\
\/ .

Closed channels: ul" () - 0,
e Unstable in discretization methods 70
e Automatic in the R-matrix

Threshold 1




4. Technical aspects associated with CDCC: the R-matrix method

Introduction — framework

 Presented for 2 structureless particles
one channel (simple presentation)
potential model 2 (T +V — E)u(r) =0

* N basis functions ¢;(r): variational calculations: u(r) = XY . ¢;¢;(r)
tend to zero at large distances
valid at short distances only

» Definition of 2 regions: radius a (chaannel radius)

internal region: v < a external region: 7 = a
al Uexe (1) = Lp(r) — Up0,(7)
Uine () = ) cidhs(7)
i=1

e Schrodinger equation + Matching atr = a
=» collision matrix U (~phase shift) and coefficients c; (wave function)
I Channel radius a is not a parameter!!



4. Technical aspects associated with CDCC: the R-matrix method

Procedure

Step 1: Compute the matrix elements of the Hamiltonian over the internal region

Hij =< ¢;| H|pj >int= J ¢ () (T + V)op;(r)dr
0
Nij =< ¢ild; >int= j di(r)¢;(r)dr
0

Problem: the kinetic energy is not hermitian over a finite interval [0,3]

a d2 a d2
[ i) gz s = [ 6,09 Tz i

— Bloch operator
h? d L
L(L)=2—6(r—a) —|r

ua dr 7

L=arbitrary constant (L=0 in most cases)



4. Technical aspects associated with CDCC: the R-matrix method

h2 d L
role of the surface operator L(L) = Zu—a(S(r —a) (E — ;) r

1. makes T + L(L) hermitian
< Qi T+ L) >ine=< @I T + LIL)|P; >ine

2. The Schrodinger equation
(H—E)u, =0
is replaced by the Bloch-Schrodinger equation
(H = E + LI Uine = L) Ume = L) Uxe

—the Bloch operator ensures u;...(a) = ug,.(a) (for the exact solution)

« Old » use of the R-matrix theory
* No Bloch operator
* Basis states such that ¢;'(a) = 0
- Hermiticity OK
- but the total wave function has always a derivative =0



4. Technical aspects associated with CDCC: the R-matrix method

Step 2: Determine the matrix elements
Cij(E) =< ¢;| H+ L(L) — E|}p; >int

Step 3: Determine the R matrix (size 1x1 for single-channel problems) at energy E
h%a »
R(E) = EZ ¢i(a) (C™)i9;(a)
ij

Step 4: Determine the collision matrix from the R matrix
I(ka) 1-L*R(E)

U(E) = (ke ToLR(E) — exp(2i8) = exp(2idys) exp(2idg)
* Hard-sphere phase shift: exp(2idys) = é((’;{?) — 8yg = —atan ’;Ezg
1-L*R(E)

PR
— 0p = atan——
1-LR(E) 1-SR

* Both depend on a but the sum should not depend on a

. _ 0'(ka) _ : :
L =ka otk = S(E) +iP(E) (L is complex

* R-matrix phase shift: exp(2idp) =




4. Technical aspects associated with CDCC: the R-matrix method

Example: a+3He
(a=5 fm, Coulomb barrier ~1 MeV)

0.2

-0.2

Hard-sphere phase shift

) ﬁ}\m 2.5

\ —1=0

1.00E+00

1.00E-02

1.00E-04
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1.00E-08

0.4
N\ —1=2
0.6
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0.8 \
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/
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4. Technical aspects associated with CDCC: the R-matrix method

Extension to multichannel
Single channel: Cij(E) =< ;| T+V + L(IUL) —El}p; >int

R(E) = 225, 41(0) (€)@

Multichannel: Ceic'j(E) =< | (T + L(L) + Ec — E)bccr + Vet | >ine
h2 _
R,/ (E) = Z_:Zij ¢i(a) (C 1)ci,c’j¢j(a)

size of the R-matrix= number of channels ¢ (+angular momentum couplings)
e Typical number for CDCC ~100-200
* Typical number of basis states ¢;: ~30-40

- inversion of matrix C requires long computer times (complex)



4. Technical aspects associated with CDCC: The Lagrange-mesh method

The Lagrange-mesh method
eRef: D. Baye, Phys. Stat. Sol. 243 (2006) 1095)

e used in many different fields (convenient variational basis)

e Gauss approximation: foag(x)dx ~ YN 1 kg (x)
o N=order of the Gauss approximation

o Xxi=roots of an orthogonal polynomial, A,=weights

o Ifinterval [0,a]: Legendre polynomials
[0,0]: Laguerre polynomials

* Lagrange functions for [0,1]: f;(x)~Py(2x —1)/(x — xi)
o x;areroots of Py(2x; —1) =0

o with the Lagrange property: fi(xj) = /1{1/2%'



4. Technical aspects associated with CDCC: The Lagrange-mesh method

* Matrix elements AT THE GAUSS APPROXIMATION

Overlap < fi|f; > = [ f;(x)f;(x)dx =~ XR_; A f; O fi (xi) = 65 (since fi(x;) = ’11'_1/251'1')

Kinetic energy < f;|T|f; >
* More complicated
* Analytical calculation
* Must be performed once (independent of the potential)

Potential

N
< filVlf; > = [ iV () fi(x)dx = z Mefi i) £ eV (i) = V(%) 6y
k=1

= no integral needed
very simple!

* The Gauss approximation must be valid =2 regularization for Coulomb, centrifugal

fi(x) - (xﬁi)nfi(x), with n=1/2, 1, etc.



4. Technical aspects associated with CDCC: The Lagrange-mesh method
Application to the R-matrix: Matrix elements

Cci,c’j(E) =< ¢L| (T + L(L) + EC - E)5CC’ —+ Vcc'l¢j >int

* In general: integral over R (from R=0 to R=q)
Lagrange mesh: value of the potential at the mesh points = very fast

* Typical sizes: ~100-200 channels ¢, N~30-40
e Test: collision matrix U does not depend on N, a

e Choice of a: compromize (a too small: R-matrix not valid, a too large: N large)

e Some remarks

© Fast (no integral), accurate
© The basis is defined by N and a only : no further parameter (# for gaussians)

® Legendre functions: more zeros near R=0, and R=a = not optimal



4. Technical aspects associated with CDCC: The Lagrange-mesh method

Simple example: potential a+3He : gaussian: Vy (1) = —66.1 exp(—(r/2.52)%)

2 bases:
e Lagrange functions
: - : |
* sine functions uf(r) = sm% (i — 5)
* Matrix elements very simple

e Derivative u;(a) = 0



4. Technical aspects associated with CDCC: The Lagrange-mesh method
[ = 0 phase shifts a+3He

0 - . - . . . .
(] JO

-60 F

a=8 fm: Fast convergence
-120

-180
- Lagrange, a=8 fm

-240

120 | a=5 fm: too small (Vy not negligible)

Lagrange, a=5 fm

-180

In general: a too small = not in the R-matrix conditions (Vy negligible)
a too large: needs many basis functions

. 81
=» compromize



4. Technical aspects associated with CDCC: The Lagrange-mesh method

sine functions: u;(a) = 0 1
- not flexibility 1

AN

-1.5

0
0
60
very slow convergence
of the phase shift
120
180 |
Sine, a=8 fm

-240



4. Technical aspects associated with CDCC: The Lagrange-mesh method

Analysis of the wave functions (E=8 MeV, a=8fm)

1.5

10 | Lagrange, a=8 fm, N=15
: excellent matching at r=a

0.5 r —> accurate phase shift

0.0

( 5 10 15
-0.5

1.0 |

-1.5

1.5
- Sine, a=8 fm, N=15
1.0 |

05 B /\
0.0 [F—H—\
-0.5

-1.0
-1.5

poor matching at r=a
— inaccurate phase shift

10 12

o
<
\©)
.[;
(0))
(0 0]
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4. Technical aspects associated with CDCC: The Lagrange-mesh method

Application of the R-matrix to CDCC: Test case: d+°8Ni at E,, =80 MeV

40

60
0 (deg)

channel radius a (N=30)

Number of basis (Lagrange)
functions N (g=15 fm)
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Propagation techniques

Computer time: 2 main parts
*  Matrix elements: very fast with Lagrange functions
* Inversion of (complex) matrix C = R-matrix (long times for large matrices)

For reactions involving halo nuclei:
* Long range of the potentials (Coulomb)

Z]_ZtGQ ZQZtGQ
22 ) — 41
R+ Apfr R Ap'r
ZpZe?
R

=) Vi(r, R)P\(cosfp,)
A

‘/CC/(R) ~

Can be large (large quadrupole moments of PS)

* Radius a must be large
* Many basis functions (N large)

->

e Distorted Coulomb functions (FRESCO)

* Propagation techniques in the R-matrix (well known in atomic physics)
Ref.: Baluja et al. Comp. Phys. Comm. 27 (1982) 299



Without propagation

| N functions |

R=0 R=a

* Matrix elements integrated over [0,a]
* Inversion of a matrix of dimension N x N_

With propagation

N’ functions /\/\/\/\

R=0 R=a, R=a, R=a

* The interval [0,a] is split in N subintervals

* In each subinterval N'*N/Ng. (¢n | (1e + Le+ Ec — E)S,0 + Vc‘g;’r | Pn)ai—aiqq
* Interval 1: determine R(a,)
* Interval 2 : R(a,) from R(a,) } (inversion of a matrix with size N’ x N)
* Interval Ng: R(a) from R(aye )

=>» N, smaller calculations:

Lagrange functions well adapted to matrix elements over [a,a,,,] °°
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5. The eikonal method

Ref: R.J. Glauber, Lect. Notes in Physics, Vol. 1 (1959)
Y. Suzuki et al., “Structure and reactions with light exotic nuclei” (2003)
M. Yahiro et al. Prog. Theor. Phys. 126 (2011) 167

1 2

@ O

* The wave function is factorized as W(r) = exp(ikz) P(r)

* The main energy dependence (high E) is in exp(ikz)-> factorization

D) — il B(r) + V() =0

= Eikonal approximation (first-order equation) : valid at high energy

1. One-body projectile: very simple (elastic only)

2. Two and three-body projectile:
more complicated
but: elastic, inelastic, breakup, etc.




5. The eikonal method

One-body projectile: Only elastic scattering

i () + V)P = 0

W\

V (b, 2 )dz)

B(r) = exp(—— |

£(0) ~ ik /OOO To(gb) (1 — XM Yp dp

1 o0
x(b) = ——/ V (b, z)dz = eikonal phase

hv J—co

r=(b2+22)%/2

With b=transverse part of r: r=(b,0,z)=impact parameter

=>» very simple: integral over z, and over b

=» Only valid at high energies (and small angles)



5. The eikonal method
Coulomb barrier ~ 2 MeV

Ecm=129 MeV Ecm=80 MeV

1.00E+02 10 +

. /\ M/—\
1 T T T T 1
\/ V' w 40 60 80 100
1.00E+00

o 1
° o
B = j ! ’ T~ <
© Vv 10 20 30 40 \o o
N
1.00E-01 - & Experiment 0.1 1 —Zzz;l
Exact -
Ekonal
1.00E-02 ool
© (degrees) 0 (degrees)
Ecm=40 MeV Eormm10 MoV
10 - 0.

100

0.1 1

c/oR
\,
/
/
/
c/oRr

W T T 1
V \ 0 0w Y e 80 100
\ —— Exact
—— Eikonal 0.01 1 \/
—— Exact

—— Eikonal

0.1 0.001
0 (degrees) 0 (degrees)

=» accurate at high energies, poor approximation at low energies




5. The eikonal method: two-body projectile

Two-body projectile:
2 coordinates: R,r

—> elastic, breakup

potential: V(R, 1) = V4 (R + j—2r> + Vi (R — —1r>
[4

Ex: 11Be+208Pp

With 11Be=10Be+n

A
Ap

eikonal phase: y(b,r) = y,(b,r) + x,(b, 1)

&/

» Wave function of the projectile ®,(r)

e Assume gs wave function (adiabatic approx.)

e Elastic cross sections: S(b) =< CIDO(r)|eiX(b'r)|CDO(r) >

e Breakup S(k,b) =< ¥, (k, r)|eiX(b'r)|CI>0(r) >
* |n practice: ex(br) i expanded in multipoles

e Ref: D. Baye, EJP, Spec. Topics 156 (2008)
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5. The eikonal method: two-body projectile

flastic  S(b) =< ¢o(r)|eX Do (r) >
breakup  S(b) =< ¢p(r, k)|eiX(b’r)|gbO(r) >, Yo(r, k) = continuum state

Example: '"Be breakup on 2%Pb at 68 MeV/u (RIKEN data)
D. Baye, EPJ ST156 (2008) 93

E (MeV)



. The eikonal method: extensions

Three-body projectiles
®He: D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki, Phys. Rev. C 79 (2009) 024607
HLi:E. C. Pinilla, P. Descouvemont, D. Baye, Phys. Rev. C 85 (2012) 054610

Dynamic eikonal approximation (no adiabatic approximation)
D. Baye, P. Capel, G. Goldstein, Phys. Rev. Lett. 95 (2005) 082502

Eikonal CDCC: the projectile is described over a basis = multichannel problems
K. Ogata et al., Phys. Rev. C 68, 064609 (2003)

Extensions to relativistic energies
K. Ogata and C. Bertulani, PTP 123 (2010) 701)

Neutron removal reactions
M. Yahiro, K. Ogata, K. Minomo, Prog. Theor. Phys. 126 (2011) 167

Microscopic eikonal: projectile described by a microscopic model
’Li:E. C. Pinilla, P. Descouvemont, in progress...



