- 2. Reaction models (advanced)
 - 1. Overview of scattering theories
 - 2.The CDCC method (Continuum Discretized Coupled Channel)
 - 3. Technical aspects: R-matrix, Lagrange meshes
 - 4. The Eikonal method

1. Introduction

Main goal in nuclear physics: understanding the structure of exotic nuclei Available data:

• Elastic (inelastic) scattering, Breakup, Fusion, etc.

Role of the theory: how to interpret these scattering data?

Combination of two ingredients

1. Description of the scattering process

- Low energies (around the Coulomb barrier): optical model, CDCC
- High energies (typically ~50-100 MeV/u): eikonal (+variants)
- 2. Description of the projectile
 - 2-body, 3-body, A-body,....
 - Microscopic, non-microscopic
 - Need of bound states and scattering states (difficult for 3-body systems)

Schrödinger equation: $H\Psi(\boldsymbol{\xi}_{i}, \boldsymbol{R}) = E\Psi(\boldsymbol{\xi}_{i}, \boldsymbol{R})$

 ξ_i : set of internal coordinates in the projectile

R :describes the relative motion between the target and the projectile

even at low energies: many open channels \rightarrow absorption in $V(\xi_i, R)$

Various scattering theories

$$H = H_0(\xi_i) + T_R + \sum_i V(\xi_i, R)$$

1. Coupled-channel methods:

- No internal coordinates , $H_0(\xi_i) = 0$
- Simple but limited (no halo structure, no continuum effects)
- Folding procedures:

$$V(R) = \int \rho_1(r)\rho_2(s)v(R - r + s)drds$$

With $\rho_1(r), \rho_2(s) =$ densities of nuclei 1 and 2 (from experiment or from theory) v(x) = nucleon-nucleon interaction (M3Y, DDM3Y, JLM, etc.)

- Can be extended to multichannel calculations
- Example: S. Ohkuko, Y. Hirabayashi, Phys. Lett. B684 (2010) 127 investigate ¹⁶O condensate states in a multichannel model $(\alpha + {}^{12}C(0^+_1, 0^+_2, 2^+_1, 2^+_2, 3^-))$ with ¹²C RGM densities (from M. Kamimura)

- 2. CDCC: Continuum Discretized Coupled Channel Valid at low energies (partial-wave expansion of $\Psi(\xi_i, R)$) G. Rawitscher, Phys. Rev. C 9, 2210 (1974) N. Austern et al., Phys. Rep. 154 (1987) 126
 - First step: solutions of $H_0(\xi_i)\phi_k(\xi_i) = E_{0k}\phi_k(\xi_i)$ $E_{0k} < 0$:physical state(s), $E_{0k} > 0$: pseudostates (=approximation of the continuum)
 - Second step: expansion of the total wave function

$$\Psi(\boldsymbol{\xi}_{\boldsymbol{i}},\boldsymbol{R}) = \sum_{k} \phi_{0k}(\boldsymbol{\xi}_{\boldsymbol{i}}) u_{k}(\boldsymbol{R})$$

 \rightarrow system of coupled equations

- Third step : solving the system (positive energy E)
 → phase shifts, scattering cross sections
 - Two-body projectiles: (d=p+n, ⁷Li= α +t, ¹¹Be=¹⁰Be+n, etc): relatively simple
 - Three-body projectiles (⁶He= α +n+n, ⁹Be= α + α +n): more complicated!
 - Recent developments: A-nucleon projectile (cluster approximation: ⁷Li)

3. Eikonal method

- Valid at high energies (k large)
- Wave function factorized as $\Psi(\boldsymbol{\xi}_{i}, \boldsymbol{R}) = \exp(ikZ) \times \widehat{\Psi}(\boldsymbol{\xi}_{i}, \boldsymbol{R})$

- For k large: the SE is simplified \rightarrow allows more sophisticated descriptions of the projectile
- *Standard eikonal method*: only ground state of the projectile (=adiabatic approximation: excitation time long compared to the interaction time)
- *Dynamic eikonal*: excited states are included (D. Baye et al., PRL 95 (2005) 082502)
- Eikonal CDCC: the projectile is described over a basis (~dynamic eikonal) (Hashimoto et al., Phys. Rev. C 83, 054617 (2011))
- Extensions possible to relativistic energies (K. Ogata, C. Bertulani, PTP 123 (2010) 701)
- Microscopic eikonal (E.C. Pinilla, P. Descouvemont, Phys. Lett. B 686(2010) 124)

CDCC=Continuum Discretized Coupled Channels

Goal of CDCC (Continuum Discretized Coupled Channels) theory

Solution of 3-body (4-body) scattering problem

G. Rawitscher, Phys. Rev. C 9, 2210 (1974)
M. Kamimura et al, Prog. Theor. Phys. Suppl. 89 (1986) 1
N. Austern et al., Phys. Rep. 154 (1987) 126

- Projectile assumed to be described by two clusters
- Introduced for deuteron-induced reactions (breakup important)
 → well adapted to exotic nuclei
- Various cross sections: elastic, breakup inelastic, fusion, etc.
 (Energy near the Coulomb barrier)
- Recently extended to 3-body projectiles (⁶He= α +n+n)

Hamiltonian of the system

$$H = H_0(\mathbf{r}) - \frac{\hbar^2}{2\mu} \Delta_{\mathbf{R}} + V_{t1} \left(\mathbf{R} + \frac{A_2}{A_p} \mathbf{r} \right) + V_{t2} \left(\mathbf{R} - \frac{A_1}{A_p} \mathbf{r} \right)$$

V_{t1}, V_{t2}= optical potentials (typically: Woods-Saxon)
 from elastic scattering between particules 1 or 2 and the target
 → need for elastic-scattering data!

Two steps:

- 1. Diagonalize H_0 : $H_0 \Phi^{jm}(\mathbf{r}) = E^j \Phi^{jm}(\mathbf{r}) \rightarrow$ wave function of the (2-body) projectile $\Phi^{jm}(\mathbf{r})$
- 2. Expand the total wave function over this basis \rightarrow wave function of the system projectile+target $\Psi^{JM\pi}(\mathbf{R}, \mathbf{r})$ \rightarrow system of coupled differential equations

First step: diagonalization of the projectile hamiltonian H₀

$$H_0\Phi_n^{jm}(\mathbf{r}) = E_n^j\Phi_n^{jm}(\mathbf{r})$$
, with $\Phi_n^{jm}(\mathbf{r}) = \varphi_n^j(r)Y_j^m(\Omega_r)$

j=spin of the projectile (ground-state + excited states + breakup channels) n=excitation level in partial wave *j*

• Expand $\varphi_n^j(r)$ on a basis (N functions):

$$\varphi_n^j(r) = \sum_{k=1}^N c_{nk} f_k(r)$$

example: gaussians $f_k(r) = \exp(-(r/a_i)^2)$

• Solve the eigenvalue problem:

$$\sum_{k'} \left(< f_k |H| f_{k'} > -E_n^j < f_k \left| f_{k'} > \right) c_{nk'} = 0 \right.$$

with
$$\langle f_k | f_{k'} \rangle = \int f_k(r) f_{k'}(r) r^2 dr$$

• Solutions with $E_n^j < 0$: physical states Solutions with $E_n^j > 0$: pseudostates: simulate breakup effects

Example: deuteron=p+n

61

2nd step:

1. Expand the total wave function (projectile + target)

- → Multichannel wave function: j=spin of the projectile
 - *n*=excitation level

L=projectile-target angular momentum

2. Expand the potential in multipoles (numerical integration over the angle)

$$V_{t1}\left(\boldsymbol{R} + \frac{A_2}{A_p}\boldsymbol{r}\right) + V_{t2}\left(\boldsymbol{R} - \frac{A_1}{A_p}\boldsymbol{r}\right) = \sum_{\lambda} V_{\lambda}(r, R)P_{\lambda}(\cos\theta)$$

3. Insert both expansions in the Schrödinger associated with H

$$H = H_0(\mathbf{r}) - \frac{\hbar^2}{2\mu} \Delta_{\mathbf{R}} + V_{t1} \left(\mathbf{R} + \frac{A_2}{A_p} \mathbf{r} \right) + V_{t2} \left(\mathbf{R} - \frac{A_1}{A_p} \mathbf{r} \right)$$

→ System of coupled equations: provide the radial functions $\left[-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2}\right) + E_c - E\right]u_c^{J\pi}(R) + \sum_{c'}V_{cc'}^{J\pi}(R)u_{c'}^{J\pi}(R) = 0$

=standard coupled-channel system (general form common to most scattering theories)

In CDCC (2-body projectiles) the potentials are obtained from $V_{cc'}^{J\pi}(R) \sim \int \varphi_n^j(r) V_{\lambda}(r, R) \varphi_n^j(r) dr$ (factors: 6j, Clebsch-Gordan, etc...)

Channel c= *j*: projectile quantum numbers

n: excitation level of the projectile [physical state (E<0) or PS (E>0)]

L : orbital angular momentum between projectile and target

Number of c values: typically ~100-200

Test case: d+⁵⁸Ni at E_{lab}=80 MeV

- Standard benchmark in the literature
- p+n: gaussian potential (reproduces E_d=-2.22 MeV)
- p+⁵⁸Ni, n+⁵⁸Ni: optical potentials
- Elastic scattering and breakup

 \rightarrow long range for PS

Role of the continuum

Elastic scattering (entrance channel 1): element U_{11} needed

Convergence with the p+n angular momentum

→ importance of p+n breakup channels

Extension to three-body projectiles: $H(x, y, R) = H_0(x, y) + T_R + V_{t1} + V_{t2} + V_{t3}$

• Previous calculations

T. Matsumoto et al., Phys. Rev. C70 (2004) 061601

M. Rodriguez-Gallardo et al., Phys. Rev. C77 (2008) 064609

- Projectile can be described in the hyperspherical harmonics (ex:⁶He= α +n+n, ⁹Be= α + α +n)
- Same principle:
 - Eigenfunctions of the projectile Hamiltonian $H_0(x, y)$
 - Expansion of the total wave function
- Coupling potentials more complicated
- Similar coupled-channel system

Technical aspects associated with CDCC

- Solving the coupled-channel equations \rightarrow R-matrix method
- Basis to expand the wave functions \rightarrow Lagrange meshes

• Goal: to solve a coupled-channel problem for positive energies

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right) u_c^{J\pi}(r) + \sum_{c'} V_{c,c'}^{J\pi}(r) u_{c'}^{J\pi}(r) = (\mathbf{E} - E_c) u_c^{J\pi}(r)$$

c= channel $u_c^{J\pi}(r)$ = wave function in channel c

- Equation common to many problems (only the potentials $V_{c,c'}^{J\pi}(r)$ are different)
- In general many states to simulate the continuum \rightarrow many coupled equations
- Negative energies *E* (bound states): variational methods
- Positive energies *E* (scattering states, resonances): more difficult

Two options:

- 1. discretization method (FRESCO)
- 2. R-matrix (adopted here)

R-matrix or discretization method?

- Still an open question...
- Should provide the same results \rightarrow tests •
- Obvious advantage of the R-matrix: treatment of closed channels ٠

r

70

Introduction – framework

- Presented for 2 structureless particles one channel (simple presentation) potential model $\rightarrow (T + V - E)u(r) = 0$
- N basis functions $\phi_i(r)$: variational calculations: $u(r) = \sum_{i=1}^N c_i \phi_i(r)$ tend to zero at large distances valid at short distances only
- Definition of 2 regions: radius a (channel radius)

internal region:
$$r \le a$$

 $u_{int}(r) = \sum_{i=1}^{N} c_i \phi_i(r)$

external region: $r \ge a$ $u_{ext}(r) = I_{\ell}(r) - \frac{U_{\ell}}{U_{\ell}}O_{\ell}(r)$

Schrödinger equation + Matching at r = a
 → collision matrix U (~phase shift) and coefficients c_i (wave function)
 !! Channel radius a is not a parameter!!

Procedure

Step 1: Compute the matrix elements of the Hamiltonian over the internal region

$$H_{ij} = \langle \phi_i | H | \phi_j \rangle_{int} = \int_0^a \phi_i(r)(T+V)\phi_j(r)dr$$
$$N_{ij} = \langle \phi_i | \phi_j \rangle_{int} = \int_0^a \phi_i(r)\phi_j(r)dr$$

Problem: the kinetic energy is not hermitian over a finite interval [0,a]

$$\int_0^a \phi_i(r) \frac{d^2}{dr^2} \phi_j(r) dr \neq \int_0^a \phi_j(r) \frac{d^2}{dr^2} \phi_i(r) dr$$

 \rightarrow Bloch operator

$$\mathcal{L}(L) = \frac{\hbar^2}{2\mu a} \delta(r-a) \left(\frac{d}{dr} - \frac{L}{r}\right) r$$

L=arbitrary constant (L=0 in most cases)

role of the surface operator
$$\mathcal{L}(L) = \frac{\hbar^2}{2\mu a} \delta(r-a) \left(\frac{d}{dr} - \frac{L}{r}\right) r$$

1. makes T +
$$\mathcal{L}(L)$$
 hermitian
 $< \phi_i | T + \mathcal{L}(L) | \phi_j >_{int} = < \phi_j | T + \mathcal{L}(L) | \phi_i >_{int}$

2. The Schrödinger equation

$$(H-E)u_\ell=0$$

is replaced by the Bloch-Schrödinger equation

$$(H - E + \mathcal{L}(L))u_{int} = \mathcal{L}(L)u_{int} = \mathcal{L}(L)u_{ext}$$

 \rightarrow the Bloch operator ensures $u'_{int}(a) = u'_{ext}(a)$ (for the exact solution)

« Old » use of the R-matrix theory

- No Bloch operator
- Basis states such that $\phi_i'(a) = 0$

 \rightarrow Hermiticity OK

 \rightarrow but the total wave function has always a derivative =0

Step 2: Determine the matrix elements

$$C_{ij}(E) = \langle \phi_i | H + \mathcal{L}(L) - E | \phi_j \rangle_{int}$$

Step 3: Determine the R matrix (size 1x1 for single-channel problems) at energy E

$$R(E) = \frac{\hbar^2 a}{2\mu} \sum_{ij} \phi_i(a) \left(C^{-1}\right)_{ij} \phi_j(a)$$

Step 4: Determine the collision matrix from the R matrix

$$U(E) = \frac{I(ka)}{O(ka)} \frac{1 - L^* R(E)}{1 - LR(E)} = \exp(2i\delta) = \exp(2i\delta_{HS}) \exp(2i\delta_R)$$

- Hard-sphere phase shift: $\exp(2i\delta_{HS}) = \frac{I(ka)}{O(ka)} \rightarrow \delta_{HS} = -\operatorname{atan} \frac{F(ka)}{G(ka)}$
- R-matrix phase shift: $\exp(2i\delta_R) = \frac{1-L^*R(E)}{1-LR(E)} \rightarrow \delta_R = \operatorname{atan} \frac{PR}{1-SR}$
- Both depend on a but the sum should not depend on a

•
$$L = ka \frac{O'(ka)}{O(ka)} = S(E) + iP(E)$$
 (L is complex

Example: α +³He (a=5 fm, Coulomb barrier ~1 MeV)

1.00E+00

1.00E-02

1.00E-04

1.00E-06

1.00E-08

Penetration factor Pl 0.5 1 1.5 2 2.5 L=0 L=2 L=4 -2 -3 -4

Extension to multichannel

Single channel:

$$C_{ij}(E) = \langle \phi_i | T + V + \mathcal{L}(L) - E | \phi_j \rangle_{int}$$
$$R(E) = \frac{\hbar^2 a}{2\mu} \sum_{ij} \phi_i(a) (C^{-1})_{ij} \phi_j(a)$$

Multichannel:

$$C_{ci,c'j}(E) = \langle \phi_i | (T + \mathcal{L}(L) + E_c - E) \delta_{cc'} + V_{cc'} | \phi_j \rangle_{int}$$

$$R_{cc'}(E) = \frac{\hbar^2 a}{2\mu} \sum_{ij} \phi_i(a) (C^{-1})_{ci,c'j} \phi_j(a)$$

size of the R-matrix= number of channels c (+angular momentum couplings)

- Typical number for CDCC ~100-200
- Typical number of basis states ϕ_i : ~30-40
- \rightarrow inversion of matrix C requires long computer times (complex)

The Lagrange-mesh method

- •Ref: D. Baye, Phys. Stat. Sol. 243 (2006) 1095)
- used in many different fields (convenient variational basis)
- Gauss approximation: $\int_0^a g(x) dx \approx \sum_{k=1}^N \lambda_k g(x_k)$
 - \circ N = order of the Gauss approximation
 - x_k =roots of an orthogonal polynomial, λ_k =weights
 - o If interval [0,*a*]: Legendre polynomials $[0,\infty]$: Laguerre polynomials
- Lagrange functions for [0,1]: $f_i(x) \sim P_N(2x-1)/(x-xi)$

•
$$x_i$$
 are roots of $P_N(2x_i - 1) = 0$

• with the Lagrange property: $f_i(x_j) = \lambda_i^{-1/2} \delta_{ij}$

- Matrix elements AT THE GAUSS APPROXIMATION
- Overlap $\langle f_i | f_j \rangle = \int f_i(x) f_j(x) dx \approx \sum_{k=1}^N \lambda_k f_i(x_k) f_j(x_k) \approx \delta_{ij}$ (since $f_i(x_j) = \lambda_i^{-1/2} \delta_{ij}$)
- Kinetic energy $< f_i |T| f_j >$
 - More complicated
 - Analytical calculation
 - Must be performed once (independent of the potential)
- Potential

$$\langle f_i|V|f_j \rangle = \int f_i(x)V(x)f_j(x)dx \approx \sum_{k=1}^N \lambda_k f_i(x_k)f_j(x_k)V(x_k) \approx V(x_i)\delta_{ij}$$

- ⇒ no integral needed very simple!
- The Gauss approximation must be valid \rightarrow regularization for Coulomb, centrifugal $f_i(x) \rightarrow \left(\frac{x}{x_i}\right)^n f_i(x)$, with n=1/2, 1, etc.

Application to the R-matrix: Matrix elements $C_{ci,c'i}(E) = \langle \phi_i | (T + \mathcal{L}(L) + E_c - E) \delta_{cc'} + V_{cc'} | \phi_i \rangle_{int}$

- In general: integral over R (from R=0 to R=a) Lagrange mesh: value of the potential at the mesh points \rightarrow very fast
- Typical sizes: ~100-200 channels c, N~30-40
- Test: collision matrix **U** does not depend on *N*, *a*
- Choice of *a*: compromize (*a* too small: R-matrix not valid, *a* too large: *N* large)
- Some remarks
 - © Fast (no integral), accurate
 - \bigcirc The basis is defined by N and a only : no further parameter (\neq for gaussians)
 - \bigotimes Legendre functions: more zeros near *R=0*, and *R=a* \rightarrow not optimal

Simple example: potential α +³He : gaussian: $V_N(r) = -66.1 \exp(-(r/2.52)^2)$ 2 bases:

- Lagrange functions
- sine functions $u_i^{\ell}(r) = \sin \frac{\pi r}{a} (i \frac{1}{2})$
 - Matrix elements very simple
 - Derivative $u'_i(a) = 0$

a=8 fm: Fast convergence

a=5 fm: too small (V_N not negligible)

 In general: a too small → not in the R-matrix conditions (V_N negligible) a too large: needs many basis functions
 → compromize

very slow convergence of the phase shift

Analysis of the wave functions (E=8 MeV, a=8fm)

Application of the R-matrix to CDCC: Test case: d+⁵⁸Ni at E_{lab}=80 MeV

channel radius a (N=30)

Number of basis (Lagrange) functions *N* (*a*=15 fm)

Computer time: 2 main parts

- Matrix elements: very fast with Lagrange functions
- Inversion of (complex) matrix $C \rightarrow R$ -matrix (long times for large matrices)

For reactions involving halo nuclei:

Long range of the potentials (Coulomb)

- Radius *a* must be large
- Many basis functions (*N* large)
- Distorted Coulomb functions (FRESCO)
- Propagation techniques in the R-matrix (well known in atomic physics) Ref.: Baluja et al. Comp. Phys. Comm. 27 (1982) 299

Without propagation

- Matrix elements integrated over [0,a]
- Inversion of a matrix of dimension N x N_c

- The interval [0,a] is split in N_s subintervals
- In each subinterval N'~N/N_{S:} $\langle \varphi_n \mid (T_c + \mathcal{L}_c + E_c E) \delta_{cc'} + V_{cc'}^{J\pi} \mid \varphi_{n'} \rangle_{a_i a_{i+1}}$
 - Interval 1: determine R(a₁)
 - Interval 2 : $R(a_2)$ from $R(a_1)$ (inversion of a matrix with size N' x N_c)
 - Interval N_s: R(a) from R(a_{NS-1})

→ N_s smaller calculations: Lagrange functions well adapted to matrix elements over [a_i,a_{i+1}]

 \mathbf{i}

Ref: R.J. Glauber, Lect. Notes in Physics, Vol. 1 (1959)
Y. Suzuki et al., "Structure and reactions with light exotic nuclei" (2003)
M. Yahiro et al. Prog. Theor. Phys. 126 (2011) 167

- The wave function is factorized as $\Psi(r) = \exp(ikz) \widehat{\Psi}(r)$
- The main energy dependence (high E) is in $\exp(ikz) \rightarrow$ factorization

• Then
$$-\frac{\hbar^2}{2\mu}\hat{\psi}(r) - i\hbar v \frac{d}{dz}\hat{\psi}(r) + V(r)\hat{\psi}(r) = 0$$

- = Eikonal approximation (first-order equation) : valid at high energy
- 1. One-body projectile: very simple (elastic only)
- Two and three-body projectile: more complicated but: elastic, inelastic, breakup, etc.

With b=transverse part of r: r=(b,0,z)=impact parameter

- → very simple: integral over z, and over b
- → Only valid at high energies (and small angles)

Coulomb barrier ~ 2 MeV

→ accurate at high energies, poor approximation at low energies

5. The eikonal method: two-body projectile

Ex: ${}^{11}Be+{}^{208}Pb$ With ${}^{11}Be={}^{10}Be+n$

potential: $V(\mathbf{R}, \mathbf{r}) = V_{t1} \left(\mathbf{R} + \frac{A_2}{A_p} \mathbf{r} \right) + V_{t2} \left(\mathbf{R} - \frac{A_1}{A_p} \mathbf{r} \right)$ eikonal phase: $\chi(b, \mathbf{r}) = \chi_1(b, \mathbf{r}) + \chi_2(b, \mathbf{r})$

- Wave function of the projectile $\Phi_0(r)$
- Assume gs wave function (adiabatic approx.)
- Elastic cross sections: $S(b) = \langle \Phi_0(\mathbf{r}) | e^{i\chi(b,\mathbf{r})} | \Phi_0(\mathbf{r}) \rangle$
- Breakup $S(k, b) = \langle \Psi_0(k, \mathbf{r}) | e^{i\chi(b, \mathbf{r})} | \Phi_0(\mathbf{r}) \rangle$
- In practice: $e^{i\chi(b,r)}$ is expanded in multipoles
- Ref: D. Baye, EJP, Spec. Topics 156 (2008)

5. The eikonal method: two-body projectile

Elastic $S(b) = \langle \phi_0(\mathbf{r}) | e^{i\chi(b,\mathbf{r})} | \phi_0(\mathbf{r}) \rangle$ breakup $S(b) = \langle \psi_0(\mathbf{r},k) | e^{i\chi(b,\mathbf{r})} | \phi_0(\mathbf{r}) \rangle, \ \psi_0(\mathbf{r},k) = \text{continuum state}$

Example: ¹¹Be breakup on ²⁰⁸Pb at 68 MeV/u (RIKEN data) D. Baye, EPJ ST156 (2008) 93

5. The eikonal method: extensions

- Three-body projectiles
 ⁶He: D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki, *Phys. Rev. C 79 (2009) 024607* ¹¹Li:E. C. Pinilla, P. Descouvemont, D. Baye, *Phys. Rev. C 85 (2012) 054610*
- Dynamic eikonal approximation (no adiabatic approximation)
 D. Baye, P. Capel, G. Goldstein, Phys. Rev. Lett. 95 (2005) 082502
- *Eikonal CDCC*: the projectile is described over a basis → multichannel problems
 K. Ogata et al., Phys. Rev. C 68, 064609 (2003)
- Extensions to relativistic energies
 K. Ogata and C. Bertulani, PTP 123 (2010) 701)
- Neutron removal reactions
 M. Yahiro, K. Ogata, K. Minomo, Prog. Theor. Phys. 126 (2011) 167
- Microscopic eikonal: projectile described by a microscopic model ⁷Li:E. C. Pinilla, P. Descouvemont, in progress...